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Bacause we are interested In the drainace of aaricultural
land and hence we consider dralnane as the remcval of encesx
subsurface water by means of conduits or other conveying devices;
it follows tihat we are concerned with water taktles, movement of
warer through soil, and the relationship that exist between water
tables and crops.

drains.

Subsurface drainage is accomplished by a syster of open ditches

and buried tube drains into which water seeps by oravity,
vater collected in drains 1s coveyed to a suitable outlet.

Drainaqe problema differ widelv becauss of thea varied nature
of physical conditions and crops to be orown. Besides the crops
the followina factors have to he taken Into acoount : solls,
precipiLation, topooraphy.

Excesaive s0il water reduces the exchance of air between
801l and atmosphere. Therefore, wet soil conditions are genarally
accompanied by O, deficiency. A considerable amount of 02 is re-
aquired in the soil for rineralization of nutrient elements frow

Opthac rateer by nicrobiolocical activitv, Deficlent aeration
re.ivors this microblolocical activity, decreasino the rate at
viich ' and 10,7 are sunnlied. Conscouently, a tendency towards
v ficiency ar¥itts in waterlooned solls.

411 binlonical processes are stroncly influenced by tempsra-
ture. Vet solls have a larae heat capacitv and considerable amocunts
of heat are required to raise thelr éerporatur.. Therefore, wet
soils are cold and crop orowth starte later and is slower than
in Jrver soils.

The direct aim of drainaos systems in husid recions is to lowey
the molsture content of the upper lavers so air can penetrate more
casilv to the roots, and transport of CO2 produced by roots, micro-
arjanisms, and cherical reactions 1s facilitated. Lowerine soil
muisture content also reaults in a chance in heat budget and hioher
soll temperatures. This change can be expected to occur in well-
drained soils, especially in the spring. ’ '

Although the depth of the oround-water table has no- direct
influence on crop growth, it indirectly determinas the prevailing
moisture conditions and therefore has an influence on water supply,
aeration conditlons, and heat properties in soils,.

Nurerous laboratory and field exveriments on the effect of
water-table depth on crop vields have been conducted at various
locations. The main reason for this possibly is that the water-
table depth is easilv determined compared to determining other
soll pronerties such as aeration or thsrrmal conductivity.



8.1 INTRODUCTION

Until recently, all over the world, th: only common practice of controlling the
water table was by a system of open Jitches. In modern agriculture wany of these

systems have been, or are now being, replaced by pipe drains

In any system of drsine one may distinguish between (Fig.1):

- field drains or field laterals, usually parallel drains’ whose function is to
control the groundwater depth;

- collector drains, whose function is to collect vater from the field drains and
to transport it to thye main drains;

- main draine, vhose function 1s to transport the vater out of the area.
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There is not slvays s sharp distinction batween the functions of the drains. For
instance a1l field and collector drains also have a tranaport function, and all

the collector end main dreins also control the groundwater depth to some extent.

The discussion in this chapter will be restricted to parallel field drains. Fi-
gure 2 shows & cross-esction of the laterals in Pig.l. The water table is usually
curved, ite elevation being highest midway between tha drains. The factars which
influence the height of the water table ara:

= pracipitation and other sources of recharge

= avaporstion snd other sources of discharge

=~ soil properties

= depth and spacing of the drains

= cross-sactionsl ares of the drains

= water level in the drains

b4 |

wgler tebte .
open e hes

W.,—”,L. Fig.2. Cross-sectiom of lstevals shoviag o

water te0ie curved water table uader influsnce of
pipe ardine rainfall,

In chis chapter the sbova factors are interrslated by drainage squations, based
on twvo sseumptioms, vit.:

= two-dimensionsl flow, L.e. the flow is identical is any cross-section perpendi-
cular to the drains;

- 8 uniform distribution of the racharge, steady or non-steady, o.ur the ares be~
twaen the drains.

Most of the equations discuseed in this chapter ars worsover based om the Dupuit-
Forchheimer sssumptions - Conssquently they hava to be comsidared
as approximste solutions only. Such approximate solutions, hovaver, are genarally
dccepted as having such s high degree of accuracy that their applicatioa ln prac-
tice is complecely justified.

A distinction is msde betvean steady state and non-steady stats drainage formm-
las. The stesdy scate formulas (Sect.B8.2) are derived under the sssumption that
the recharge latensity equals the drain discharge rate and consequently that the
vatar table remains in position. The non-steady state drainage equations (Sact.

0.3) consider the fluctustions of the water table with time under influence of a
non-steady recharge.

