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CLOUD MODELS

1. Intreduction

A cloud model is a set of equations that detemﬁneslthe microphysical, thermodynamic, and dynamic
parameters within a cloud as functions of space and time. Models are used in two ways: the first is to test, by
comparing model predictions and field observations, our descriptions of cloud processes and our understanding
of the underlying physics; the second is to simulate proposed experiments or atmospheric events in order to

predict outcomes of situations that we cannot easily observe in the real world.

No single cloud model can provide a realistic description of all cloud parameters as they vary over space
and time. Cloud models are always approximations of real cloud behavior, and the proposed use of a model
determines which approximations are sufficient The set of equations used in a particular application is often
truncated; no attempt is made to realistically simulate processes that are not of direct interest to that application,
In these lectures we will identify the various components and governing equations for several simple cloud
models. A list of references given at the end wili guide the interested reader to detailed discussions of the

topics touched upon here.
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Table I shows the variables to be determined by a cloud model,

Table 1
Variables Symbols Dimensions
pressure of cloudy air P N/m?
Thermodynamic density of cioudy air p kg/m?
temperature of cloudy air T Kor°C
Dynamic
air velocity components u,v,w m/s
specific total water Q kg H,0kg cloudy air
content
specific humidity Gy kg vapor/kg cloudy air
Water category )
specific liquid water ¢ kg liquid/kg cloudy air
content
specific ice content G kg ice/kg cloudy air
concentration of drops n,(m)dm, number/m? cloudy air
of mass between my
and my + dmy
Microphysical concentration of ice n(m)dm; number/m?® cloudy air
particles of mass
between m; and
m; + dm;

We will briefly describe models for each of these sets of variables.

II. Thermodynamic Variables

We assume that both dry air (density pq, pressure py) and vapor (density p,. pressure ¢) behave like ideal

gases, so that q, =

or
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where R, and R, are the gas constants for vapor and dry air. For future reference, we also define the saturation
vapor pressures &,; and e,,. These are the vapor pressures that characterize air in equilibrium over a flat surface
of ice or of water. They are given by the Clansins-Clapeyron equation,

dey Leey
T SRR (4a)
dew _ Leg
TR (4b)

where L, and 1,(J/kg) are the laient heats of sublimation and of evaporation, respectively. (Numerica! values
for the wemperature-dependent laten: heats, satration vapor pressures, and other thermodynamic properties of
cloudy air may be readily computed from formulae given in Bolion, 1980.)

Equations (1) to (4) are algebraic equations that link values of several thermodynamic parameters at a
given point in space and time. The other variables in Table I are determined by differential equations that yield
their values at one point to those at other points. The fundamental form for these equations is the following, let-

ting & represent a variable in Table L

%‘gn§+!'ﬂ§=m@~smk@ 5)

where vectors are indicated by underines: V= 2 29 a]lmd Y=(uv,w). The task of a cloud
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modeller is W represent the physical processes denoted ““sources and sinks'” in these conservation equations by
realistic, yet manageable mathematical functions of the selected variables.

The equation for p is derived by writing Equation (S5) in the case where £ = mass. Let M be the mass of

an air parcel of volume ¥ .



Then M = p¥ and

L, ev=0 )

For shallow subsonic motions, we can assume p = constant, or

Y-¥=0 6"
Furthermore, we usually assume the hydrostatic equation for the pressure, ic.,

S

=P )

To derive an equation for the temperature, we first write Equation (5) in the form of a conservation equa-

tion for the moist static energy h, defined here as

hal,g,~Leg+gz+c,T

LJ/kg) is the latent heat of freezing, and C,(J/kg—°C) is the specific heat of cloudy air. h is approximately con-
served in adiabatic processes if V%2 < < h, as we shall assume here. We have

= Sourcey, - Sinky, = H @®)

=] 1)

where I:J(Wfkg) represents possible external energy sources and sinks such as the radiative flux divergence or

precipitation fallout

The equation for T is found from the definition of h and Equation (8): we have
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1. Dynamic Variables

There are two kinds of models for air motions in atmospheric studies: kinematic models, in which the air
motions (and often the temperature) are prescribed as functions of space and time, and dynamic models, in
which these are computed. Kinematic models are useful when the dynamics are simple and well understood (as
in a steady state orographic, or wave cloud) or in which the links between dynamics and other cloud properties
are not of first importance. Kessler's (1969) original parameterized cloud model was kinematic, as were those
of Scott and Hobbs (1977) and Rutledge and Hobbs (1983). Kinematic models appear particularly useful in
cloud chemistry studies, where the focus is on chemical interactions, and air motions are assumed unaffected by

chemistry.

