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PHYSICAL PRINCIPLES OF NON-LINEAR NEURONAL INFORMATION PROCESSING

W. Glttinger and H. Hahn

Institute for Information Sciences, University of Tubingen, Fed. Rep. Germany.

This paper attempts to abstract physical "first principles" from
physiological concepts and dataand to convert them into mathematical formuls -
notwithstanding the fact that the necessary oversimplification of highly

subtle biological complexities may be quickly dismissed as naive by biologists.

To begin with, we set up a mathematical equation of a single neuron
by starting from a few experimental electrophysiological facts which can be
congidered basic for an overall description of neuronal activities at an
"above-biochemical" level, thereby considering & neuron as an object of
electrodynamics. There are three experimental results sufficient to derive
a neuron's differential equation between the input current I(x,t) (related
to the postsynaptic potential) and the membrane potential u{x,t) , x being
the axial space co-ordinate and t the time, viz., (i) the reaction current
in the membrane to a voltage jump in the potential u in a voltage-clamp
experiment; (ii) the form of the non-linear characteristies N(u) and K
of the sodium and potassium currents (and the delay of the X with respect
to the Na current in time); (iii) the frequency responses of the trans-

versal and longitudinal impedances of a nerve fibre.

These principles lead to the following differential equation for a
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where u(x,t) is the membrane potential, I(x,t) the input current, x the
axial space co-ordinate, t the time, r the longitudinal resistance, C

4 capacitive delay, K +the K-conductance, L an inductive storage element
due to a biochemical transport delay and N(u) +the non-linear membrane
characteristic of the sodium current which is responsible for the fundamental

dynamical properties of a neuron. Passing to r = 0 , Eq.(1) reduces to the
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non-iinear oscillator equation for an infinitesimal element of the neuron,
viz.

LKCU + [C + LK2N(u)/ouli + N(u) + Ku = LKL + T + Ku, - (2)
or u + g(u)u + f(u) = F(x) which, as does Eq.(1), carries all the charac-
teristics of van der Pol and Duffing's equations for relaxation oscillations

and jump phenomens, etc. (In Egs.{1) and (2), u. is a fixed constant.)

0
We make s stability analysis of Eq.(1l) and find the relation

K > 4575‘ to be necessary for the neuron to be capable of developing

oscillatory instability (pulse production). Solving Eq.(1) by perturbation

theory, we derive an analytic relation for the dependence of the output im-

Pulse frequency w on the average amplitude of the input excitatory post-

synaptic potential, an expression which is in excellent agreement with

experimental results obtained for Limulus and Carcinus. Finally we analyse

what happens if a neuron is excited periodically with a frequency ‘upsp .
“?ulse . We derive a relation between the energy stored in & neuron E

and the excitation frequency w . The diagram E(w) consists of a set of
resonance curves from which one infers how the neuron's non-linear structure
causes discontinuities in its response, known as jump effects, bursts or
rhythmic discharges, in virtue of infinitesimal frequency changes due to
internal noise. This is a typical example of the Thom-Zeeman "Catastrophe

Theory".

We then discuss two aspects of neural networks, namely inhibition
fields and non-linear neural nets under the action of stochastic inputs.
First, considering an array of receptor cells along the x-axis, inhibition
of the cell at point x by those at points x-¢ and x+& means that,
given an input i{x) , the output ofx) is o{x) = i(x) - Xi{x-¢£) - Ni(x+&) .
Expanding into a Taylor series, dropping all terms of order 53 and higher
gives the result o(x) = i(x) - o¢i'(x)} - §i"(x) , where o = o for symmetric
inhibition (A = X') . Approximating i(x) by a (smeared-out) step function
0(x) we obtain the output ofx) = O&(x) - gg{x) in case of symmetric in-
hibition, where {'(x) is a (smeared-out) delta-function. This formula
(o{x) plotted mgainst x ) shows the familiar contrast accentuation (Mach
bands) if i(x) and of(x) are interpreted, e.g., as light intensities. We
then analyse the case of unsymmetric inhibition (X # o) which gives rise to a
shift in the extrema,the case of & bimodal inhibition function, giving rise to

fluctuations in intensity around the conventional extrema and, finally, study
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non-linear phenomena in the auditory system, such as the frequency shift of

tones when their intensity is increased.

In the last part of the paper the following problem is discussed:
Given a neural net, made up of non-linear neurons, into which stochastic
signals are fed. We ask under vwhich circumstances will the output's range
of fluctuation be increased or decreased by the net. That is, under which
conditions does the coupling mechanism make the output more indeterminate
or more deterministic. We indicate . how to extend these considerations to

the case of spatial information processing in non-linear neural nets.
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