8.2 STEADY STATE DRAINAGE EQUATIONS

8.2.1 HORIZONTAL FLOW TO DITCHES REACHING AN IMPERVIOUS FLOOR

It is recsiled from Chap.6, Vol.1 that under the assumptions of one-disensional
horirencal flow, implying paraile! and horizomtal stregsalines, the flov to verti-
colly walled ditches reaching an impervious floor (Pig.da) can be described by
the so-called Donnan equation (DONNAN, 1946)
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where

R = rachargs rate per unit surface ares (w/day)

q = drain discharge rate par unit surface sres (m/day)

K = hydraulic conductivity of the soil (n'dsy) .

H » height above the impervious floor of the greundwster table miduay betvesn two

drains {(m) '
D = haight above the imparvious floor of the water lavel in tha desins = thick-

ness of aquifer balow drain level (m)
L = drain opacing (w)
which has also been derived by HOOGHUUDT (1936).

Equation | may be rewritten an
_ 4K{HeD) (H-D) @
q U
Setting (Fig.)a) b = H-D and H¢D = 20+h, whers h is the watartable height above

drain lavel at midpoi{nt, i.s. the hydrsulic.hesd for subsurface flow into drains

(m}, Eq. 2 then changes into
. BK(D+jh)n ' (%
9 L2
The factor D+fh in Eq.) cen ba considersd to represent che average thickness of

the soil layer through which the flow cakes place (aquifer), symbolised by D. Tn-
troducing 1 into ¥q.3 yields

where KD = transmissivity of the squifer (a/day).

Equation 3 can be written as follows

. 8KDh + 4Kkh? . s
q -——-:;——-—-

Setting D = O gives

AKkn?

q-——

! &)
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Equation 6 spparently represents the horisontal flow sbove drain level. This
squation is known as the Rothe equation. It sesms to have been derived as sarly
as 1879 by Colding ia Denmark.

1f O is large compared with h, the sacond ters in the numerstor of the right hand
side of EQ.5 can be naglected againsc the first term, giving

"= n

Equation 7 and tha first term of Eq.5 aspparantly reprasent the horizontal flow
belov drain level.

The above considerations permit the conception of a tvo-layered soil with inter-

face at draia leval. Accordingly Eq.5 may ba rewritten as

> BK Dh + 4K h?

“q. i__..__..ﬁ_._ #)
L

wvhara

K. = hydraulic conductivity of the layer sbove drain level (w/day)
Kb * hydraulic conductivity of tha laysr balow drain level {n/day)

' B.2.2 PRINCIPLES OF THE uoocuwni' EQUATTION

If the ditchas do not reach the impervicus flm-u-. the flow lines will not be pa-
rallal and horizontal but will converge towsrds the drasin (radial flow), In this
region tha flow syscem cannot be simplified to a flow fiald with paralle! and
horizontal streamlines without introducing large errors.

The radial flow csuses a lengthening of the flow linas. This lengthening causes
& more than proportional loss of hydraulic hesd sincs cthe flow valocity in the
vicinity of the draine is larger than elasvhers in the flov regioa. Consequantly,
the elavation of the water table will be higher whem the vertically walled dit-
chas re replaced by pipe drains, ctha drain lavel remaining the ssme.

HOOCHOUDT (1940) derived a Flow aquation for the flow as prasentad in Fig.3b, in

vhich the flow'Yagion is divided into a part with horizontal flow and a part with
radisl flow,

Il the horizontal flow sbove drain level is negliactad, the flow aquation for s



uniform soil reads

L
he 3w, "
and
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where M
L * radius of the drains

£(D,L) = & function of D and L, generslly small compsred with the other terms in

EQ.10; it cen therefore usually be ignored {LABYE, 1960).
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Fig.). The concept of the equivalent depth to tranaform & combination of hori-

zontal and radial Flov into an equivalent horirzontal tlow.

The first term of the right hand member of Iq.10 pertains to horisoatal flow, the
second and the third tere to radial £low,

Instead of working with 2qe.9 and 10, HOOGHOUDT comsidersd it wore practical to
have » formula similar to the equaticas given im the pravious sactiom. To accouamt
Eor the extra resistence caused by the radial flow, ha introduced s raduction of
the depth D to a awaller equivalent depth d. By so doing, the flov patters ias re-
placed by a model with horizontal flow only (Fig.3c). If we consider only tha flow
below drain level, Eq.7 is raduced to

o = b 1)

L?
vhare d < B. This equation wust be sade equivalent to £q.9. Solving the latter
equation for q snd equating the result with Eq.11 raesults in the aquation for the
squivalent depth

deg. _ (2)

The factor d is Like !“ 8 functios of L, D and €,r 88 may be seem from Eqe.!0 and
12, valuas of d for LI 0.1 & and various values of L and D ars presentad in
Table 1. For other drain diameters Pig.l4 cen be used, vhich will be axplained in
Sect.8.2.9.