In dynamical models the air veloci’ty components are computed from Equation (5), putting £ = V, so that
Eqﬁation (5) becomes Newton's Second Law. (The sources and sinks of momentum are then the forces.) Ignor-
ing molecular effects, we have

%tynz--‘!;zpd—gf;-ZQXM (10)
Q(s™") is the angular velocity of the earth; 2Q x V is the ‘Coriolis’ term, which is important only when the time
scales of the phenomena of interest are comparable with or longer than the Coriolis time scale ( - 10% in mid-
latitudes).

This equation can be simplified in various contexts. We now discuss two very important, one-dimensional

cloud models that are often used in investigations of the macroscopic behavior of iayer and convective clouds.

A. Stratiform Clouds

In layer clouds the horizontal spatial scale is much larger than the vertical scale, given by the layer depth.
Therefore, the variation of base-state cloud properties in the horizontal is usually ignored completely, and the

only turbulent fluxes considered are those in the vertical. Layer cloud (or fog) models are written in one, two,
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or three dimensions.

We shall discuss here only the so-called ‘'mixed layer' models, which are one-dimensional. For references
on these models, see Deardorff (1976), Lilly .986), Nicholls (1984), and Stage and Businger (1981). We
assume that each variable £ in Equation (5) can be written

oy z0=8zn+8R y.2.0) an
where the overbar represents a horizontal average. The quantity E°(x, y, z, t) is the local, instantaneous devia-
tion from the horizontal average and

Fx.y.z,0)=0
Furthermore, we assume
| &1 «<E
In this case Equation (5) becomes, in the horizontal average,
% | ¥V - Sourer, - S, (12
The second term is
Y+ VW
(@ (b)

(a) represents the effect of the large-scale mean wind ¥, which advects any anomaly in the mean variable VE,
and (b) represents the advection of the local fluctuations, V&', by the local turbulent velocity V'. Moreover, we

can show that for the layer cloud
¥-¥=¥-Vv=0 6"
Y- -¥=v V¥

The term VT’ is called the turbulent flux of §, and we assume further that on horizontal average only the verti-

cal flux is impontant, so finally, Equation (12) becomes

=7 a r Py = ’
%%+X-_ZE+3;[;’E]=SOW§-SIM§ 12’
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where -g—l is the time derivative in a system moving with the mean wind ¥. Note that if E remains independent
of z, w¢’ is linear in z.

We choose for our analysis the two variables:

& = 8,(K), the equivalent potential temperature,

= @exp Lo and
&T |

£E=Q [%'HTZS ], the total water mixing ratio.

We assume 8,(z, t) and Q(z, 1) have the profiles displayed in Figure 1: i.c., they are constant in the boun-
dary layer (as a result of turbulent motions, which eradicate any z-dependence) and they undergo sharp changes
at the inversion that caps the layer. We assume the cloud is solid, and we adopt the notation from the Figure.

We can integrate Equation (12°) over the entire mixed layer to find

b | b |

[Be- [ Fe)e | fom s

or
l'
za%fzﬁfl,,-ﬂ?l..o--{[sowcws“m‘n]dz
Thus
1 ——
%=;;[le-0—wa=-:,] (13a)
DB, | [— ——
—DT=Z—B wB,',.o-we, i,.,"fR] (l3b)

where R(K/s) is the rate of temperature change due to absorption of solar radiation and emission of infrared
radiation. These radiative lerms are either computed from models (using as inputs the microphysical cloud pro-

perties) or they are measured.
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Figure 1. An idealised sounding for the cloudtopped boundary layer. Cloudbase is at z = z. and cloudtop at the
inversion, z = zg. Radiative cooling 1akes place in a very thin layer near cloudtop.
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The remaining terms in Equation (13) are the turbulent fluxes of Q and ©, at the upper and lower boun-
daries. These must be parameterised, and the differences among the various mixed layer models lie in the

parameterisation of these terms.

In the simplest case, the surface fluxes are expressed in terms of transfer coefficients: that is,
Vel =V [t - 2] (14)
where V{m/s) is the magnitude of the surface (horizontal) wind and &, is the value of £ at the surface. The C:
are constants known as transfer coefficients, and suggested values may be found in the references cited.

