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J. Flow of water in unsaturated soil.

3.1. Introduction.

Most of the processes involving soil water interactions
in the field, and particularly the flow of water in the rooting
zone of most crop plants, occur while the soil 1s i{n an unsaturated
condition. Unsaturated flow processes are in general complicated
and difficult to describe quantitatively, since they often entail
changes in the state and content of soil water durine flow. Such
changes involve complex relations among the variable soil wetness,
suction and conductivity, whose interrelations may be further
complicated by hysteresis. The formulation and solution of
unsaturated flow problems very often require the use of indirect
methods of analysis, based on approximations or numerical techni-
ques. For this reason the development of rigorous theoretical
and experimental methods for treating these problems was rather
late in coming. 1In recent decades, however, unsaturated flow
has become one of the most important and active topics of research
in soil physics, and this research has resulted in significant
theoretical and practical advances.

In soil physics, solls of which the pore volume is
only partially filled with water are called unsaturated.

3,2. Comparison of unsaturated versus saturated flow

We will sec, that soil-water flow ls caused by a
driving force resulting from an effective potential qradient,
that flow takes place in the direction of decreasing potential,
and that the rate of flow (flux} is proportional t- the po'en-
tial gradient and is affected by the geometric proparlies m
the pore chanpels throuagh which flrnw takes place. These prin-

clples apply in unsaturated as well as in saturated soils.

The moving foree i 3 saturated #nit = the gradiog:
nf a positive pressure po. ial. o the cther han!, water i
an unsaturated soil s subject 1o a subatmesborgr prennare,
or suction, and the aradient of thic soctbor Pileyi o e
tutorn a moving Foroe, The mat rie sl o b ooy aie o

pesinted oot g the physieal affinity f e
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to the soil-particle surfaces and
capillary pores. Water tends to be drawn from a zone where the
hydration envelopes surrounding the particles are thicker, to
where they are thinner, and from a zone where the caplllary
meniscl are less curved to where they are morer *.jhly curved.
In other words, water tends to flow from where suction is low
to where it is high. When suction is uniform all along & hori-
zontal column, that column is at equilibrium and there is no
moving force. Not so when a suction gradient exists. In that
case, water will flow in the pores which remain water-filled
at the existing suction, and will creep along the hydration
films over the particle surfaces, in a tendency to equilibrate
the potentlal.

The moving force is greatest at the "wetting front"
zone of water entry into an originally dry soil. In this zone,
the suction gradient can be many bars per centimeter of soil.
Such a gradient constitutes a moving force thousands of timesa
greater than the gravitational force. Such strong forces are
sometimes regquired {(for a given flux) in view of the extremely
low hydraulic conductivity which a relatively dry soll may
exhibit.

The most important difference between unsaturated and
gaturated flow is in the hydraulic conductivity. When the soll
is saturated, all of the pores are filled and conducting, so
that conductivity is maximal. When the soll becomes unsaturated,
gsome of the pores become airfilled and the conductive portion
of the soll's cross-sectional area decreases correspondingly.
Furthermore, as suction develops, the first pores to empty are
the largest ones, which are the most conductive, thus leaving
water to flow only in the smaller pores. The empty pores must
be circumvented, so that, with desaturation, the tortuosity
increases. Tn coarse-textured soils, water sometimes remains

Aalmnst entirely tn capillary wedqes at the contact polnts of

Lhe particles, thus forming =eparate and discontinuous pockets
nt watar. In aggreqated soils,tnon, the large interaggeqaate spaces
whiich conter high conle Vivity at saturation become  (when

empt foddt barviers to Ligoid Flow from one agqagregate to o tg
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For these reasons, the transition from saturation to
unsaturation generally entails a steep drop in hydraulic con-
ductivity, which may decrease by several orders of magnitude
(sometimes down to 1/100,000 of tis value at saturation) as
guction increases from zeto to one bar. At still higher suctions,
or lower water contents, the conductivity may be so low that very
steep suction gradients, or very long times, are required from
any appreciable flow to occur.

At saturation, the most conductive soils are those in
which large and continuous pores conatitute more of the overall
pore volume, while the least conductive are the solls in which
the pore volume consists of numerous micropores. Thus, as l1s.
well known, a sandy soll conducts water more rapidly than a
clayey soil. However, the very opposite may be true when the
soils are unsaturated. In a soil with large pores, these pores
gquickly empty and become nonconductive as suction develops,
thus steeply decreasing the initially high conductivity.

In a soll with small pores, on the other hand, many of the pores
remain full and conductive even at appreciable suction, so that
the hydraulic conductivity does not decrease as steeply and may
actually be greater than that of a soil with large pores subjected
to the same suction.

Since in the field the scil is unsaturated most of the
time, it often happens that flow is more appreciable and per-
sists lorger in clayey than in sandy soils. For this reason,
the occurrence of a layer of sand in a fine-textured profile,
far from enhancing flow, may actually impede unsaturated water
movement until water accumulates above the sand and suction de-
creases sufficiently for water to enter the large pores of the
sand. This simple principie is all too often misunderstood.

3.3. Relation of conductivity to suction _and wetness 24.

Let us consider an unsaturated soll in which water is
flowing under suction. Such flow is illustrated schematically
in the model of figure 9. In this model, the potentjal difference
between the inflow and outflow ends is wmaintained not by diffe-
rent heads of positive hydrostatic pressure, but by different
imposed suctions.

Porows plaie | ngmen 4 'I Porgul piETE
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FPigure 9 : A model illustrating unsaturated flow
{(under a suction gradient) in a hori-
zontal column.
In general, as the suction varies along the sample,
g0 will the wetness and the conductivity. If the suction heads
at both ends of the sample are maintained constant, the flow
processes will be steady and the suction gradient will increase
as the condyctivity decreases with the increase in suction along
the axis of the sample. This phenomenon is illustrated in figurelo.

‘Distance
Figurelty - cfhe v ration of wetness {), matric
potential h o, and conductivity K
alony 1 hypothetical column of unsa-
turated sert conducting a steady flow

o water.



Since thr gradient alona the column is not constant,
as it ts in uniform saturated systems, it is not possibl.,
strictly speaking, to divide the flux by the overall rat » of
the head drop to the distance {AH/fx} to ohtain the conductiviGy.
Rather, it is necessary to divide the flux of the exact rradion’
at each point to evaluate the exact conductivity and its wvai:a-
tion with suction. In the followina treatment, however, we shall
assume that the column of figqure @ is sufficiently short to allow
us to evaluatle at least an average conductivity for the sample

as a whole (i.e. K = q. Ax/AH).

The average negative head, or suction, acting in the

column is

We assume that the suction everywhere exceeds the air-

entry value so that the soil is unsaturated throughout.

Let us now make successive and sytematic measurements
of flux versus suction gradient for different values of average
suction. The results of such a series nf measurements are shown
schematically in fiqure 1L As in the case of saturated flow,
we find that the flux is proportional to the gradient. However,
the slope of the flux versus gradient line, being the hyiraulic
conductivity, varies with the average suction. In a saturated
soil, by way of contrast, the hydraulic conductivity is generally
independant of the magnitude of the water potential, or pressure.

Hel
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Figurell : The hydraulic conductivity, being the
slope of the flux vs. gradlent rela-
tion depends upon the average suctinn
in an unsaturated soil.
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Figurell : Dependance of conductivity on suction
in soils of different texture.

Fiqure w2 shows the general trend of the dependence
of conductivity on suction in soils of different texture. It
is secn that, although the saturated conductivity of the sandy
5011l Ks| is typically greater than that of the clayey soil Ksz,
the unsaturated conductivity of the former decreases more steeply

with increasing suction and eventually becomes lower.

No fundamentally based equation of general validity
is availoble for the relation of conductivity to suction or to
wetress, wd existing knowledge does not allow the reliable pre-
diction nf unsaturated conductivity from basic soil properties.
Varicus empirical equations have been proposed, however, in-

cluding the follwing

K = ;[—: {n
K= —2 - {2)
b+h
KS
K = {1
m
1+ (h/h)
K=a.o0o" (4
K = Ks.ws“‘ (5)
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where
mldure ol its radiusz, <he largest water-filled pores
K - the hydraulic conductivity at any deyive uf saturation .. iiibute most to that flow. When a saturated soil starts
{ur unsaturation}, Lo coming unsaturated, the largest pores are emptlied first.
Ks - the saturated conductivity of the same co1l, o5 result, the unsaturated hydraulic conductivity decreases
d, b and m = empirical constants {different in each equation), ;y fast with water content.
h = the matric suction head,
@ = the volumetric water content, It has been fuund experimentally that Darcy's law
W_ = the degree of saturation, 1~ alsu valid for unsaturated soils. Thus, the flux density
hc = the suction head at which K = 1/2 K_. *ov the flow of water in unsaturated soil is:
s
_ q = - Kk(g) 2 (8)
Of these various equations, the most commonly employed a8

are the first two {of which the first is the simplest
P » but cannot wiv » nuw the hydraulic conductivity K(8) vary over manvy orders of
be used in the suction range approaching zero). In all of the .
I cnadiude with 6.,
equations, the most important parameter is the exponential con-

stant, since it controls the steepness with which conductivity “iqure L3 shows the hydraulic conductivity K of a
decreases with increasing suctjon or with decreasing water con~ ncdiam fine sand and a loam as function of the volume fraction
tent. The m-value of the first two equations is about two or L watwr, 0., For instance, when in the sand 8 decreases from
less for clayey soils, and may be four or more for sandy soils. 0 = .34 to vy = 0,07, K changes from about K = 1 m c]-1 to

For each soil, the equation of best fit, and the values of the K o= 10'5 n d'l,

parameters, must be determined experimentally,
The relationship between K and & 18 not linear,

The relation of conductivity to suction depends upon ter .nomany solls iog K is approximately proportional to 6,
hysteresis, and is thus different in a wetting than in a drying +  indicated in figure 13 by the semi-logarithmic scale,
soil. The reason is that, at a given suction, a drying soil Tenerally, the K-8 relationship is not influenced by hysteresis,
contains more water than a wetting one. The relation of conduc- ro wontrast with the k-n relationship. Therefore, the K-8
tivity to water content, however, appears to he affected by relationship i8 used most of the time.

hysteresis to much lesser degree. The 1 f th
fy h 1 e u; K ( 9 § ve uz ° © exponent The hydraulic conductiwity of loam {(figure 11B)
or the relation o to 0 (eguation 4) can be as high

9 ) gh as 10 or 1s Jower than that of sand (figure 13A) for the same 4.
more.