In ordar to tauke radial flow into account ths d-value can ba introduced into sll
squations of Sect.8.2.}. When introduced [n Eq.8 it yields

2
. skbdh + ﬁl.h

q (13)

Ll

Equation 1) is called the Hooghoudt equation.

Discussion
—Acussion

In Eq.10 the first term in che right hand member pertaine to the horisontel flow
region. Co parison with Eq.7 proves that tha horizontal flow is taken over a dis-
tance L-D¥7 instesd of L, and that the radial flow consaquantly is taken over a
distance of J0¢7 to both sides of the drains.

1f we neglect £({D,L) in Eq.10 and sec
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Eq. 10 may be vritten as

"

Consaquantly Eq.9 changes into

-a i, .
h LA - A A

(14)

(435}

(16}

Thus the total hydraulic head is the sum of the hydraulic heads hh and h'_ reguir-

ed for horizontal snd radisl flov respectivaely.

Table 1. Values for the squivalent Jepth d of Hooghoudt (ro
in ®) _
L=~ Sa 7.5 10 15 20 23 W 2% A0 &5 W
[
0.5 m 0.47 0.48 0.4% 0.4% 0.49 0.50 0..0
0.7% 0.60 0.65 0.6 0.71 0.7) 0.76 0.7% 0.7% 0.75 0.76 0.7
1.00 ¢.47 0.7% 0.80 0.86 0.9 0.91 0.9 0.4 0.9 0.% 0.9
1.25 0.70 0.82 0.8%9 1.00 1.05 1.09 1.12 1.13 1.14 L.14 1.1%
1.50 0.88 ©0.97 .11 119 1. 1.28 131 L. 0.3 L
1.7% 0.91 1.02 1.20 1.30 1.39 1.4% .49 L.52 L1.5% 1.57
1.00 1.68 . ¢ . i 1.5 1.57 1.62 1.66 .70 L.12
2.3 .13 1.3 1.50 1.69 1.69 1.7 L8 L.B% 1.86
.50 LM 1.5? 1.6% .79 1.87 L.% 1.9 2.02
.75 1.4 1.63 1.76¢ 1.88 .98 2.0% 2.12 .18
.00 L.&5 1.6 1.8) 1.97 .08 2.16 2.23 2.2%
1.3 1.40 L.71 1.08 2.04 2.16 2.%6 2.35 2.42
1.50 150 175 1.93 2.01 2.76 2.35 1.43 2.5
1% 1.92 178 L9727 1.0 l.ak 2.5& -
4.00 1.80 2.02 2.22 1.7t 1% re& .n
.50 163 2.08 .31 1.%0 2.6) 2.7 2,87
5.00 co L.08 Z.15 2.18 2.58 2.7% 2.89 3.0
3.0 1.70 2.83 1.4% 1.8& 1.00 1.3
s.0u 248 1.70 2.91 3.09 1.1
7.00 2.5 2.81 1.0} 124 1.4}
5.00 2.57 2.85 1.13 L35 3.36
9.00 7.8% .18 3.43 3.66
10.00 I 3.2y 148 374
“ 0L Y Lis 1.y EMR Dotk 2.9M ZO1 V.26 V.46 ) BM

= 0.lm, Dand L

Table L. {cont.)

L— 3% 15 0 [ 1] %0 100 13 200 150
]