The nobulent fluxes at the upper surfaces are written in terms of an ‘entrainment velocity’ w,(m/s); i.e.,

WE | ayy = - weak (15)
where AL = & (upper air, just above zp) — £ (mixed layer, just below zg).

Finally, we nced a way of calculating w, from the layer properties. No completely satisfactory method
exists for this at present.  Thus, the mixed-layer models must be ‘closed’” by an additional relationship which
sets w,. This is usually based on the *‘mrbulent kinetic energy budget,’” where TKE w w'2 + 072 + v'2.

Schematically,

I3

-ﬂmmp-n-n (16)

P is the mate of production of TKE by turbulent motions in which slightly warmer than average air moves

up, or slightly cooler than average air moves down, N is the rate of consumption of TKE when slightly

warrlna'} than average air moves {%wn . and D is the dissipation of TKE at small scales. It is usually found
cooler

that the LHS = 0, so Equation {16) becomes
P-N=D (16")
Each of the terms in Equation (16") can be calculated in terms of the turbulent fluxes of ®, and Q at the

layer boundaries and the radiative terms R. The closure assumptions in different models are assumptions about

the relationships of these terms to one another. By invoking a closure assumption, we therefore find a

S ——— e e o = o o Ll e P - A A - - . R L T L
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relationship linking w, to the other parameters of the problem, and then we can write (if there is no mean verti-
cal velocity)

Dz
Dt

As illustration, consider a simple hypothetical case in which the surface fluxes are zero and the radiative

=w, (17

cooling occurs in a negligibly thick layer a1 cloud top. We assume that the entrained air is distributed uniformly

within the mixed layer (Stage and Businger, 1981). Then, ignoring radiative warming at cloudbase, we have

W) = - w, AQ = (182)
zg
VE.0)= [-wae,+ R];’; (18b)

We now calculate P and N in terms of these fluxes. The first step is to note that at height z, the rate of
production (or consumption) of TKE by motion of air parcels of different density is L%E It can then be

shown that

-§ wpT @) = oW Q@) + BWE, (2) (19)

That is, the fux of density perturbations is a linear sum of (18a) and (18b): the coefficients ¢ and B are slowly
varying functions of temperature and pressure. These functions are different in saturated and in unsaturated air:
we will call them a, and B, in saturated air and o, and B, in unsatrated air. (See Stage and Businger (1981)

for their explicit forms.)

Let us assume that the mixtures of cloudy and clear air at cloudtop are lighter than the unmixed cloud, so

that work must be done to push them down throughout the mixed layer. Then

P=£ﬂ“;z;Rdz+J' B,-z: Rdz = % +—;R(zg—z,’) (20}
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where z, is the height of cloudbase, and

£
N=—'[ {— aw, AQ-ﬁ,.w.Ae.}-‘-"- &

Zp

H
+_[ {— o,wAQ - B.w.Ae.};z; dz
%

z?

=+ {GuW.AQ + B\.W.AG.} 2

+{0-.W.AQ + ﬁ.w.Ae.} —(f%;-fﬁ @1)

We now go back to equation (16”) and invoke a glosure assumption: in the Stage and Businger (1981) model
this is
D=(1-A)P=P-N @)

and we use an empirical value A =02. Thus N = 0.2P, so we have from above

ozx{ﬁ. 22+ B, [r&—z?]}

.= @)
{mq " a.oe.} 22+ {a.AQ +B, Ae,} [ - 2]

Equations (13a and b, 23, and 17) constitute a mixed-layer mode! for the ¢cloud-topped boundary layer, and can

be used to predict the thermodynamic and water variables, as well as the inversion height as functions of time.

B. Convective Clouds

In convective clouds the driving force is the generation of density fluctuations which create large up- and
down-drafts. These can no longer be treated as small fluctuations on a quiescent state. Moreoves, the assump-

tion of infinite horizontally homogenecous layers is, of course, no longer valid. Thus, dynamic modeling of
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convective clouds requires different approximations than that of stratiform clouds.

Whereas numerical-layer cloud models are usually writien in an Eulerian (fixed) coordinate system, which
allows the properties of the entire cloud to be calculated at each time step, in convective cloud models it is often
desirable 10 use (Lagrangian) coordinates fixed in a moving air parcel, and to follow the evolution of properties
inside that parcel while neglecting the rest ;uf the cloud. The Lagrangian approach is particularly convenient if
we can assume (a) the cloud properties at a fixed location are independent of time, or equivalently, (b) that the

properties inside the moving parcel change with time only because the parcel location changes. Then
DE/Dt = ¥-VE on the LHS of Equation (5). If the parcel path is along the z-axis, then %% = w%. Let us
consider this simple, often used approximation applied to a shallow, warm, nonprecipitating convective cloud.