At cthe same water content the water-filled pores of
voam are smaller than those of sand. Thus the contact area
1.4. Hydraulie conductivity. per volume botween the solid phase and the water is the largest

e S R st eSS s fwr soam. This results in a higher resistance to flow, or a
tewur hydraulic conductivity,

The hydraulic conductivity of unsaturated soils is
smaller than that of saturated soils, because on.y the pores
which still contain water can contribute to the flow of water.

Since the hydraulic conductivity of a pore is proportional to



ro=ta

Aot £ orematy

_T -— v—--TA— e -—"'lan
1 29. 3.
e
ot SR [ 3.5. Steady unsaturated flow of water.
: ;o
a=d f .
/ 3.5.1. Steady upward flow.
- U | &
'
b P % To study steady, upward flow of water in unsaturated
n o v
" / /' soll, we will first consider a situation as in figure 14, The
3 / / E water in the soil celumn is in atatic eguilibrium with the simu-
- ,/ / 3 lated groundwater table, because a plastic cover prevents evapo-
,f / Fiqure 13A. Soil water charac- ration from the soil surface. Thus the water content profile
- By i T t. i i -
s u L T hydraulic condﬁztiiliy :Tee‘j___))' shown 1s the same as the soll water characteristic of the soll
: S 1 and hydraulic- diffusivity D-s for the particular range of h_, Such an equilibrium situaticn
s ’ (- -—== } for medium fine sand. ™
P ! may occur in a field with a constant, shallow water table during
oF - 4 - A " pertods of fog, when the air is saturated with water vapour.
4 7 3
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Ficure 138B.

S0il water charac-

= teristic hp-n (-———y,
hydraulic conductivity k-n (--—_})
and hydraulic diffusivity r-na
(- -~ -=) for loam.

Figure 14,

Static equilibrium with a groundwater table.

The soll 1s saturated below z = 0.3 m,
z =0.3m, hm = = 0.3 m the alir-entry value is - 0.3 m.

Since at

If the plastic cover on top of the soil column in
figure 14 is removed, evaporation will start (fiqure 15). If

the evaporation rate 1is constant and the groundwater table is
maintained at its original level, steady upward flow will be
established, This means that # dnes not vary in time and thus,

accordina to the continnity equation:
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qg=-K g% = constant and uniform layer has become so dry that practically all flow of water ceases.
The formation of this dry surface layer is of practical importance
For the flow to be directed upwards, 1t must decrease because it protects the soil against large evaporation losses,
with height, making dH/dz negative and g positive. Thus h, and This so-called soil mulch is the principle upon which dry-land
with it B, must decrease. Since K decreases fast with 8 (figure 13) farming is practised.

it decreases fast with height, To maintain the same flux at all

heights, a certain rate of decrease of K with height must be The exact values of h and H in the steady situation

co nsated by the same rate of increase with height of the represented in figqure 15 are difficult to calculate, and then

absolute value of di/dz. Thus the H curve in the potential
diagram must be increasingly flatter towards the soll surface,
as indicated in figure 15.

only when the k-6 and hm—a relationships are known accurately.

The gradients in the lower, water-saturated part of the profile

can be calculated easily, provided the saturated K, the evaporation
rate and the air-entry value are known.

t1td T ,F PROBLEM 7

"t Is the relationship of H and h with z curvilinear
in the water-saturated part of the profile in figure 15?2

ae

A NS UWER

LY}

In the water-saturated part of the profile, X is

pe s O S A T R S constant with height. In steady saturated water transport,

ragy (™)

the flux density is also constant with height. This implies
that dH/dz is constant with height or that H changes linearly
with helght, and not curvilinear. The same is true for h.

Fiqure 15. Steady upward flow of water, constant evaporation
= from a stable groundwater table.

The above situation is often found in the field during periods

of drought, when a rather sharp transition from a dry upper PROBLEM §

layer to a moist lower zone is developed due to the sharp

decrease of K with decreasing water content., The formation Estimate the evaporation rate in fiqure 15, assuming
. . -1

of such a sharp transition is the result of a self-accelerating a steady state situation, a saturated K value of 0.05 m d

mechanism, which can be explained as follows. When evaporation and h = - 0.22 mat z = 0.2 m.

gtarts, @& as well as h and H decrease near the surface. But,

because K decreases too, the new H gradient is too small to ANSWER

maintain the upward flow needed to satisfy the evaporative

demand. Hence, 6 decreases still turther, causing a further Since q ls constant with height, the evaporation

decrease in H, but again not sufficient to off-set the accompanyinu rate at the surface is the same as the flux density in the

decrease in K etc.,. This process continues until the surface saturated zone, It o 22 mat 2z - 0.2 m, then H = -0.02m
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that heiaght, and thus:

t[=-K§;=-0.05mdnl%—g}i='xmd—l

PROBILEM g

Determine the height of the saturated zone for the situation
in problem 8
Does this height remain constant if the evaporation rate

changes?

ANSWER

In the saturated zone is

~1
-giz{—:%=0'°°5'“d_l~-o.1mml
=0,05 md
gh _ dH _ dz _ _ -1
Then i =z E ST 0.1 -1.0==-1.1mm

or h=~1,12+¢C
Since h =0 at z =0, C =0

At the top of the saturated zone, h is equal to the alr-entry
value, or h = - 30 m (see text). Thus the height of the
saturated zone is

.- _b_ . 0.3

11 T T 0.27Tm

No. The larger the evaporation rate, the larger the absolute
value of the hydraulic potential gradient, and thus also the
h-gradient, the smaller the height over which the air-entry
value will be reached, and thus the smaller the saturated
2one

L5020 diwady dewinsard {low,

Fimrr 16 shows the potential diagram for a field

situation siniiar to figure 6. The water at the surf» - is
yprlicd by sprinklers and the groundwater table is sveb "zed

sy tile drainn,  The sorinklino rate is such that . ... rouc

ritn-r 12, the layer of water on the soil surface rema.ns constant.

mang -

L

Figure 16, Steadv downward flow of water at a high sprinkling
= rate (flooded soil).

PROBILEM e

Calculate the flux density in figure 16 if X = 10 em 4~

and the watcor layer is 10 com deep.

ANSWwER
q4=-k gg =-oimd'x3g=-0a1ma’l



PROBLEM P

Calculate the sprinkling rate in the steady state
sitvation of fiqure 16 if the depth of the water layer at the

surface is negligible.

ANSWER

In this situation h = O at the soil surface and in
the whole profile, because h = 0 also at z = 0. This means
that H = z and dH/dz = 1 m mdl. The sprinkling rate then equals
the value of the hydraulic conductivity, 10 cm d !,

If the sprinkling rate is decreased to another constant
values, a new steady state situation arises, when the downward
flux density still equals the sprinkling rate. This new situation
is accompanied by a decrease in the H gradient, i.e. both H and h
at the soil surface decrease. If the sprinkling rate falls below
a certain critical value, the air-entry value of the soil will be
exceeded and an unsaturated zone will develop in the top of the
soil profile. Since K decreases with 6 In the unsaturated zone
and q is constant, the H gradient must increase with height, as
shown in figure 17. Consequently, the h gradient must also increase
with height, which means that the h curve becomes steeper towards

the soil surface.

" o
neady

ok 'S ue L] i N
Figure 17. Steady downward flow of water at a low sprinkling
== rate.

Ex===3n

PR UL LM 12

Un-'er what conditions are H and h linear functions of 2

tCooveejitoul rhe profile?

ANSUWER

H and h are linear functions of z only when dH/dz =
win .tant, i.e. when k is constant throughout the profile.
because the soil is saturated at the groundwater table, it should

pe saturated throughout the profile.

PROBIL EM 13

Assuming that the air-entry value is not exceeded,

¢. 1w the diagram for the steady state situation with a

snrinkling rate of 8 cm d—l.

ANSWER

A flux density of 8 cm cl-'1 corresponds to
dH/dz = - g/k = 0.B m m )

Hence, at the soll surface, H = 0.8 mand h = - 0.2 m.

L
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A 81
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!
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»erl \1
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PROBLEM 14

What is the highest possible H gradient that can be
attained in a steady state downward flow as shown in Flagure 17,

ANSWER

In the unsaturated zone, where h is decreasino with
height, k is also decreasing with height, Therefore, dH/dz
must increase with height to satisfy the condition for steady
state: g = - K gg = constant

Consequently, dh/dz must also increase with height,
1l.e. become less negative., Now suppose dh/dz would become
positive at a certain height. Then both h and k would increase
with height. To keep the flux constant, dH/dz would have to
decrease with height, and thus also dh/dz. This 13 in conflict
with the supposition made above. Thus, we can conclude that

the highest possible value of dh/dz is zero. 1In this situation

h has reached the constant value at which K has the same value
as the imposed flux density, which then flows through the soil
under the gravitational potential aradient of 1 m m-l.

PROBLEM Is

a. Draw as logical as possible the potential diagram for
steady downward flow with a sprinkling rate of 1 cm d_-1
b. Why is the phrase "as logical as possible” needed in a?

a. Froma =~ 1.0emd ! and K = 10 em a~! it fFollows:

gg = - g -0.lm m-l and

dh _ dn _ dz

-1
: e TN TS R
dz s e o1 0.7 m m

38.

The air-entry value 1s h =-0,4 m, This value 1s reached
at z = 0.44 m, Thus the soil is saturated bel«w 2 = 0.44 m.
Above z = 0.44 m the gradient dH/dz {ncreases wita heioht,
but cannot exceed the value for which dh/dz = 0. With these
considerations the potential diagram can be drawn.

b

-o8

heagn 1w

b. Above z = 0.44 m the s30il is unsaturated and ¢ as well as K
vary. Since K is not given in the unsaturated zone, we only
can guess the most probable shapes of the ll-and h-profiles,
Even if K were known, calculation of these profiles is complex
because of the non-linear nature of the problem.