0.5 0.5

1 0.9 0.97 0.97 0.97 0.9 0.99 0.9% 0.9% 0.9
? 1.7 1.60 1.8 1.52 1.83 1.83 1L.00 1.9 1.%4
b ] 2.19 2.4% 2,51 2.% 1.5 1.60 2.72 .70 1.8}
L] 2.71 104 3.08 312 1% 124 D46 1.58 )&k
5 1.02 149 2.5% 1.61 2,67 3.78 412 &0 44D
. 3.23 3.8% 3.93 4.00 A.08 4.23 4.70 4.97 5.13
? 3.6 416 &.2) 4,30 442 462 3.22 5.57 5.8
] 2.56 4.38 4,49 4.61 4717 495 568 6.1} 6.4)
L] 3.66 4.57 4.70 4.81 4,95 5.23 6.0 &.6) .00
10 .74 676 4,89 5.04 318 5.47 4.45 T7.09 7.5}
12. 5.02 5.20 S5.38 5.36 5.92 7.10 8.04 0.68
15 5.20 5.40 5.40 5.80 6.15 7.77 0.84 9.4
17. 5,30 5.53 5.76 5.9% &.44 0,20 9.47 10.¥
10 5.62 3.8) 4.12 6.60 8.5 9.97 11.1
5 . 5.74 5.9 6.20 6.7% 8.99 10.7 12.1
10 9.27 11.3} 12.9
¥ 9.44 11.6 13.4
0 ) 1.8 1.8
&5 12.0 1.8
b 12.1 14.)
(1) | 14.6
- 3.68 5.38 5.76 6.00 &.26 .82 9.55 12.1 .7




¥.2.& PRINCIPLES OF THE KIRKHAM EQUATION

NIMKHAM (1958) gives sn anslytical solution for a prables siwilar to Hooghoudt's,
viz. tuwo-dimensionsl flow, a regularly distributed rainfall over the .rea, and
drains not reaching am imparvious floot. If the flow above the drains is ignored,

Kirkham's solution can be written in a form similar to Eq.%
. L
h X 'l an

and

»
-

nr n L

- tnnr
[ m—+ £ L, 2 - cos AMdieutn :“:D - l%} (8)
[} o=l

Values of F_ are given in Table 2. Tt is found chat the B, valuas of Xirkham are

very close to the FH values of Hooghoudt, so that both the Hooghoudt and the

Kirkham equations give almost identical rasults (WESSELING, 1964).

Table 2. Values of F, according to Toksdz and Kirkham.
i

12.5 6.2% 1.1

L0 —= 100 Rl 25 1.5625 0.7812%

Df!t°

8192 - - - - - - - 2.6%
4096 - - - - - - 2.65 2.4)
2048 - - - - - 2.6 2,43 .11
1024 - - - - 2.8 2,45 1721 199
12 - - - 3.40 2.63 2.2 L0199  L.76
2% - - .76 3.19 2,40 2.01 1.76  1.54
120 - 7.4 4.5 2.96 2.19 L.78C L% L3
6 13.67 7.4 &.31 2.7% 1.96 1.57 1.2 L.10
L} 13.67 7.21 &.09 2.52- 1.7 1.35 1.0 0.88
16 13.27 6.99 3.86 2.30 .52 1.13 0.88 0.5
) 1L.02 6,76 1.64 2,08 1.30 0.90 0.66  ©.44
% 12.79 6.54 142 1.86 L.06 0.68 0.46 -

2 12.57 6.32 3.20 .65 u.45 0.é6 - -

1 1.3 6.08 * 9% .40 0.62 - - -
0.5 12.03 5,77 :.66 1.11 - - - -
0.25 .25 5.29 1.0 - - - - -

A4

In the solution represented by Eq.17 the flow ia the uppar region has baen ne-

slectad (rig.#). tn o latgr paper KIRKHAM (1960) reported that, if vercical

flow is assumed in this region, the hydrasulic head should be multiplied by

(l-qll)-’. Since this term relates to the flow in the layer sbove drain lavel,

the genersl equaction for a two-layer probles is (WESSELING, 1964)

L ]
he 1 r

Ky el T (19
vhere X, is the hydrasulic conductivity above drain level and l‘ balow that drain

level. The boundary between the two laysre must, a» in the Hooghoudt szolution,

coincide with the drain leval (Fig.8),

Fig.8.

Two-dimensionsl flow pattern sccordiong to the
analytical solutions of KIRKHAM (1938, 1960).
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8.2.6 PRINCIPLES AND APPLICALIuN OF THE DAGAN EQUATION

Anslogoys to the method of Hooghoudt, DACAN (1964) thought the flow to be compos -
ed of a radial flov in the ares between the drain and & distance {0V away from
the drain, and #n intermediate, though mainly horizontal, flow in the srsa be-
tween the {7 plune and the midplane betwsen the drains.

The Dagan equstion, in a forw similar to the Hooghoudt and Kirkham squatioag,

reads

h-lk-r ) (20

The exprassion for 'D is
L gy an
'D * 7 Gp 8)

ur

(22)
where B = % la(2cosh -ii?" -

r
i -2 hat B-values
In Fig.}0 the tarm B has been presanted as a function of 5 Note that

. . . . .
are negative. With che aid of this figure the application of Dagan's equation is

aasy.

|

A

T T L] rig.10.
l ! Nomograph for the detecmination of § in the

|
o
.22 ‘-
! ‘
SRS

4] 002 0O+ 006 00."_:’1“0 Dagan .quuion (DAGAN, 1964).