Once again, one of the least understood and most important processes to consider is entrainment. Tur-
bulent motions bring about entrainment: the mixing of environmental air into clouds. Entrainment dilutes the

cloud and can deform the particle spectra via evaporation.

In a real cloud, there is no antificial boundary separating the cloud from the environment. Howcvef, in our
simple model we assume that we can define a set volume, called “‘the cloud,” inside which we will solve the
model equations. We thus must parameterize the fluxes (entrainment) over the bounding surface of this volume.
It is often assumed that convective clouds behave like self-similar plumes or thermals (Morton et al., 1956;
Turner, 1962). In this kind of flow the rate of entrainment of environmental fluid into the rising cloud is deter-
mined by the assumption that the horizontal velocity at the interface is proportional to the local vertical velocity,

w(z) ; i.e.,

u,(z) = aw(z) (24)

where u, is the radial velocity, @ = 0.1 for a plume, and a = .25 for a thermal (see Figure 2). This leads to the

expressions;



E) | = ;2“—-"-{: m] (25a)
entainment

(plume)

Wl 3 @)
entrainment

(thermal)

for the plume and thermal, respectively, where £ is the average in<cloud value of any variable obeying a conser-
vation equation (Equation 5), and the radius of the cloud, R, grows linearly with height z. (Sec the above refer-
ences for derivations of Equation 25.)

Warner (1970, 1973), Lee and Pruppacher (1977), and many others have used these assumptions. Other
authors (Telford, 1966; and Lopez, 1973) have assumed the lateral entrainment velocity is a8 mean turbulent
velocity that can be computed from a conservanoo equation for turbulent kinetic energy. Note that difficulties
with model predictions (1o be discussed below) and recent observational studies of entrainment have raised some
doubt on the exient to which these model fiows are useful analogies. See Simpson (1983) for a review of the

successes and failures of plume models in reproducing observed cumulus cloud behavior.

Using the self-similar plume approximation (Eq. 25a) for the entrainment, the cloud model equations

become
R _6
e "5 (26)
wiw _ EPen ) _ 20w’ _ J [T'-‘T'] 20w an
&  Pen R To_, R
—7':"23 =~ 2““' =¥ Q- Quy) 8)

»T _ ﬂ_hﬂ_ﬁ“l Lr _
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Figure 2. Schematic drawings showing the boundaries of (a) a self-similar plume and (b) a self-similar thermal,
both at large distances in a neutral environment from the (point) source. The source is (a) constant in
time for the plume; (b) a single pulse for the thermal. There is no generation of buoyancy (i.e., no phase
change) and the inflow velocity is proportional 10 the propagation velocity. With these assumptions the
horizontal dimension, R, grows linearly with z in both cases.

" —
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where

R e
(see Eq. 42). We also assume the pressure is given by Equation (7). See Warner (1973) and Lee and Pruppacher
(1977) as exampiles of the use of this model

If &t is necessary 10 describe phenomena occurring simultaneously in different parts of a cloud, if the time
development at fixed locations is important, and/or if the fallout of precipitation through a cloud is of interest,
then a Lagrangian model, which follows only one air ‘parcel’, is inadequate. In this case an Eulerian 1-D, 2-D,
or 3-D model must be used. See the reviews by Simpson (1976) and Cotton (1975b) for comparisons of various
cumulus models.

IV. Waser Category Variables

" The aim of parameterized (water continuity) models is to represent the integrated size-dependent micro-
physical processes in such a way as to preserve their major features without explicitly calculating n,(m,) and
ni(m). (Note that therc are other ways to approximate the size-dependent microphysical processes. See, for
example, Yan and Aastin, 1977 and Lopez, 1973.) In effect, the models for (warm, nonprecipitating) stratiform
and comvective clouds described in the previous section were of this type. We made the approximation there
that the cloudy air is always exactly saturated; ie., Equation (30). Thus, given an equation ((13a) or (28)) for
the total water Q, we could casily compute the cloud liquid water content without knowing the drop size distri-
bution: q, = Q - q,. If we add precipitation and ice, we have more water variables and thus we need more
equations. There are several paramelerization schemes (i.c., sets of equations for these variables) in the litera-
ture. In general, these are based on Kessler's original scheme (Kessler, 1969) and differ mainly in their represen-
tation of the ice phase processes. The reader is referred to Orville and Kopp (1977), Stephens (1979), and Lin et
al. (1983) for details. As an illustration of these models, we briefly describe that of Stephens (1979), as adapted
by Taylor and Baker {(1985). In this model:

q. is the specific liquid water content in cloud droplets (those which move with the air) and q, is the specific