Figure 1B presents a summary of the h-profiles for
the various cases of steady vertical flow of water discussed
in this section. The numbers next to the curves are the values
of the flux density. Upward flux densities (o > O) represents
evaporation and downward flux densities (q < 0} represents drainage.
Zero flux density {q = 0) is the special case of hydrostatic
equilibrium.
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o

Figure 18. Summary of h-profiles for steady vertical flow of
sEnsEzsTo water with a stable groundwater table,

3. 6. Non-steady unsaturated flow of water.

3. 6.1, Introduction.

40.

S wor

Figure 19. A tube of cross-sectional area A and lenqth As is
======x=x= uniformly packed with a uniform soil. Water enters
at a flux density Juin and leaves at a flux density

JHOL“’.

3.6.2. Analysis of H-profiles.

In the field, water transport seldom is steady,
because precipitation, evaporation, irrigation, drainage etc...
change cogtinually. Transport processeswhich change with time,
are called non-steady. One can obtain insight into non-steady
water flow processes in the field, qualitatively, by obtaining
tensiometer data at different times and deptha in the soil

profile. With tensiometers one obtains information on the matric
head h, as well as the hydraulic head B = h + 2z, From the matric
head at different times one can derive whether the volume fraction

For steady state flow through a tube of uniform size

(figure 19}, the flux density is the same through every Cross

section of the tube, Consequently, water is not stored. of water is increasing or decreaseing. From the gradient of H

With non-steady or transient state flow, water is
stored {or in some situations it is coming from storage) in
the soil. Thus in transient state flow, the flux density
entering the tube in figure 19 would not equal the flux density
leaving the tube. The difference between that entering and that
exiting is the storage. That is, the storage (which can be
expressed as a change in volume water content with time,aav/at)
can be determined from the difference between inflow and outflow
(which can be expressed as the change in flux density along the
length of the tube SJw/b4x).

one can deduce in which direction the water 1s moving, and
possibly predict values of 6 and directions of flow at future
dates.

Which is the direction of flow if 3H/3z is positive,

negative of zero?

Since 2z is defined positive upward, a positive flux
density is directed upward and a negative flux density downward.
Also g - k OH/dz. Thus, when JH/32 is positive, then g is
negative, and thus directed downward. Similarly, when 3H/iz
rs negative, the flux density is directed upward, There is no
flow when DH/3z = O.
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s / PROBLEM 17
/ / . e e —— a8 b
/i" Explain, by using the continuity equation, whetber
: // 1L height A in Tiqure 20 0 decreases, increasss o: remain:
* . after il.
| ANSUER
\ nr
\\
R At some height h, above A the flux density q, is
T e Ao e W e neqative, because there 3H/3z is positive. At some heiaht h2
DU below A the flux density 1s positive, because 3H/3z is negative.

Therefore, at height A,

Figure 20. H- and h-profiles in a soil during steady evaporation
==z====== (t ) and some timen after it started raining (t }. 4 T 9z
dg ) <0
h 11”(h1 + A and h, ~ a 1T -2} ’
Figure 20 shows H-profiles at two different times.
Initjally at tys there is steady evaporation for which fil/éz because (o, = q,) ¢ 0 and (hl - h2) >0

increases with heilght, since # and X decrease with height. 1If

2 h
then it starts to rain and water infiltrates into the soil Thus, at heisht A, 12 = - %% >0
profile, the H-profile may after some time have changed to
vhis means that © increases with time. Even without the above

that indicated by t,- From this profile one can tell in which

direction the water is moving, and whether 28/3at > O or procf,
because water is moving towards A both from below and from above.

Lt 1s easy to see that the water content at A must increase

A8/0t < 0. Below height A there is still upward movement,

becau r"‘[/az < Q Above heiaght A, the trans rt is now i *
se . )y t tell et
= 3 For hej:lht A it 8 easy O wh her 08 wi 11 inc¢rease

ar not, just by looking at the H-profile. For cother heights it
is n-t so easy to oredict the chances in 2. Take for instance
hejarts B and € in fiqure 20. At both heights the flux density

downward. At height A, there is no movement because aH/0z = O,

PROBLEM 16

is ‘uownward.

Is there a water layer on top of the soll at time t_?
! Since € is the inflection point of the H-profile

ANSUWER shove heloht A, the H-gradient at B is smaller than at C.
However, 8 is oreater at B than at C, as can be interpreted
from the h-profile. This means that K is greater at B than

At the soil surface, h < 0. Thus, there
. o] b
' an be at C. Therefore, without knowing the exact numerical values

no free water at the soil surface.
uf % and AH/3z, it cannot be concluded which height has the

aqreater [lux density. This reasoning is true for every height
+inve ¢, Thus, it is not possible to conclude whether above C

% will increase or decrease, or even remaln constant.
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The same problem arises in the interval bLotween

heiahts D and E, where D is the inflection point of the

H-profile below A, and E is the heiqht where the H-profile

becomes linear.

In contrast, between A and D, the absolute value

of 3H/9z as well as K decrease with height, i.e. 3q/32z < O.

Hence, 36/3t at every heiacht in this interval is positive,

A similar reasoning can be given for the interval between
C and A. Also in this region 3q/9%2 is negative. Therefore,
36/3t will be positive for everv height between A and C.

PROELEM I &

Suppose the weather becomes fogay for an extended

period of time directly after the rain has stopped:
a. What will be the ultimate shape of the H-profile
b. Compare 6 at different heichts in this final stage with

those at time t

1

When there is fogq, there is no evaporation. But, downward
and upward water within the scil profile will continue until
finally static eaquilibrium is attained. Since at static
equllibrium 9H/3z = O, H is constant and zero throughout

the soil profile, because h = 0 at z = 0,

At eguilibrium, h is linear with height and egual to - z.

A little above C, H = O at time t_ , and thus at that height h

1

as this final stage will be the same as h at time tl' Therefore

the water content also will remain the same at that height.
Above this point, h and 6 will decrease compared to their
values at tl. Below this point, both h and 8 will increase.
At point E and below, the soil is saturated at time tl.
Although there h will increase with time, because the flux

will vanish, the water content cannot increase any further.
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By the preceding reasunina one can acquire only a
core tative understandine of the water flow processes an soil.
Sinee 10 unsalurated sotl K varies with 0, it is not posstible
ter calcuiate ¢ as a function of height diractly from H-profiles
45 shown in figure 20. For this it is necessary to know, in
Wi L ion, K- and £-h relationships. The procedure that then should
it iaijcwed to estimate »8/3t is outlined in fiqure 21. 1In
this fi.jure, the subscript z indicates height, s stands for a
Sl increment in heiqht and 6 is the average volume fraction

of water,

Figure 21,

Calculation scheme for analysing a é-profile.
In order to estimate 36/3t at a height z in a soil
rafile, we will describe in words the steps followed in

figure 21, By means of tensiometers, measure h at

By means of tensiometers, measure h at three
niiferent heights, it.e. at z, 2z + s and 2z - s. Add z to each
obtain H. Estimate 3H/3z at the heights z + 1/2 s and
2 = /2 &, assuminag that H changes linearly with height in the

tnt cvals from 2 to z + s and from z - s to z. By means of a
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predetermined soil water characteristic curve, determine o
that corresponds to h at z, z + s and z -~ s. Assuming that #
changes linearly with helcht, find ® at the heights z + 1/2 s
and z - 1/2 s. By means of a predetermined K-0 relationship,
find the K-values at heights z + 1/2 s and z - 1/2 s. Now,

q = = K (ﬂ]
z + 1/2 s z +1/2 sz z + 1/2 s , and
AH
G -12s™ " 1252 2- 1728

Finally, a good estimate of (ne/at)z is:

20, T+ 1/257 % - 128
a2 {z+1/2 8 -~ (z - 1/2 s)

The procedure outlined in figure 21 makes use of
average valies of 0, and not of hydraulic conductivity or
pressure head. Thils amounts to assuming that 8 chanaes linearly
with height., This assumption is usually not far from reality
and introduces small errors in 26/3t. An alternative approach
would be to average the K-values for each of the pertinent 0
values. This amounts to assuming that K chanaes linearly with 8,
which obviously introduces much more serious errors in an/at
because of the strona non-linear K-n relationships. An inter-
medlate approach will be to use average h-values,

PROBLEM I

In a medium fine sandy soil, for which the 6-h and
K-8 relationships are given in figure 5 and 6, three tensiometers
are installed at depths of 0.3, 0.4 and 0.5 m helow the surface.
At a certain moment the tensiometers indicate h-valurs nf - 2.0,
- 0.8 and - 0.4 m respectively, Estimate AN/AE at a depth of
0.4 m usina the scheme aiven in fioure 21. Hysteresis may be
neglected.

46.

By reading the appropriate values from figqure 13,
the following scheme can be set up:
- K 20
depth z h H 8 8 K %z q It
m m m m ) -1 -1 -1 -1
mnd " mm -~ ommd d

0.14 0.19 -11 2,1

0.4 0.1 -0.8 -0.7 0,19 0,105
0.24 4.20 -3 12,8

0.5 0.0 -0.4 -0.4 0.295

PROBLEM 20

a. Also estimate 38/3t at a depth of 0.4 m using average h values.
Do the same using average K values,

b. Compare the values for K and 36/3t obtained by the three
calculation schemes.

