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CATASTROPHE THEORY IN BRAIN MODELLING

E.C. Zeeman
University of Warwick, Coventry, UK.

If we implicitly assume that neurological activity can be modelled
by generic differential equations (with arbitrarily many variables) then we
can explicitly use catastrophe theory to explain and predict psychological
phenomena. Mathematics is able to provide a link between neurology and

1)

ways that differential equations can bifurcate.

psychology because of a deep theorem of Thom classifying the elementary

We shall explain the idea by an example. But first consider

Duffing's equation. I am grateful to LarryNhrkefsfbr first introducing

me to Duffing's equation, which is as follows:

X o+ x + Ek x + oex = F cosiit
| T [
simple small small small
harmeonic damping Duffing forcing
oscillator term term term

.where
t is time ,.
x 1is & real veriable , x = dx/at ,
€,k are small positive constants ,
Q = 1 +ew
and

w,F are control parameters .,

Notice that the period. of the forecing term is close to that of the oscillator.
We assume for the moment that the controls ,F are fixed.

Geometrically the manifold for Duffing's equation is the three-
dimensional manifold R2 X Sl, where R2 is the plane with co-ordinates x
and % , and S° is the circle with co-ordinate t modulo 2w/JL (in other
words, periodic time with period that of the forcing term). Duffing's

equation gives a flow on this manifold. It turns out that this flow has i, 2
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or 3 closed orbits (depending upon the values of the controls) snd akl other
orbits spiral towards them. The closed orbits are given by the following

periodic solution (as can be seen by substitution):

X = A cosit + €33 cos3t + OE") (2)
.where
gal-2m-F = 0 . (3)

Here A stands for emplitude because if we neglect € then (2) reduces to
a simple oscillation of amplitude A . The value of A is given by (3)
vhich is: ealled the Duffing emplitude relation. If we draw & graph of A
as & function of the controls w,F then we obtain the characteristic cubic

surface S of the cusp catastrophe.

The surface S has folds over the cusp:

128 > = 81 F°

in the control space € . This cusp is called the bifurcation set, because

this is where the closed orbits bifurcate. If the control point (w,F)

lies outside the cusp, then there is a unigue value of A and therefore &
unique closed orbit which is an attractor of the flow., If the control point
lies inside the cusp then there are three velues of A and therefore three
closed orbits of which two are attractors and the other is a saddle. The

points of S representing saddle-type orbits are shown dotted in the picture.

Intuitively the reason that two attractors can exist for the same
control point is because we can either use the forcing term in-phase with a
a large fast orbit, in order to slow it down to the correct frequency, or
else use out-of-phase with a small slow orbit, in order to speed it up (here
in-phase means A,F have the same sign and out-of-phase means opposite sign).
The points representing out-of-phase attactors are shown shaded in the picture.
If we fix w > 0 and slowly and smoothly increase F from negative to
positive then the system will start in-phase and pass smoothly out-of-phase_as F
changes sign, then at the second crossing of the cusp, the out-of-phase
attractor vanishes by coalescing with the saddle, causing the system to Jump
into the other in-phase attractor. Here the word "jump" means that the speed
of homing near the attractor is large compared with the rate of change of F ,
vhich we assume to be sufficiently slow. For instance, in electronic displays
of Duffing's equation, the dot or circle on the cathode ray tube appears to the
eye to Jump.
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gggggglizngioa to the brain

We now generalize Duffing's equation to a model of the brain. Suppose
some part X of the brain is influencing another part Y . The three~
dimensional manifold R2.K S1 is replaced by an n-dimensional manifold M
implicitly describing the states of Y « Here n could be large, like lOlo,
and M could represent states of all neurons and synapses in Y , or chemical
concentrations, or spike densities, ete. The differential equation is replaced
by a generic flow ¢ on M , representing activity of Y . Generie implies
tha£ ¢ has attractors. Meanwhile the control barameters are replaced by
another high-dimensicnal manifold Q representing states of X . As the control
varies in Q it causes the flow @ to vary and bifurcate. The bifurcation
points form a subset B of @ which is in general stretified, In particular

the strata of codimension 2 determine elementary bifurcations of a single
attractor of ¢ into two aftractors. In such & case the bifurcation is
characterized by taking any two-dimensional disc C in Q +transversal to the

v

stratum.

Meanwhile, if the attractor is a submanifold of M (of arbiffary co-
dimension k) we can construct a two-~dimensional surface S in M by plotting
the intersections of the attractor with a Tixed transverse k~dimensional disc,
as the control varies in C . We now appeal to Them's theorem: +the map
5 »C is differentiably equivalent to the above picture. Therefore this
three-dimensional graph is an accurate description of bifurcation of brain

activity.

Now the attractors are che stable global dynamic states of X and if
we assume-implieity that remembered concepts or stored behaviocur patterns are
represented by attractors then the way that the mind Jumps from one concept
to another or the way an animal switches from one behavioural pattern to
another must be represented by the bifurcation of attractors. Therefore
the above graph is an accurate model for elementary jumps of mind or

behaviour.

Example !i!

Rage and fear are conflicting factors influencing aggression
(see Refs.2 and3 ).

Example (ii)

Fix w < 0 . A smooth increase of F causes a smooth increase of 4 ,

This might represent the recall of a continuous memory. Suppose now that this
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memory is not recalled for several days or years. One might expect a slight
iisorganization of the main synaptic pathweys involved in the attractor

representing this particular memory, due to the fact that all péthways are .
multipurpose and nearly all pathways are used nearly all the time in gfeater

or lesser degree for nearly all brain activities. As a result one might . ‘
aexpect a marginai slowing down of the attractor and therefore a relative

speeding up of the forcing term. Therefore,in the notation of Duffing's .
equation, the frequency  would change from veing a negative constant to a -
positive constent. Notice that we are making assumptions here that the

controls in part X of the brain have qualities  of amplitude F and .
frequency ® similar to those of the forcing ﬁerm in Duffing's equation, -

If the recall-instruction F is now stimulated, in other words if there
is a smooth increase of F , then the recalled memory A will Jump and omit
the middle section. Perhaps this is why an immediate recall of yesterday's
events is full of gaps. However,if we work at trying to remember what vas
in those gaps, then the synaptic pathweys may be marginally reorganized again,
the attractor speeded up, the forcing term relatively slowed until w<O0,
and consequently the intermediate continuous memory A recovered. Perhaps

this is why with a little thought we seem to be able to remember things.

Experiment

Examples (i) and (ii) suggest a large variety of possible psychological
experiments involving easily observable jumps of mind or behaviour. What
would be even more interesting would be to correlate the psychology with the
neurology. The mathematics has found a bridge between the two and if the
pifurcation involved is Duffing-like, then the mental or behavioural jump
might coincide with observable phase shifts in EEG recordings. For example,
recordings from electrodes embedded in hyperthalamus and hippocampus or frontal
lobes might exhibit a phase shift of the following type at a behavioural Jump:

W\/‘&/‘M/“V“z/m/“w

Out—-of-phase In~phass

Behavxoural change
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Fig.l

The behaviour of the amplitude A of the solution of Duffing's equation as
a function of the control variables w,F .
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The observer might not notice such a shift unless looking for it.

Phese shifts have been observed by Adey and othersl‘) in cats when the cat.

makes a wrong turning in a maze.

1)

2}

3)
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