P TR T T T T TR e e w e e o ee
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liquid water content in precipitation drops. These are usually assumed to be exponentially distributed in radius;

ie., ng(ra) = neexp(-Ar) : @ = g, + g,
q, is the specific ice content in snow (low density ice), and q, is the specific ice content in graupel (high density
ice):qi=q, +q,

Each water content variable obeys an equation of type (5), in which the sources and sinks are due to microphy-
sical transformations, fallout of precipitation, and entrainment. These equations, in a one-dimensional entraining

plume model, have the following forms:

%".=_Gc+gc+gp_sm-vw-vm-ci-l:—[qv-q._,] )
2
%"zGc"Ec“Avw"cdl"swt—Gm-sm‘ _% : (32)
—%?—=G,+Sm+v.¢q,+sm—S,,,—SM—C¢,+SM—2—':& (34)
204,
%=Gm+sﬂm+vlw_6ﬂh+Pld+p‘&+Glu_-R— (35)

G, and G, are condensation onto nonprecipitating liquid and ice, and E. and E, are evaporation of cloud angd
precipitation liquid. Auto is the rate at which cloud liquid is transformed to precipitation liquid by condensation;
Cay is the rate of increase of precipitation liquid via collection of cloud water. Smer 8nd Gy, are rates of melt-
ing of snow and graupel, and S, and G, are the rates of riming of snow and graupel. Pyl is the rate of col-
lection of precipitation by graupel. S, is the rate of nucleation of snow crystals, and V,uep i the rate of vapor
deposition on ice crystals (assumed to be hexagonal plates). C,, is the rate of homogeneous freezing of cloud
droplets to form snow, and Py, is the rate of freezing of supercooled precipitation via collision with ice crystals
to form graupel. S, is the rate of conversion of snow to graupel. The terms Py, Sp.,, 8nd Gj,, are sedimen-
tation of precipitating particles, and the terms in o« are entrainment terms. Each of these processes is

represented as 8 semiempirical function of the g's, the temperature T, pressure p, and the air velocity V. Each

B R i Y WL T



water quantity (except g,) represents an integral over many particles of different sizes, and as such the sources
and sinks in the conservation equation represent integrals of the size-dependent processes over the range of sizes
of the particles.

To give the flavor of the kinds of approximations involved, let us consider the first few terms. In the Tay-
lor and Baker (1987) parameterization, the net condensation rate is computed as a function of

Aq.(2) = q,(z+Az) ~ q,(z) where Az is the minimum resolvable vertical distance. We have:

Ge(z) = %‘- E@=0 if Aq,(z) >0

Ag, .
Gu2) = 0. Ex(2) = = if Aq,(2) < 0
where At is the time-step for the computation. Similar simple approximations are applied for the calculaton of
cach of the other parameterized terms in Equations (31)-(35). See also Lord et al. {1984) and Yau (1977) for

other representations of these terms.

We note that microphysical processes are important in determining vertical accelerations of cloudy parcels, _
both because of the drag due 10 hydrometers and because of the latent heat release during phase change. More-
over, since phase change itsclf depends on the vertical velocity and acceleration, the dynamics modify the
microphysics. Therefore, the use of different microphysical parameterization schemes in numerical models can
produce very different microphysica! and dynamical results.