ANSUWER

a. Using average h values the calculation scheme is

.-

8

depth 2 h H h ] K %% q %E

m m m m nt -1 -1 -1 21
mm d mm mm d

0.4 0.1 -0.8 -0.7 0.117
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Using average K values: ANSUWER
daH 36
depth z h H ] K ¥
n n m m -1 L N 3t The calculation scheme is as follows:
md!md?! wn?! ma? a!
depth h H 8 ] x 2 29
0.3 ©0.2 -2.0 -1.8 0.09 0.03 epth 2 h H 5% 9 It
0.39  -11  4.29 am a1 "l ma! a?
0.4 0.1 -0.8 -0.7 0.19 0.75 0.57

0.5 0.0 -0.4 -0.4 0.295 40.0

0.1 0.7 -0.3 0.4 0.48 1.10
X 0,46 15 6.0 -90
b. The results in the previous problem show that the & values
‘ 0.2 0.6 -0.8 -0,2 0.44 0.68
derived from the measured h values vary nearly linearly with o.42 5.5 4.0 22
depth. We will, therefore, consider these results as standard
0.3 0.5 -1.1 -0.6 0.4 0.10
against which the other two calculation schemes can be
I a.36 2.0 6.0 =12
evaluated.
0.4 0.4 -1.6 -1.2 0.32 0.24
A comparison of the results of the first two schemes shows 0.3 2.4 5.0 12
that using average values of h leads to an underestimation
. 0.5 0.3 -1.0 -0.7 0.42 0.24
of K for the drier soil. The error in the final value of
0.445 9.0 -4.0 36
38/3t is about 10 %. The third scheme schows that using
0.6 0.2 ~0.5 -0.3 0,47 0.04
average K values leads to a value of 06/3t which is almost
0.475 20 -2.0 40
six times too large. This illustrates the extreme non-
0,7 0.1 -0.2 -0.1 0.48 0.10

linear character of unsaturated water transport.
.49 50 -1.0 50

PROBLEM ¢ 1

. . , ) . 3J.6.3. Infiltration theory.
In a loamy soil profile nine tensiometers are installed =000 0— — = = — — — = — =

at depths of 0, 0.1, 0.2 ... and 0.8 m below the s0il surface.

Estimate 36/3t at depths 0.1 ... and 0.7 m for the moment that A typical example of non-steady unsaturated flow

the tensiometers indicate h values of 0, - 0.3, - 0.8, - 1.1, of water is the infiltration of water into soils., When water

- 1.6, - 1.0, - 0.5, 0.2 and O m, respectively,. Use the u-h is applied at the soil surface (e.g. under flood irrigation or
and K-¢ relationships in figure 13, Hysteresis may be naglected, inundation), it enters the soil profile and changes the water

content distribution with depth, also called water content
profile. After irrigation has continuwed for some time, the
following zones can usually be distinguished in the water content

profile (figure 22j:



- saturated zcne

- transition zone

- transmission zone
- wetting zone

- wetting front

H it F‘"'“'“""":"“‘ 7

S/ | e

Figure 22. Zones of water content profiles some time after
========= start of irrigation.

The saturated zone 1s a thin zone at the soil
surface. The transition zone is a zone of decreasing water
content between the saturated zone and the nearly saturated
transmission zone. Its lower end may reach from a few milli-
meters to a few centimeters below the surface, These two
upper zones are not always clearly distinguishable, especlally
in the laboratory. They are caused by structural changes at
the soil surface and the entrapped air.

The transmission zone is the conveyance zone for the
infiltrating water. While all the other zones remain clearly
constant in thickness, this zone continues to elongate as long
as water is supplied at the soil surface. Its water content,
though slightly changing with depth, is rather constant and
close to saturation,

The wetting zone is the normally thin zone where the
water content changes from its initial value to the value of
the transmission zone.

The wet!ing front {s the visible limit of wate:r
voenettoron, where the gradient of the pressure head & ory

larae,

The cumuilative fnfiltration, 1, which is the volume

nf water thaot has infiltrated into the soll divided by * « surface

area, is

1 = (6 - 08,) ds (9
s=0

where s is the distance in the direction of flow (here depth
in the soil profile), 8 is the volume fraction of water at
distance s and Bi is the initial uniform value of 6, The
cumulative infiltration is, of course, an Increasing function

of time,

A column of s0il with surface area A can be divided
into n slices, each with thickness As. The volume of water
absorbed by each slice is then A(8 - BL) As, where & is the

average volume fraction of water of the slice.

The volume of water absorbed by the whole column

then equals:

Oo=AEL (8 - 91) As
n

From &s + O this can be written as the integral:

Q=hA I (G—Bi)ds

s=0
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The volume divided by the surface arca is then:

=92 _ -
1= i (0 ei} ds
=0

{whereas ei has been assumed constant, it could also vary with s,
without changing equation (9). The integral would only get another
value).

The driving forces for the water entering the soil
are the gradient of the pressure head between the wetting front
and the soil surface, and gravity. While the latter is constant,
the gradient of the pressure head decreases with time, because
of the advancing wetting front. As a result, the flux density
through the soil surface, also called the infiltration rate 1,
decreases monotonically with time and approaches asymptotically
a constant value, as gravity becomes the main driving force
(figure 23).

[ PO L PP T

et | me

Figure 23. Cumulative infiltration I and infiltration rate i
nEmaz==aa as function of time.

The infiltration rate may be expressed as:

_al
b= 3

Suppose at time t, the cumulative infiltration is I
and at time t + At, I + AI. The mean flux density during the

time interval At is then the increase of the cumulative infil-

tration AI, divided by At, 1.e. &I

At’®

e D hux densitey s oinfiltration rate) at time toean
s by detting t o approach zero:
Al ar
Ll (—=) = -~
t
.o At d

[niegration ot equation (10} gives the cumulative

st s tration as a function of time

t
I -'J. idt (11}

[0}

Laguation 11 can be derived from equation (10Q) as
cwst - egquation {10 may be written as: dl = .t
- integratiorn with boundary condition I = 0 for t = O

The cumulative infiltration as a function of time
nay be mcasured in the field, but such an experiment does not
aive any information about the water content distribution or
the deplte of the wetting front. To obtain the volume fraction

vater as a function of depth and time, 6({s,t), a general
riow equation must be solved, usinag appropriate intial and
Ly andary conditions.

1.0.4. General flow equation,

EIRI T N IR Horizontal infiltration.

FENE. 39 D) BN Flow equations

Darcy‘'s= law, through originally conceived for saturated
F ow oaly was extended to unsaturated flow, with the provision
.l fthe conductivity 1s now a function of the matric suction

toad {lles KO- K(h)):
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where VH 1s the hydraulic head qradient, which may include both
suction and gravitational components.

As pointed out in literature, this formulation falls
to take into account the hysteresis of soil-water characteristics,
In practice, the hysteresis oroblem can sometimes be evaded by

limiting the use of Eq. 1~5 in 3.3 to cases in which the suction(or

wetness) change is monotonic - that is, either increasing or
decreasing continuously. In processes involving both wetting and

drying phases, Eq. Lin 3.3is difficult to apply,as the K
may be highly hysteretic.

The relation of conductivity to volumetric wetness K(o)
or the degree of saturation K(WS) is affected by hysteresis to
a much lesser degree than is the K(h) function, at least in the

media thus far examined. v

Thus, Darcy's law for unsaturated soil can also be
written as

qg=-K vH {13)

(o)

which, however, still leaves us with the problem of dealing with
the hysteresis between h and .

To obtain the general flow equation and account for transient as
well as steady flow processes, we must introduce the continuity
equation :

30 _ _ 3¥
2 A% (143
where :
v = flux (cm/sec),
[3) = volumetric moisture content (cm3/cm3),
t = time (sec),
» = distance {cm).
Thus
a3 I -
3F T i (K(”)'Jx) {1s)
Remembering that the hydraonlic head H s, in drneral,
the sum af the pressure head or its neagative, the auction head,

h, ard the gravitational head (or elevat ion) s,

- h iz LR

(h) functio
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wWe can write :

9 3

(17)
3h EH
3 5 (a) 5x )

* ke

The two dependent variables of this equation, © and
h are connected by a "formal" relationship :

Coy = (em™) (18)

.

in which C(e] is termed the differential capacity of the medium.

Introducing (13) into (17) gives :

k
EL:) 3 ;] 38 02
37w Ty 3t ey ) (19}

This egquation can further be simplified by the intro-
duction of the soil water diffusivity D, (also a function of
the water content ©, defined as :

k

dh 2 -1

Equation (19) then becomes :

30 3 af 9z
7 % 3% o) 3x * %(0) (21)

For horizontal flow, vertical flow upward, and vertical
flow downward, the value of #2/6x is 0, 1 and ~1 respectively.

For horizontal flow eq. (21} becomes :

an

0 3 a (22)
X (D“w bx) 22

E
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For vertical flow eqg. (21} becomes :

28 3 a8
3 "% Oy = " 4o (23}

In these equations we see that the diffusivity D
is concentration-dependent (0).

The major advantage of the diffusion equation is that
concentration gradients are more tractable than potential
gradients, This fact in part explains recent popularity of the
diffusion equation as a mathematical description of the flow
process in unsaturated scils. As a result, several soil physi-
cists have actively sought solutions for the diffusion equation.

In defining D it is assumed that K, h and dh/d0 are
unique functions of 0. This cannot be strictly true because K,
h and dh/d0 will depend not only on 0 but on how the sample has
been wetted -its past wetting history. Other nonuniqueness
factors may be trapped air, variations with time of the air-
water-solid contact angle, heat released during wetting, and (on
vertical infiltration) pressure changes due to depth of over-

burden.

Thus we sSee the value of D at a given moisture content
for a drying scil may be different than that for o wetting soll
and that D may even be different for different initial moisture
contents of the same drying scil. This hysteresis in b and K
seems to parallel the hysteresis of noisture-tension curves.

A given tension on the 5011 water can result in wo Jdiffercot
s0il moisture contents, depending on whether it 1s wolling or

drying or even on its initlial roisture content.

As we shall see in the next chapter , we can assune

that D is a unique functiun of »  and we can obtain soil moisture
curves which lie close tou experins ntal opes. With uniyueness
assumed, probably the casiest inturpretation of D is scen in

the equation
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C
(o]

)

(0)° ax
{2}

= .9
=5x (®

—
-
-

which says that D is a measure of moisture flow (1} under a
moisture gradient (2).

The preceding paragraph indicates that D has physical
significance. Nevertheless, D must be used with care. For example,
in defining D as a factor of proportionality for flow under a
moisture gradient, it is tacitly assumed that the porous medium
must be homogeneous. That such an assumption is necessary is
seen by considering quantities of moist sand and clay in contact
in a horizontal tube. The sand and clay could be at the same
moisture tension everywhere in the tube, but whould have dif-
ferent moisture contents. Yet, at the clay-sand interface, where
there would be a non zero moisture gradient, there would be zero
flow. We must not forget that it is basically the gradient 3/3x
that drives (or pulls) the water in a horizontal soil tube, not

30/3x, and that the reason we introduce 230/3x and D( into the

0}
theory is to help solve probiems.

31.6.4.1.2., Measurement of diffusivity D (laboratory).