8.3 NIN-STEADY STATE DRAINAGE EQUATIONS

8.).1 INTRODUCTION

In areas vith periodic irrigations or high intensity tainfall, the assumption of
4 steady recharge is no longer juscified. Under thess conditions non-steady
State solutions of the flow probles must be applied. Non-steady scate solutions
ate indispensable when actusi, non-steady watar table alevations amd

drain discharges, as ubtained from field data, must be evaluated 1 hap.26, Val,
iir).

Iz in recalled from Chap.6 (Vol.1) that the differencial equation for aon-steady

state flow, as derived on the basis of the Dupuit-Forchheimar assumption, can be
written as

’.

. 2
il h (32a)
ax? ac

or, when the recharge rate R equals tero

w3k, 3 (125)
ax? t
wvhere
KD = transmissivity of the squifer (m'/day)
R = recharge rate Per unit surface area (a/day)
b ® hraraviis wega 88 & funevion o7 ¢ ont & (m)

X = horizontal distance from & referenca point, a.g. ditch (m)
L = time (days)

¥ = drainable pore space {dimensionless, m/m)
8.3.2 PRINCIPLES OF THE GLOVER-DUINY BQUATION
UMt (1954) used a solution tor 2¢.32b found by Clover who sssumed an inicial ho-

rizontal groundvater table at & certain height above the drain jevel. The
on describes che lowsring of the groundvater tabls -~

soluci-
which does wot remsin hori-
tontal - as & function of time, place, drain spacing and soil praperties.

The inictial horizontal water table is thoughe to have beea the result of sa in-
stancansous rise caused by rainfall ot irrigation, which inscantaneousty recharged
the groundwarer. Later DUMM (1960) sssumed that the inicial vater vable is not

complecaty flat but has che shapa of & fourth degres parabols, which resulced ia
e slightly different formls.



Figure 16 depicts the condition before and just after an instanteneous rise of &
horitontal groundwster table. The initial and boundary conditions for which Eq.
J2b must be solved are:

t=0, haR/yu=sh, 0 <x <L (initial horizontal groundwater table)
i °
t>0, h =0, Xx*0, x * L (vater in draine remains at zero
level = drain level)
vhare
li * instantanecus recharge per unit surface area (w) .

h = height sbove drain level of the initial horizontal water tabla.
°

Fig.16.
Boundary conditions for the Clover-Dums aquation

with initisl horizontal vater table.

The solution of Bq.32b for these conditions asy be found in CARSLAW and JAEGER
(1959)

-

4h - ol
b =22 L, *Main 20X (33)
n=|,-3,%,
wvhere
? -
a=2 Kn(naction factor, day ') (3
u”
For the height of the vatar tsble widvay betveen the drains at any tima ¢, ‘
ht = h{{L,c), one may substitute x = IL into Eq.33 yielding
4 T 1 -n'at
1) A, =2h I -~ (15)

° n=1,-31,5,
Apparently the va'ne of sach term of Eq. 15 decreases with increasing n. 1t
at > 0.2 the second end next term witl be comparatively small and may be neglect-
ed. Equation 35 then reduces to

e 27 n e (16

A5

A,
1’ Under the assuaption of .u initial vater table having the shspe of a fourth de-

gree parsbola, Eq.)6 changes into (DUMM, 1960) -

-at
h I. 16 hoo

t {37}

The only difference between Eq.36 and Eq.)7 ia o change of the shape factor
2= 1.27 in 1.16.

Substituting Eq.34 Into Pq.37 and solving for L wields

} h _l . . .
L. -[5-:3’—‘] [ln .16 ﬁ] (9)

which is called the Clover-Duss wquation.

As the Clover-Dumm squation doas not take into account s radial resiscance of
flow towards dra.u> not teaching an impermeable Laysr, the thickness of the aqui-
fer D in often replaced by the d-value of Hooghoudt to account for the convergan-
cy of the flow in tha vicinity of the drains. This substitucion is justified
since the flow T iths for steady and non-steady flow may ba considered at lesst
similar, al;hoﬂsh not exactly identical.

Thus Eq. 34 becomes

2 -
a=2K Gy (39)
uL?

and Eq.18 changes into

-4
R L4 I L %0
u %R (40}

t
This may be called the mod{fied Clover-Dumm equation.
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