V. Microphysical Variables

In a model to be used for examination of size distributions (called ‘spectra’) of cloud or precipitation par-
ticles we need equations for the explicit micsophysical variables ng(my) and ni{m,) in Table I. We now discuss

the appropriate microphysical equations in this case.
A. Warm Ciouds

Putting § = ny(m,) in Equation (5), we can write
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Dn, .
™ N) + n..) + De) + hu) + ﬂa) + ﬂu) (36)
acTvation vapor entrain— coalescence brealaip sedimen—
diffusion ment tation
Let us consider each term on the RHS of this equation.
{1) Activation
Let Neea(s;) be the concentration of CCN activated in steady state at supersaturation s;, where
s =ele,y -1 37

There is experimental evidence (Twomey.and Wojciechowski, 1969) that

Nen(s;) £ Csik

where C and k are constants; k ~0.4-0.7 and C depends on time and location. Activation is usually assumed to
occur instantancously as the supersaturation changes and to produce particles of a minimum mass, which we can
denote m;. Similarly, if the saturation is decreasing, droplets with the minimum mass m,; are assumed o eva-

porate instantaneously. In other words, in numerical models of activation we usually put

BJ(M) =0, mg #m,
activation
Ds; N . .
= _ﬁl- T, §; InCreasing (38)
fg(m ,)) = :A%nd(ml). s; decreasing
activation

where At is the time-step of the computation. See, for example, Clark (1973) or Takahashi (1978) for details.

(2) Vapor Diffusion
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After activation, diffusion of water vapor o and from the surface of a droplet causes its radius r(m,) w0

change. For 1y 2 1um, the rate of change of the droplet radius is approximately

ﬁd - Dpv.sl 39
& o ©9)

where p; is the density of liquid water, D(m?s) is the diffusion coefficient of vapor in air, and p., the density of

saturated vapor at the environmental temperature T. See, for example, Pruppacher and Klett (1978) for details

of the derivation of Equation (39).

The concentration of droplets of mass in the interval my, my + dmy changes with time due to vapor

diffusion as follows:

m = - 2 |9
ng(my) = - am, [ X na(mo] 40

where

dmy
d

dry dr,
= Cha el
P G
vapor
diffusion
given by Equation (39). To compute the RHS of Equation (40) in a numerical model, all droplets are classified
into discrete size classes and then the concentration in each size class is evaluated at each time step by consider-

ing how many droplets grew into or out of that class.

(3) Entrainment

In a layer cloud, entrainment occurs over the top surface, and, as we have seen (Equation 15), it is usually
parameterised by an entrainment velocity. The effect of entrainment is to dilute the cloud with drop-free air.

Thus

TR AR AL s L e S Twamwpoms s e amueme s N I i e T T T N A -
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iuma) == 2% [idm) - nevtmy) | ()
entrainment
(layer clouds)

where the last term represents entrainment of nuclei from the environment.

In convective clouds, entrainment occurs over the entire surface. In the self-similar plume model! (Equa-

tion (25a))

ﬁa(ma)) =- 2—;“—' [ﬂa(ma) - n,w(ml)] (41b)

entrainment
(self-similar plume)

For nonprecipitating clouds, when droplet radii remain smaller than - 20um, the rest of the terms in

Equation (36) can be ignored. If, however, it is necessary to consider larger drop sizes, these terms become

important.

(4) Coalescence

As droplets grow by condensation (Equation (40)) 10 sizes at which they begin to fall relative to the air,
there are collisions between droplets moving relative (0 one another. Some of these collisions result in coales-
cence and the formation of large drops called precipitation, or raindrops. If A(my) is the cross-sectional area
and V,(m,) the terminal fall velocity of a drop of mass my, then in time dt a drop of mass my encounters and

coalesces with all drops of mass my’ within a volume we define as

K(my, my)dt = (A(my) + A(my)) 1 Vi(my) - V(m ) IE(m,, my)dt (42)

where the factor E(m,, m,) takes into sccount the deformation of streamlines around the particles and the fact
that not all collisions result in coalescence. The rate at which a given particle of mass my coalesces with any

particle of mass my’ is thus ny(m,)K(m,, m,)dm,".
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Then, the mean rate of disappearance via coalescence of drops of mass mg in the interval (my, my + dmy)
is Dimy = n‘,(md)J. K(my, my)nymy)dm,’. At the same time, new drops are constantly being created in this

mass interval by collisions among smaller drops. The mean rate of production by these collisions of droplets in

the size range of interest is

P(my) = % L ng(myIng(my - my)K(my', my - my)dmy’

Thus, the fourth term on the RHS of Equation (36) is

fu(m) = -D(my) + P(mg) = —ny(my) { ng(my K (mg, my)dmy’ (43)
coalescence

+ -;- J(; ng(mgIng(my — mK(my’, my — my)dm,’

Equation (43) is the so-called stochastic collection equation (SCE). See Berry and Rhinchart, 1974; Soong and
Ogura, 1973; and Pruppacher and Kiett, 1978, for detailed discussions of the terms in Equations (42) and (43).