(o)
In the derivation of eguations {(22)and (23} we assumed

that D is a unique function of the moisture content o of the soil.

Bquations {22) and (23} have been solved by many authors. Most

of the technigues used in solving equations (27) and (23) require

values of D for various moisture contents or at least the func~

tional relationship between the Jditfusivity D and the moisture

content v of the soil,

D(Ui is calcelated from a morsture distribution curve
plotied from data obtained trom the addition of water to hori-

zontal soil columns



Bgquation 22) is applisd tr the lerizontal advance
of moisture into a horizontal hnroqgencous tong tube o ol
to obtain the relation between [)U‘) and the roisture contanl

The test snils were initially cither ajv-dry or partialty meict .

We rewrite the differential equation {22 as
af 5 Bl
7w Py )

where ) is the moisture content in cma.cm-J, at a horizontal
distance x from an input end, where water at zero head with
respect to the level of the tube is applied as fast as the
soil will absorb it. Neither the gravitational constant o
nor a vertical coordinate z enter in the problem because the
soll tube is of small diameter and is horizontal. There are
certain other basic physical points that we should rerember
about equation (22) before solving it mathematically for the
diffusivity D.

Equation (22) stems from

a. Darcy's law.
b. Equation of continuity.
c. the head expression.

d. the diffusivity definition.

The diffusivity in turn is depending on the moisture content 0
being a unigue function of the tension head h.

The equation of continuity involves differentiations
and hence implies that as we pass from volume element to volume
element in the soil tube, the moisture
movement conditions should vary smoothly. Thus the pore size
distribution of the soil particles from volume element to

volume element should accordingly alsc be the same. By volume

clemeal we mean a seqrent of the seil Ax cm long and o ooss

et iar equal to the inside of the tube, where Ax is sa

1O Lo 100 tires the diareter of an averaqe sire soil particie
or pere. I'f these coneditinns are not nmet, we shouid not oxpect
equalion (72} to be valid., We assume that th: - onetions 200

met and we proceod.

With i and 0Os beino moisture contents, we recognize
the initial condition and boundary conditicn for the moisture

flow in the horizontal tube to be

{1} 0fx,t})

(2) nix,t} = 05 for x =

0l for x > 0O, =0 (24}
o, t 0 (25)

Condition {1) says that initially our soil column has, for all
values of » » 0, a constant moisture content 0i. Condition (2}
implies that we are to apply water at the input end x = © at
time t = 0, and at all times t > O; and that we are to apply
the water in such a way as to maintain the soil in a very

thin layer at the input end of the column, at the constant
moisture content 0 = (0s, for all t Zo. 0s is taken as the
saturation meisture contént.

Equation (22) is a nonlinear partial differential
eguation and cannot be solved by usual methods,

The Boltzmann transformation is used to obtain
equation (22} in the form of an ordinary differential equation.

To make the transformation we let @ be given by :

0= £{)) (26)
where . Is a function of x and t, defined by :
y = x ¢ 1/2 (27}
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' dartation of watvr cuntent O with distance x tour a
Equation (27) is called the Boltzmann frans horizontal soil fuluﬂp of f Husperlé Sandy Laam soil,
< anstormation. for o time t 1500 minutes after water was applicd
In view of equation (27), we see that conditions (24} and {25) wtothe dpput end x =0 (from Nielsen et al, 14u2)
may be written as ] x ] x ] x
lcm} {cm) fcen)
(1) 0O = vi for 3 = = (A reo) (28} ) o o’ -
0.02 16.00 015 7525 028 69.90
(2) 0= us for A = O (29} 0.03 7590 0.16 7518 0.29 68.05
0.04 1585 0.ir 1505 030 66 05
We shall need a third condition. Since the derivation of equation 0.05 i3 19 018 14 90 [1 % K] 6375
{22) has depended on the assumptions that O must vary smoothl 008 5.0 0.18 7475 0.32 6110
. Y 007 7567 D20 g5 033 58.15
{be continuous an§ differentiuble) with x and t, we see froum 0.08 7563 on 74.45 0.34 54 BO
equations (zs) and {27} that i nust also vary smoothly with » . 0.09 %58 0 1415 035 5120
Therefore the conditions (28) and (29) imply the further a1 1550 0123 73.80 0.36 4110
condition : [t R0 15 45 024 71340 037 41 20
Q12 M40 a5 7280 0.38 3250
(3) daydy =0 for 0 = O (30) 013 1535 0.26 12.08 03 0
G.14 1530 027 .20
To help clarify conditions {(2€), (29) and (i0), we present a I"iqure 24 shows an experimentally obtained graph
figure (Figure24). Moo versus v fur water moving into a tube of initially

w1 ddry soia where the moilsture content U for graphing the

« wan measurcu gt o number of positions along the soil
. Wi tane in. t
ewr 10 4099 voat the anstans ¢ 1,500 min. For the graph, we have U
cut { 4,-0 02 the vertical axis and we show two horizontal axes, A and x
8.8, L1500 aenure . -
e o3 __qul y i~ lated by the Boltzmann transformation A = x.(1500) 172
a
I o J“;f?:?ﬁiggv Wiieh gives x o= 38.73%, as shown.
Q ah 10 5] v
—= ALCWM WNE
The curve ol o versus A {or versus X, 18 shown in
0wy we sal 1 LWU ways, ou ABC and ABD. The end portion BD is thecretical and
T M)
Lt cbserved expe rimentally. Theoretically, the curve should
Al with the point D being at A = = ¢t x = =, We see from
Figure 24 : The curve of U versus % for all Ui t'ie fiquire that for } + = we have O = Ui as in condition (28).
versus x at t = 1,900 min. calculated iti i
from equation (21) using the data from at ulso see that condition (29), agrees with the figure.
Table 1. rtorefore, it we can integrate the differential equation

‘t the shuwn U versus A curve, our problem will be solved.
4: proceed to obtain the differential equation of the curve
.md LG integrate it.
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In view of (27} we may write (28) as :

6 =[x (x,t) (31)

If we place (31} in {22} we can find an expression
for D(O)' If we use the chain rule for the differentfation of
composite functions we find 30/9t as :

-8 36 3k (32)
] S YT § 32
and 30/39x as :
0 _ 38 A 3
el AR (33
3 do
and = (D(O)§§} as :
28 L L (34
A UL YR U ,
x ) T X
The total derivatives in (32), (3% and {(1314) arise

because O is a function of the sinale variable ). The variable

A is composed of x and t, which explains the use of partials

of X with respect to x or t, that is %% and %%.

We can simplify (32), (33) and (34) if we use (27},

nl. & = x.t 22, to €ind that /it and A)/0%x can be written

as :

and : " 71.4;' [ETS

on using (35) and (36) in (32) to (34) we have

3 _ 26 - 1 X) (37}
FI 7t
0 _ 98 -l/2 (38)
and w3 .t
and 208 a0 F .V, (39)
Tl P33 -t

and placing {37), (38} and (39} in equation (22), we have :

d 0 Q. 12

de A -
e 12 (40}
Equation (40) is then simplified to :
de
x de B d (D a-x) (41)

IO A

On multiplying {(41) by dX and integrating both
sides from 0 = @1 to 0 = Ox (Ox being @ at the distance x
along the column} we have :

0, 0,
e ) s u2)
]

i i

2]
x
or 1 do i dB] (43)
-3 5 x de —'[U(nx) (?n-llx [D(ni) (Hi) ai
[}

i

[$10] gt
where (E\')'lx and (5}

tespectively.

.
fy mean '|' ruatuated at 0 = Ox and i

62,
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The last term in (43) 1s zero by (30), nl. %% =0
for G = G4.

Therefore (43} becomes :

al

1 ~ do
) Ady = D(G ) (HX)B (44)
X X
0.
i
Devision of {44} by (du/dl)ex and rearranging
yields :

1 1
Doy~ @5 — (-2 » d8
x ('a'i')ex g, {45)

Since the lower limit in the integral is i, the

eguation implies that, if we uapply the cquation to experimental

data, we must integrate completely out to the end of the
infinitely long tail at point B in ioure2d, that .5, oat Lo

- —1/2
A= Xt 1/2 (=) .(t l/"), wheie we put x =

v, becausc v ognust
go to infinity for any tinit: value of t. Thus, thwe scil tabe

should thecretically be infinitely long, The Bolt smann

transfoermation is not valid ter tubesn o Lengt L Pindte:.
Practically speaking, contributyen to thee ntegeal vl be
negligible except at the warly part ot the raa b B, 50 a

finite length of tube can he used.

The right side ot {1} can be cvaluated from

experimental data by

a}) Plotting U wversus A (=x.t'l/2) for thue water as it ntens

the soil,
b} Measuring (dU/dA)IJx from the - viersus A curve.
bl

x
¢) Evaluating the intedral Adu by un approximate method.

WATER CONTENT - cm? /cm?

64,

Water content distributions, measured for a Columbia
silt loam, using the above method are given in figure 25.

.85
20
s
40
38 o

2
* 3
z5 80 5

o
20 3
18 & '°r

IZ"
Io OB . j . " - - . ._-k,
ost 0 4 8 32 1o 20 24 28 32 36 a0
PARAMETER TIME - HOURS a0
o0 T Y W R T Distonce tram bullsd glass plate 4 'umi
Q 2 - & a 10 iz 14 6 ia
OISTANCE FROM WATER SOURCE - cm
Figure ?25;: Soil-water distribution curves iur

Columbia silt loam for boundary conditions
{24) and 25).

1/2

Figure 26 shows plots of x versus t for various
wabter contents monilored asing yamma-ray attenuation. Por a
given soil-water content, these plots should be straiaht lines

with their slopes being values of A ().
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Figure 26 : Distance to the position in the soil
column from the water source (x = O)
where the water content is the value
indicated on the curves as a function
of the square root of time.

The first step (a) is to plot a curve of O versus X

as we did in fiqure 24. Step (b) may be done by drawing
tangents by eye from the curve (Flgure25).

waler content

or it can be done semianalytically from the raw data used in
getting the curve. The approximate method for step (c) consists
in dividing the area under the curve of 0 versus ) into a

66 .

