International Atomic Energy Agency and

United Nations Educational Scientific and Cultural Organization

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

T O P I C A L M E E T I N G
ON GRAVITATION AND FIELD THEORY

13 - 16 July 1971

(SUMMARIES)

MIRAMARE - TRIESTE

November 1971

CLASSICAL 2-GRAVITON PROJECT

Elihu Lubkin

University of Wisconsin-Milwaukee, Milwaukee, Wis. 53201, USA.

At the 1966 Washington meeting $^{1)}$ I proposed a 2-graviton theory. Motivation was partly the feeling that strong exchange of \sim BeV spin-2 mesons together with the idea that these are likely to couple to total energy-stress, including their own, will lead by the mechanism of S.N. Gupta $^{2)}$, reviewed by J.R. Oppenheimer $^{3)}$, to a hopefully Yukawa-decaying meson metric, within nuclear distances of a massive "point" source. Owing to e^{-mr} factors in the strong metric, 3-space in that metric should close up into an S $_{3}$ with radius \sim m⁻¹. Weak, massless, ordinary gravity should however, take over when e^{-mr} becomes very small. If this is not forgotten, the neighbourhood of the S $_{3}$ point antipodal to the source should open up into the usual 3-space, leaving a picture of a bottle, with a characteristic neck of strong-weak gravity transition. The hope was to study the neck and "bicausality" by perturbing a spheristatic solution of a 2-graviton classical equation system, with r=0 singularity allowed, to represent the "point source".

Since then, I have been working with coupled Einstein equations, mass by a cosmological term, the details of coupling in the "matter" tensors T on the right side 4). By replacing $\partial^{2}/\partial x^{i} \partial x^{j}$ in the "total" Landau-Lifshitz pseudotensor 5) by second Veblen extension 6) in the other metric's affinity, I obtain a tensor, but computerized algebra will be needed to remove a 2-year-old error.

W. Hammel has suggested the simpler $T=\mu G+\lambda g$; thus, $G+\Lambda g=\mu G+\lambda g$, and $G+\Lambda g=\mu G+\lambda g$. These can be so rewritten that, if 0=0 and $\lambda=0$, one gets $G=\mu g$ and $G+\Lambda g=0$; these can alternatively be introduced heuristically. G=0 is immediately a cosmological-constant Schwarzschild solution, and $G=\mu g$ is 3 coupled ordinary differential equations in 3 functions of G=0. The expression G=0 which appears in strong-curvature co-ordinates G=0 means that the strongmess G=0 is duplicated at G=0 antipode, both having G=0, giving a small nondecaying residuum for the strong girth of a large circle, a premonition perhaps of departure from Yukawa behaviour.

Since we have no solution yet, we are not ready to begin the causality study.

REFERENCES

- 1) E. Lubkin, Bull. Am. Phys. Soc., April 1966.
- 2) S.N. Gupta, Rev. Mod. Phys. <u>29</u>, 334 (1957).
- 3) J.R. Oppenheimer, lecture at Stanford University.
- 4) E. Lubkin, NSF Proposals for 1969 and 1970.
- 5) L.D. Landau and E.M. Lifshitz, <u>The Classical Theory of Fields</u> (Addison-Wesley, 1951).
- 6) O. Veblen, <u>Invariants of Quadratic Differential Forms</u> (Cambridge University Press, 1927).
- 7) J.L. Synge, Relativity: The General Theory (North-Holland, 1960).