Because of the complexity of the SCE, a simpler approach 10 the study of coalescence is often adopted
when the goal is to roughly determinc the size rate of change only the precipitation particles, rather than to
develop a time-dependent expression for the entire drop population. This second approach, called the ‘continu-
ous collection method,” begins from Equation (40). In the approximation that a few large collector drops of
mass m,y fall through a population of much smaller cloud droplets, the instantaneous rate of growth of the large
drops is

T) 2 K(my, Mg (44)
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where q, is the liquid water content in the small droplets and i, is a mean droplet mass in the cloud.

{5) Breakup
The rate of growth of large droplets is limited by three factors: the rate of supply of liquid water, the
breakup of pairs of drops which have recently collided, and the spontaneous breakup of individual drops as they

oscillate and deform during fall. The second two processes may be represented by the expression:

Wm0y = -nman(m + [ num)Qa(my', mn(mim @)

breakup ™
where m(m,) is the rate of breakup of a drop of mass my and Qg(m,’, m,) is the fraction of breakup events of
drops of mass m,’ that result in the formation of a daughter drop of mass m,. The factors Qg and & are usually

taken from a combination of theory and experiment (Srivastava, 1978; Young, 1975).

Note that coalescence and breakup (Equations 43-45) result in the transformation of a large number of
cloud droplets into a relatively tiny number of raindrops. To describe this transformation with accuracy requires
great computational precision. In a model of drop spectral evolution, any numerical spreading in the drop distri-
bution will result in apparent production of raindrops.

(6) Sedimentation
The rate of change of drop number due to the sedimentation of precipitation-sized particles (ra~ 20 pm) is

given by the expression:

A(m) = -2 (V(mndmy) (46)
sedimentation

The terminal velocities are taken from experimental values (see Pruppacher and Klent (1978) for a review of
these data).
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We have briefly discussed each term in Equation (36), which completely describes the microphysics for
clouds which do not rise above the 0°C isotherm. We turn now (o an even briefer description of the analogous

equation for n,(m,).

B. Cold Clouds
The conservation equation for ny(m,) which is analogous 10 Equation (36) for ny(m,) is:
“7)

+ n,) + n,) + ﬁi) + n,) + n,) + n,)
nucleation vapor entrain— riming ice—ice multipli- sedimen-
diffusion ment collisions cation tation

Dn,
T o)

The terms in Equation (47) are in general more complicated than their counterparts in Equation (36) because of
the complex shapes and density distributions of the solid particles. Moreover, we have fewer observations of
glaciation processes than of the corresponding warm cioud processes. Therefore, there have been relatively few
auempts to use explicit microphysical models in cold clouds. We shall just touch upon the main feamwres of

each term in Equation (47).

e



(1) Nucleation

It has been customary to assume that the first stage in glaciation is heierogeneous nucleation on ice nuclei

(IN) whose concentrations Ny increase exponentially with cooling; (Fletcher, 1962):

 Nov= Acxp(-BT) “9)

where T is in °C,

Typical values of the constants are A - 10~liter, B - 0.6/°C. Nucleation is assumed to occur instantaneously

as the temperature in a cloudy parcel changes; i.e., in analogy to Equation (38),

ﬁx(ma)) = 0' m; # m,
nucleation
. d _ _
fim)) = % DL T decreasing 49)
nucleation
JIhm)
At g

where m, is the arbitrarily set minimum ice crystal mass and At the time step of the model. We note, however,
that frequently there are far more ice particles in clouds than can be explained as descendants of the IN whose
concentrations are given by Equation (48). The cause of this discrepancy is not yet known, but the use of Equa-
tion (48) to predict the concentration of small ice particles appears questionable until more is understood about
glaciation; it may be preferable to use empirically determined concentrations of the small crystals. The uncer-
tainties in our present understanding of glaciation limit the confidence to be piaced in numerical models of both

naturally and induced precipitation development in cold clouds.



(2) Vapor Deposition

For small ice crystals, the most imporiant process of growth or decay is vapor diffusion to and from the
particle surface. Because the surface is not spherical, the vapor flux at the surface is not uniform and the growth
equation is somewhat more complicated than Equation (39) for spherical droplets. We have:

dm; _ CDpu,; sfy
) T &

mion

where s, = e/e; - 1, and C is a shape factor. The shape (growth habit) of smal! ice crystals depends on tempera-
ture and vapor pressure; some shapes and the corresponding expressions for C are given in Pruppacher and Klett
(1978).