T numher ¢t strips and addina up the approximate aveas

£ the v str.v. The strivs are not vertical as we tuke them
vt hirmentar, ralulus but are horizontal as shown in figure
6 wirre four strips of widtha AU and approximate lenaths
TR \3 an@ 1y Are used to approximate the integral

Figure 2¢ : Values of O and ) at different values of
x for t = constant.

Whether the strips are vertical or horizontal makes
no difference in obtalning the area if it is the whole area

under the curve.

The wetting front is at ) = Ao.
it is seen that the area under the curve up to the line

From the figure,

(i = Oy may be approximated by :

ax
S X do = Ag A0 ¢ A, 48 ¢+ ), 88 4 Ay 20 6

95

In fiqure 26 we do not need to take the A0's all equal.
in gencral the sum formula for the integral, instead of {(4¢).,
wonld he

|
j x :
el T r 47y

9
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T oobtain o working formula to compute D j versius
o

we may now pat (47) in {45} and cbtain

A A6

nl‘-ﬂa

L )
(ex) ?

(a._) (48)

which implies that we might obtain qraphically by a ruler and

the eye the slope (du/dA) from the curve of O versus ) correspondins
to the point x{ = tl/zA). However, a4 semianalytical procedure

may be preferred. In figure26, at ux = Om = 04 we see from

the geometrie that we may write as an approximation

‘dﬁ} ( ) - 28 - [1/2 Al
ai'm=4 H’ By - Ky Xy - Ky
where in the last equality, because t is constant { = 1,500 min.

in our example) we may use equation (27) (4 = x.t /%) to

find : ;

de tII? 20

e, "X

If m is not egual to 4 but is any integer m, the last eguation
may be written as

$) . ‘AE;) - tll.zaam T_l/: 86m et m - 1, 2, 3 ws)
A 8x aMm n " *m-1 *m
, ] _ -1/2
In (49) A, 18 negative because we measure km(-xm.t ) from

right to left in figure .

tol bhie tat id fast members o of (49) we Lave
[
fad]
" e A
0
PR (50}
dl)wx Axm 3

I[n (48) we replace (dU/dA)Ux by the right of {50)

ancl cotain
B
b, - {- L aoee )
(6,) 1/2 el 20 T (51)
Thx T
m
oo F"(ij 13 poullive hecause Axm is negative, and where we
tay  anced tooand o if the AU's are all equal. 1In (91)
fo oappredr. That U(”x, 15 a function of x. Actually D(Ux) is
trmet sun i oL The subscript x on ”x denctes the location x
Jfe Lo was measured bt a certain time t say t = t,- If some
teme: ' = t, had been chosen to determine values of 0+ at
pownts s aliang the tule, the same curve of D(U) versus A
2 oeuld e olitalned. That is, the curves of 0 versus i for
oot and £, should saperpose.

! 2

The valuc: of U can be obtained by sectioning the

so.i0 oo and werahing the soil in the sections (F:aure 27).
Ciyp oot gamina- ray ap)eeratus is used, both to checs on the

gastoeaaty of packing ot the soils in the soil columns and to

wilre LIe aoisture content at points along the tube.
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Futted glass plae
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Figure 27 : Sketch of apparatus for cbtaining water
distribution curves. At time zero the soil
column is brought in contact with the
fritted alass plate and water enters the
s0il. The weight pressure potential of the
water as it enters the soil column is about
-2cm. The initial water ratio of the soil
in the column is uniform at Ni : the supply
tube keeps the water ratio of the soil at the
inflow boundary constant at saturation,

Os. At a particular time, the soil is cut
into sections at the dotted lines, and the
water ratfo of each section is determined.

The relation of diffusivity D to the moisture content
0 is shown in flgure 28 . This relation is sometimes expressed
in the empirical equation :

2y

i)
D(!" = ng,e 52)

This equation applles only to sections of the curve
showing a rise in diffusivity with moisture content. In the
very dry range, the diffusivity onften indicates an opposite

trend, namely, a rise with decreasing soll moisturn content.

This Is apparently Jdus to the contributicn of viper movement .
In the very wet range, ans tie sajl approaches complote
saturation, the diffusivit, Lecomes indetorminate an it

tends to infinity {since C(”) tonds to zero) .,

70.

Myl Ootpewty

Volume wetness 8

Figure 28 : Relation of diffusivity to soil molsture
content,

Soil-water diffusivity is somewhat difficult to
visualize physically, but mathematically it is simply the
product of the hydraulic conductivity at a qglven water content
and the reciprocal of the slope of the soll-water characteristic
curve at that same water content,

- - dh
Hence, D(O) = k(O)'aU (33}

When the soil water diffusivity function has been
determined, the unsaturated hydraulic conductivity can easily

be calculated from equation (53) :

_ dn
ke = P& 34)
Resultling curves for k and D as functions of

() {0)
N are qiven in fiqure 26.
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Figure 29. Experimental values of k(g) and D(g} as functions
=sazazses of 6 for a Columbia silt ?oam.

Equations 42, 28, 29 and 30 can be solved analytically
i1f D is assumed constant. This sclution is given in detail
in Appendix. The result is:

X
6 = ﬂi + (BO - Di) erfc (m) (55)

where erfc stands for complementary error function. A plot
of this is given in figqgure 10.

te

e

Figure 30. The complemestary vivor funct ten e {u)

[ 9] BN VRSO I

712,

For a chosen set of values of Bi' eo and D, equation
(55) is plotted in figure 31. When this graph is compared with
figure 22, it 1s obvious that this solution, a gradually decreasing
volume fraction of water with distance, is far from reality.
The reason for this discrepancy is that D is not constant over the
range of 8, but varies with a factor of up to about 105 .

Equations 28, 29, 30 en 45 cannot be solved analytically
for variabie D. However, various techniques can be used for
solving these equations by numerical methods. The result of such
calculations, for the same values of Bi and 90 but a realistic D-8,
1s also plotted in figure 31. This figure shows, as expected, a
unique relationship betueen @ and X. This implies that s//t (= 1)
i8 constant for a given 6.

Figure 31. Solutions of equation 22 for D = constant and for

e D of a soil (D 1ncreasing with increasing ¢).

Which relationship can be expected between s and t for
the visible wetting front and for any other value of 8 betwcen

2
"y and 042

Since the rutic s/t is constant for a given value of
Ly the distance from the wetting suface to the visible wetting
Feene {or any other veioe of ) incteascs proportionasl with the
jiare root of time



Combination of equations:

o
1= j- (8 - 0,) ds and ) = s v/ qives:

I = j. {6 - 0,) ds = (a -0 aret/? <
5=0 A=0
¢ 172 j. (6 - 8,) a
1=0

Introduction of the parameter:

5 = f (g - 91’ dx {56)

A=0

leads to:
1 = st1/? (57)
and consequently,

_ d1

= -1/2
i-= It = 1/2 st

I
= 3 (58)
§ 1s called the sorptivity and is a measure for the capacity of a
soll to absorb water, It is the cumulative infiltration during
the first unit of time. Since

§ can be found by evaluating the area between the f#-axis, the
91 line and the 8-} curve. S can alsc be given by:

74.

Usina t'.c product rule d4(:7} = adf + ndl and the
heandary conditions:
v for ks o
i
"= o for A - O

0 -
LS @ Bl
(-0 dn= dte - 8,1 2 - Ay -
A30 A=0 0
- 8, CH 8
@ - A x | - 28 = 0 - O - ade = rd8

A=0 g s

0 ° i

Also, from figure 31 it is obvious that

2] -
(o]
j rde and 5 (6 - Bt) di

Bi 0

represents the same area.

Would you expect S to be constant for a given soil?
§ is not constant for a given soil. The 8-} curve is the
solution of equation 11 subject to conditions 23 and 24,

0 90 and on the D-0 relationship of the
sotl. While 85 {saturation) and the D-6 relationship normally

do not vary for a given seoil, § will still depend on 61'

Therefore, S depends on 0

For initially dry soil (Bi = 0) the sorptivity

varies from about 5 x 1070 m s /2 (2 0.04 em min 2} for
a heavy clay to about 2 x 10 > m s /2 (2 1.5 cm min” 1/

for a coarse sand.

PRACTICAL PROBILEM

a. Calculate the cumulative horizontal infiltration in an
initially dry, heavy clay soll during 14 hours
h. Do the same for a coarse sand
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a. Using 1 = S8/t, we find for heavy clay:

T = 5 %« 10-5 m 3-1/2

b. For coarse sand:

3

1 =2x103ms 2 x /34 x 36005 % 0.59 m of 59 cam

3.6.4.2. Vertical infiltration.

So far, the infiltration process was described only
for cases in which the gravitational potential can be neglected.
During vertical infiltration, the influence of gravity becomes
more important as time progresses., Then equation 23, together
with the initial and boundary conditicns of eguations 24 and 25,
must be solved. A number of different techniques for solving
equation 23 are available. A sclution obtained by one of these
techniques is:

3/2 2

+ a,t” ..., (59)

8{8,t) = a t]'/2 + a,t + a.t 4

1 2 k!
where a,, a,, a,, a, s+« are still functions of 6. By means of
eguation 59 the depth of a given value of 6 at time t can be

evaluated when a a, etc... are known. These coefficients can

1.
be evaluated by numerical methods usino the relationships D-b

and K-6.

The cumulative infiltration obtained by the above
technique is given bv:

1/2 372 2

I = 5t + At + Bt + CtT + ... (60)
The coefficlents of equation 60 are evaluated in the same way as

those of eguation 59,

x /T £TI6007s T 1.47 x 10°% moor 1.47 cm

16 .

whe intilteation rate can be derived from squation &0
I rherenllating with respect to t (equation 1O):
=2 sV s a v 2 vace . Ll (61)

Eguation 60 and 61 usuallv are truncated after the
1 two terms, because for not too large t these series converge
rajadly., 1n that case equations 59 and 60 becomes respectively:

1/2

I = 5¢ + At {(62)

and

L= 172 st 4 (63)

«iain the sorptivity defined in equation 56, It 1s the dominant
prarameter in the early stage of infiltration. As time progresses,
lhe first term becomes neqlicible and the importance of A, which

represents the main part of the gravitational influence, increases,

PRACTICAL PROBLEHM

4. Make a graph of the cumulative infiltration I and the infil-
tration rate i as a function of time for vertical infiltration

durina 4 hours in a fine sandy loam for which:

s =7.0x 103 s /2
A=1.0x10°%ns"!
B=1.0x10 " ns /2

Use eduations 60 and 61 (first three terms)
L,. Give in the same ficure the results when equations 62 and 63
are used

Compare the results
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a/b.

" - tamsrana 60 4n 61 .
1

L]

N
Ls

4
e e e Ly

bama

c. Truncatinog equations 60 and 61 after the second
In this
case, the error is still small after 4 hours nf infiltration.

term introduces an error which increases with time.

4.Determination of the Soil Hydraulic Characteristics in the Field.

Knowledge of the pattern of water movement within the
soil profile is essential to the solution of problems involvinag
irrigation, drainage, water conservation, groundwatcer recharne
and pollution, as well as infiltration and runoff control. Tn
recent years, soil physicists have developped extensive
mathematical theories tn describe soil water movement under

different sets of initial and houndary conditions.

Much of the theers now available yet remains o be
yorifiesd experimentally andl appled in practice However, if
the the or(_tLir:ally deypived eoguat bons o o sorl phivedes o are In Iy
applied tor the Jdeoeription -or prodicetien ot acetaal proceshes

ih Lhe Field, we o maot dopve ooway ol mear tee paer oot snld

8.

parameters on a realistic scale. The pertinent parameters are
the hydraulic characteristics of the soil, including the
functional relations of hydraulic conductivity or diff-<fvity
and of matric suction to the water content, as well as the
spatial and temporal variation of these in the field.

It is inherently unrealistic to try to measure such
parameters in the laboratory on discrete and small samples
removed from their natural continuum, particularly when such
samples are fragmented or otherwise disturbed. Hence it is
necessary to devise and test practical methodd for measuring
bulk soll hydraulic characteristics on a macroscale in situ.

Knowledge of the hydraulic conductivity and soil-
water diffusivity at different moisture contents or suctions
is generally required before any of the mathematical theories
of water flow can be applied in the practice.

Since there 18 no reliable way to predict these
values from more fundamental soil properties, the hydraulic

conductivity K and solil-water diffusivity D must be

(o)
measured experimentally.

(0}

Measurements of hydraulic conductivity during internal
drainage in the fleld are usually based on monitoring the tran-
sient flux and potential qradient wvalue within the profile as
functions of depth and time.

The purpose of these methods is to determine directly

on the field the hydraulic conductivity K and the soll-water

pressure h as a function of the - jil-water content ¢ by tran-
sient analysis of the water content and water head profiles
during a drainage ocxper rment
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The main point is to determine simultaneously, and
at the same depth, the soil water flux and the gradient of
dH/dz.

On a given site the soil is first wet to a given depth
(v~ 150 cm}. The drainage experiment begins when water disappears

from the soil surface, this instant being chosen as the time t =0.

The soil is than covered {plastic + mulch) in order
to avoid any flow of water (rainfall/evaporation) through the
soll surface (z = 0). Changes of water contents and water pres=-
sures are measured following a procedure which will be described
later using respectively a neutron probe and a series of tensio-
meters being installed at different depths in the profile from
zZ =0 to z = 200 cm.

If we consider a volume of soil of unit area of thick-
ness dz, the equation of continuity says that :

a0
= -3t (64)

&8

where dg is the difference between the flux entering {ql) and
leaving (qz) the thin layer of soil dz during the small time
interval dt.

Equation (64) can also be written :

L

- PR ) dz
4 qz 5t le G {65}

This eguation, as such, cannot be solved, since we

have two unknowns q, and UPY

[f, however, we consider a slab of soil Llimited :

= upwdrds by the soil surface O, where in this experioent a9,

15 imposed Lo be o,

dovinwards by any depih 2, Lo Gl Ul m0dll yo vontinaousty

drainiog), the flux passiog thoo g o« oo WY b G s by

8o.

given by : s 0
- Q=g f, @dz or

d
%c-Eh o ®
) z d
azt) = -5fh 0%

The integral Q: G dz represents at any time the volume
of water (per unit surface of s0il1) stored between O and depth

Z.

We will define S(z,t} = foz

water at time t and depth 2z, and we will determine the flux

0 dz as the STORAGE of

=" 5% {66)

i.e. the slope of the curve S(z,t}) at time t.

Note : if the soil drains 35/3t is negative, and q is positive.

If simultaneocusly we can determine the profile of
head H(z) at the same time from the tensiometer reading the
gradient of head dH/dz will simply be given by the slope of
this profile at this depth.

dH .
Considering Darcy's law q = - K(O). Iz the ratio

q/- %ﬂ between the Flux ¢ and the head gradient measured simul-
Zz

tancously at the same time t and the same depth z will qgive the
value of the hydraulic conductivity K corresponding to the water

content 0, measured at this time at depth 2.



Bomembering that the hydraulic head M) i o1 ac !
Lin sum ot the soil water pressoor head (), or its nedgatiw
the suction head, and its gravitational heod z
H - h + 2

Considering the head H (z,t) measured at time t arl

depth =, the water pressure at this level is qiven by eguation
It =h-z or
h =H + 2z
p.e. h = - 50 cm
z = 50 ¢cm

1]

- 50 - 50 = = 100 cm

The relation between the water content 0 and the soil wa-

ter pressure h,measured simultaneously at the same time t and tie
same depth z,will give one point on the suction curve h of the

soil.

()

Using the technique for the same depth at different time:

and h

one will obtain the curves K(O) tn)

as a function of time fr ¢
a given depth.
In as much as soil-water diffusivity is the product of

hydraulic conductivity, and the reciprocal slcpe of the soll-wate-

h teristic, - K h
characteristic clo) - gg (em l) D(G) - g = K(o) .?.ﬁ

the equation of Darcy's law can he modofied tc approximate the

diffusivity an

Q=4 Q- (Kiny 1)

If this equation is simplified by approximating the
integral with the product of the soil depth L and the rate of
change of the average soil-water content in the profile © {with
the value of the hydraulic qradient retalned} it becomes :

W _ ., di
L TF " (K HZ)L
Assuming that an average soil-water characteristics
curve holds for the entire profile, 30 2h can be substituted

dh at
an : !
for 3t and using the relation D = K .ah/30 , the equation
becomes

adn g M ah o
Lighdt - “dz b :

. ah/at

Finotbly ¢ .
U hi ey

Hener, the value of D can be calculated for each

dep Ih I using only tensiometers, The value 3h/3t is merely

the

time rate ol change of the soil water pressure head h obtained

from tensiometer readings for depth L.

1. Eguipment

- | neutron probe, one measurement each 10 cm,
- grries of
jo, 20, 30, 40, S50, &0, 70, BC, 90, 100,
the soil surface, or according to layering of the scil.

10 tensiometers installed, if possible, at depths z
110 and 120 cm from

It is reminded that if a tensiometer is installed ver-
ticilly at a depth 2z, and is equipped with a mercury manometer,

the free surface of the mercury being at a level y above the

so0il surface
a) the soil water pressure head h (cm water])
h=({s+v¥) - 12.6 x

is ¥y = 23.5 cm above soil surface,
(data after 1 day (x = 8.4 cm) and 6 days {(x =

e,

wili be

h = (5O ¢+ 12.6, B.4 - 12,34 cm water,

' 23.5) -

]

(50 ¢+ 23.5) - 12.6, 9.6 - 47,46 cm water.

hh(]

{66

then h at 50 cm depth

9.6)1.



8i.

L} the hydraulic head 11 {cn watel)
H=h-12
Hld z - 32,34 - 50 = ~ 82,34 cm water,
Hﬁd 47,46 - 50 = - 97,46 cm water.

2. Measurements

It is recommended to follow with the maximum care the
initial stage of drainage. During the first day at least to
persons should be on the field, one taking care of neutron mea-
surements, the other taking care of tensiometer readings.

Concerning the neutron measurements, it is advisable
to monitor continously changes of water content in the profiles
during the first two hours of drainage. The recommended proce-
dure is the following :

With the smallest counting time for a good accuracy, measure

for each depth increment {i.e. each 10 cm) the water content

at a given time starting from t = O with the probe being posi-
tioned at z = 10 cm, at the next counting time the probe will be
positioned at 20 cm, and so on to Zy-

The series of measurements from z = 10 to 2., being

defined as a cycle, immediately after the end of counting at z
the probe will be raised to the standard shield, a standard

0'
count will be taken, and a new cycle will be initiated.

For each measurement being taken, the following infor-
maticn should be recorded :

- measuring depth,

- time (from the initiation of drainage},

~ number of counts and counting time or count/rate.

t

3

L

8.

alier .|i4].1-4.m£lmluiy Lwi; hours of contlanuuus neasurements,
b measurere it will be made every 30 minutes tor the tol-

Ay hoars,

The interval between cycles will be progressively in-

reased as indicated 1n the following table.

Interval (hr) between

... . drainage cycles
0-2hr none {(continuous monitoring)

Z -4 hr 0.5 hr

4 -6 hr 1 hr

& -12 nr 3 hr

12 -48 hr 12 pr

2 days 24 hr

For the tensiometer readings : during the first period
ollowing the initiction of drainage (0 < t< 2 hrs} tensiometers

huu'!d be recourded cach 5 miputes.

Each time one should note {Table 1] :

tensiometer refercnce (from 1 to 10...},
height of mercury,

time of measurement.

For t » 2 hrs, the same procedure as the one defined
wr neutron measurements will be used. It is recommended for

2 days to take measurement each day, at the same hour.



Table 1-2
EXPERIMENTAL SITE N°

Date:
Neutron moisture meter:

85.

~ Height of access tube above so0il surface: cm
- Standard radiation counting: - before measurement: cpm
- after measurement: cpm
- average (Ns}: cpm
- Calibration curves: 1) Y, = ax + b1
2) Y, = ayX, + b2
L] 1 ]
1 1] L]
n) Yo = apX, * bn
Tensiometer:
y = height of the mercury container above soll surface: cm
2z = depth of tensliometer cup
¥ = height of the mercury in the manometer
Boil Tensiometer Neutron moisture meter
Hepth
{cm) x h H count rate| count ratio] moisture
{em Her) {cm} {cm) H N % 100 content
(cpm) W {vol %)
CR
lx
h = (zty}-12.6x
Ty
H=h- =z + b2
¥d

modnt e e st [y |y

1.