The ‘ventilation factor’ f, is a semiempirical factor repmsenti;lg the effects of particke motion on vapor
diffusion to and from its surface. Ventilation is not important (i., £, = 1) at the small drop sizes (t, < 20 um)
for which vapor diffusion is the dominant droplet growth mechanism, and thus f, was put equal o unity in
Equation (39). However, ice crystals grow via vapor diffusion to larger sizes, where ventilation is important. f,
may be expressed as a function of particle shape and mass and the viscosity and vapor diffusion coefficients in

the air. See Pruppacher and Klen (1978), for a discussion of the relevant experimental and numerical studies of

ventilation. The vapor diffusion term in Equation (50) is:

. 0
fy(em;) =-s= |5 ni(m;) (1)
) om, )‘,,po,
diffusion diffusion
Vapor deposition is the most important crystal growth mechanism until crystals are arcund 150-700 microns in
lateral dimensions (the threshold depending on habit), when the large crystals begin to fall relative to the smaller

ones and particle-particle collisions ensue.
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(3) Entrainment

The comments above on entrainment of liquid particles are relevant also for the ice particles. It has also
been recendy svggested (Hobbs and Rangno, 1985) that entrainment may play a fundamental role in initiating

glaciation by promoting contact nucieation, suggesting that the term # may be an important one at

)entrainmem

small sizes.

(4) Collection

Ice particles can collide with other ice crystals to form the low density material called snow, and/or they
can collide with supercooled drops to form rimed crystals and evenwmally graupel and hail. Snow formation is
usually represented by a continuous collection model analogous to E&;ual.ion {44); the relevant fall velocities and
collection efficiencies are determined by experimentation (see Pruppang and Klett, 1978), The rate of growth
by riming depends on the rates of shedding and of freezing of any excess water, that is, the efficiency
E(m;, m;’) in the analogue of Equation (42) for ice depends on the liquid waler content, the temperatures of the
graupel particle and of the environment, the updraft velocity, and the ice concentrations. In general, the con-
tnuous collection growth model, i.e., Equation (44), is also used 1o describe the rate of growth of ice particles
by riming, although modified SCE's of the type of Equation (43) have been used (Beheng, 1978). (See Figure
3)

(5) Breakup/multiplication

The discrepancy between observed numbers of ice particles and observed concentrations of ice nuclei has
led to several hypotheses for secondary ice multiplication mechanisms. Among these is the Hallen-Mossop pro-
cess (Halleu and Mossop, 1974), in which riming particles can give rise to small ice splinters if the riming
occurs within a narrow temperature inierval (roughly -3°C to -8°C) and if the drop spectrum is sufficiently wide,
It has been shown (Chisnell and Latham, 1976) that this process gives rise to a roughly exponentia! rate of

growth of ice crystal concentrations; the rate of production of small crystals is:
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r'as(ma)) = pofii(m,) (52)
multiplication
(Hallen-Mossop)
where the lifetime 1/p, is a complicated function of cloud properties. Ice multiplication is still not sufficiently

well understood to allow its detailed description within the framework of a cloud model.

(6) Sedimentation

The convergence of precipitation of ice particles is treated exactly as for liquid precipitation particles
(Equation 46). The terminal velocities are taken from experiment (Again, see Pruppacher and Kleu (1978) for a

review of the experimental literature.)

It is perhaps clear by now that attempts o include all the important microphysical processes within a
cloud model are hampered by the large’ uncertainties in many of the numerical parameters, by the complexity of
ice phase processes, and by the wide variety in sizes and types of particles which must be considered, and hence

the enormous computing time requirements for a2 complete model.

IIl. Access 1o Numerica! Models

This concludes our brief overview of the components of cloud models. We have not dealt at all with
many important topics such as modeling radiation, cloud chemistry, or cloud systems, and in the limited space
available we have only given superficial descriptions of the more standard cloud model components. The reader
interesied in using a numerical clovd model should be aware that many of the models discussed here and in the
references are coded and stored on magnetic tape at various Ewropean and American universities and atmos-
pheric rescarch centers such as NCAR (USA) and the British Meteorological Office (UK). Scientists at these
institutions may be contacted for advice on remoie access to their computers and programs, as well as for

requests for collaborative projects using these facilities.
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