2,

86.

The tables with the data will first be analyzed ir. o.der to
obtain the following informations :
for each measuring depth a table giving (Table 2} :

- the time of measurement t,

~ the water content 0 in cma.cm-3,

- the soil-water pressure head h,

- the hydraulic head H.

The data will be plotted on a graph in order to obtain at
given depths (each 10 cm for the neutron probe or each ten-
siometer depth} the change of water content or hydraulic head
H with time.

Taking into account the expornential shape of the variation
for each varlable (@ orfand h or H and depth} two time scales

should be used

- one for the initiation of the drainage : 1 day full
scale,

- one for the second part of the dralnage 3 weeks full
scale (500 hrs).

Smooth curves will be drawn {(by hand} in order to have a best
fit between the measurement points.
One curve should be drawn for each depth.

Using the smooth curves one will determine by interpolation
the values of 0 and of H at all the measuring depths at the
following reference times : t = 0, 0.25, 0.5, 1, 2, 5, 10.

25, 100, 200, 500 hrs.

Tables of interpolated data will be built in order to cbtain :

- the water content profliles (0-z},
- the hydraulic head profiles (H-2z),

at the abnve mentioned reflference times (Table 3).
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Time after| z=10cm | z«20cm| 2=30cm} I=40cm ] z=50cm | z=60cm | 2=70cm | 2=B0cn
ponding

0
0.5
050

10
25
50
100
200
500

4. The water content profiles and hydraulic head at the refe-
rence times will be plotted :

Figure : 8 -z,

Figure t H - 2.

5. The table of interpolated water content will be used to
compute S (z,t) using the trapeze rule : “"the water content
measured” at a given zg will be affected tov a layer of 10 cm
surrounding the measuring depth, with an exception for the
first depth of measurement {z = 10 ¢m} where 0 (2 = 10) will
be assumed to represent the mean water content from O to 1%
cm,

The storage S will be calculated for the depths ob 34, 60O,
90 and 120 cm.
In consequence at a given tuue L the storaye S5 between O, Aand

the respectively depths, will be given in mm of water by the
formula

iry |8 H]le Hje H| & H|e Hie H|e Hle

88.

S40 * (1.5 859 + {850) 1.0 + 0.5 B3g) x 100,

S60 ™ (1.5, (859 *03g *94p +0.,) 1.0 ¢ 0.5 360) x 100,

Sgp = (1.5 e ¢ {059 1939 *Bgg *B5g 850 *O7p +00) 1.0 + 0.5 6g5) x 100,

S1207 (1-5 8)g + (Byg +03g #84g +95q *gp *B7g *0gp *8gg *8100 *9110) 1.0
+ 0.5 8),0) x 100.

6. A table will be built given the value of the storage S, at

the reference times, and at the depths 30, 60, %0 and 120
{(Table 4).

Time after ponding S - s ) S
(hrs) 30 60 A 90 120

0

0.25

0.50

10

25

50

100
200

500




7. The curves giving the chanae of the “torage with time at
the given depths will be plntted.
At cach reference time, and for each depth, the slope tab.g
by hand will give the value of the flux

8. At the same depths (30, 60, 90 and 120} the slope < f the

hydraulic profiles will be measured at the same times,

9. Finally for each depth (30, 60, 90 and 120} a table will be

built, giving the following Information (at the reference times)
{Table 5%).

Soil depth z = cm

Time (t) 8 h qQ dH/dz X
hr on?.om-3 em mm/hr won/hr

0

0.25

0.5

10

25

50

100

200

500

1 Z 3 ) 5

~N
so0il-water characterictic
curve or pF curve

o,
whe K-valuer  were plotted in function of o (em’.or’ )

anel the equation is calculated

The suction gradient must be taken into accouni anco
the hydraulic conductivity is obtained from the rav @ o. flux
o the total hydraulic head gradient (gravitationsl plus matric).
This can be done successively at gradually diminishing water
content during drainage, to obtain a series of k versus © values
and thus establish the functional dependence of hydraulic con-
ductivity upon soil moisture content for each layer in the

profile.

To apply this method in the fleld, one must choose a
characteristic fallow plot that i3 large enough so that processes
at its center are unaffected by its boundaries. Within thls plot,
at least one neutron access tube is installed. A series of ten-
stometers 18 inctalled near the access tube, at intervals not
exceeding 30 cm. Water is then ponded on the surface and the
plot i3 irrigated long enough so that the entire profile becomes
as wet as it can be, In the case of uniform profile, this
will mean effective saturation. Tensiometer readings can indicate
when steady-state infiltration conditions have been achieved.
When the irrigation is deemed sufficient, the plot is covered hy
a sheet of plastic so as to prevent any water flux across
the surface (evaporation or infiltration). ?s the internal
drainage process proceeds, perlodic measurements are made of
water content and tension throughout the profile, These readings
mus!. be taken frequently at first (at least daily) but can be
taken at greater time intervals as the internal drainage process

shows down.,
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5. vetermination of the infiltration rate.

The best method of meusuring intake is to obtain
direct measurements by recording the water applied less the
water flowing from the field. When direct measurements are not

feasible, intake cylinders can be used with reasonable success.

The cylinders should be at least 25 cm in diameter,
made of smooth tough steel, strong enough to drive, but thin

enough to enter the s0il with a minimum of disturbance. Cylinders
sheould be about 30 cm long.

Since approximately five tests should be made in a
given location to obtain a representative sample it is well to
make five cylinders of somewhat different diameters soc that all

five can be tested together and thereby be made less bulky for
handling.

Care should be taken to place th: cylinders in an area
representative to the field to be evaluated. Cylinders should be
carefully driven into the soil to a depth of about 15 cm. The
s0il profile should be examined, the moisture estimated or nea-
sured, and notes of soil cover and surface condition.

After water penetrates to the bottom of the cylinder,
it will begin to spread radially and the rate of intake will
change accordingly. When a principal restricting layer does not
lie within the depth of penetration of the cylinder, this radial
flow will cause considerable change in the intake rate. Buffer
ponds can be constructed by forming an earth dike around the
cylinder or by driving into the soil a larger diameter cylinder
concentric with the intake cylinder. The water levels in both
cylinders should be equal and approximately the depth to be
expected during the irrigation. When comparative results from
different locations are needed, the depth should be esgsentially
the same in all cylinders. Care should be taken not to puddle
the soil when water is added to the cylinder or the buffer pond.

92,

dhe reswils cbturned with ocylinders are indicative of

rates to be expected during irrigetion provided the surface

sttt on is the wame. Closer correspondence is obtained when
Jhe soia surface is covered by the irrigation water. Considerable
v wrare usually occurs when the irrigation water is applied

turrows or sprinklers. Hence the cylinders are denerally
wied to obtain an index from which desgin values can be obtained

«n the basis of local experience,

‘he cylinder infiltrometer, used in irrigation studies
to determine the infiltration rate and cumulative infiltration,
can be used at successive depths in a soil pit to study the
ditferences in the hydraulic conductivity of the various
luyers. The principle of this method is the same as that of the
duuble tube method.

First one infiltrates water around the infiltrometer
till the soil is saturated. The infiltrometer is then filled
with water, and the rate at which the water level falls is mea-
sured. After some time the infiltration rate stabilizes and

approximates the hydraulic conductivity K (Figure 32),

—

__}..-—a.—:-
| R

Figure 32 : The infiltrometer.
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Calculations

The infiltrometer rate of water in an unsaturated soil measured

by a cylinder inflltrometer may be expressed in terms of Darcy's

law as
¢ + z + h
= - 68

v = Ky - {68)
where :
v = {nfiltration rate (cm/sec}l,
Ko = hydraulie conductivity of the transmission zone {cm/sec),
¢ = suction at the bottom of the transmission 2one (cm},
z = depth of the transmission zone below the infiltrometer

{cm) , '

h = height of water in the infiltrometer (cm) .

The influence of ¢ and h relative to z diminishes as
the depth of the transmission zone and the moisture content of
the soil increase. So the hydraulic gradient :

g+ 2+ h

( z )
tends towards 1 in the case of a deep uniform soil profile and
the infiltration rate becomes constant, attaining what is known
as the basic infiltration rate.
In that case we may write :

v = Ky 69 )

For wet, medium and heavy textures solls in which the
hydraulic conductivity of the transmissicn zone is approximately

the same as in the saturated zone, we qet

Vo Koo K (7
When nszing the infiltrometes for hydranlic conduct ivity ~tudies
- mare specificaly for st 'ies on the basic infiltration rate in
moist soils- the measurcments shonld catend for oap porirad 1onn
epough to permit a constant infiltratinn rate to he achtained.

9294,
This may take quite some time in dry clay soils, because a de-

crease in the infiltration rate may be caused by the decrease
in the hydraulic gradient as well as by a change in hydraulic
conductivity due to swelling., The value obtained in a layered
soil only applies to the depth of soil penetrated hy the irnfil-
trometer, since lateral flow will occur helow if the hydraulic
conductivity of the underlying layer is low. If it is pessible
to determine the distance over which the lateral flow extends
in the underlying layers by estimating the change in moisture
content, the infiltration rate in the underlying layer can be
calculated. This can be done by taking the ratio between the
gurface of the infiltrometer and the surface over which lateral
flow occurs in the underlying layer and multiplying it by the
infiltration rate in the infiltrometer. Figure 33 shows an
example of lateral flow below an infiltrometer installed at the
aoil surface to a depth of 5 c¢m on a silty clay loam with a
ploughed layer of 20 to 40 cm, In the situation of the example,
the intake rate at a depth of 25 cm would be (37/77)2 times the
intake rate near to the bottom of the infiltrometer. At a depth
of 65 cm the ratio is (37/117)2.

o

Y v‘r“_r‘;a TR et
n ~
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Figure ! : Lateral filow below infiltrometer.
Discussion

The cylinder infiltrometer is suitable for determining the intake
characteristics and hydraulic conductivities of irrigated soils.
The results of this methed are not very accurate, but can be
regarded as a fair approximation of the K-value. The method is

practical and suitable for larue-:cale surveys.

6 . Appendix

Results of the K{ﬁ‘ determination in the field following

v internal drainage pethod,
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