

INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS MIRAMARE - P.O.B. 586 - 34100 TRIESTE (ITALY) - TELEPHONES; 224281/2/8/4/5/6 - CABLE; CENTRATOM

3 O. SEP 1975 THE BRARY * COM

SMR/26 - 4

AUTUMN WEEK ON

GEOMETRY OF THE LAPLACE OPERATOR

27 September - 3 October 1976

HARMONIC MAPS AND THE GAUSS-BONNET FORMULA

J.C. Wood
Dept. of Mathematics
Brighton Polytechnic
Moulsecoomb, Brighton
UK

HARMONIC MAPS AND THE GAUSS-BONNET FORMULA JOHN C. WOOD (1)

ABSTRACT. Let $f:M\to N$ be a non-constant harmonic map between compact Riemann surfaces M,N, N orientable and equipped with a chosen real-analytic Riemann metric. We prove: $\{\text{total curvature of } f(M)\} > 2\pi \{\text{Euler characteristic of } f(M)\}$. We give this result for a slightly larger class of mappings, and we give some related results showing that if the codomain N has negative curvature, then such a mapping cannot exhibit certain types of "redundant" folding.

⁽¹⁾ This research comprises part of the author's thesis and was supported by a Science Research Council grant, no. B/70/809.

1-INTRODUCTION AND STATEMENT OF MAIN RESULTS

Let M,N be C^{∞} connected Riemannian manifolds without boundary whose C^{∞} metrics are denoted by g,h respectively. A C^{∞} mapping $f:M\to N$ is said to be <u>harmonic</u> if its tension field $\mathcal{I}(f)$ [1] satisfies:

$$(1) \qquad \qquad \mathbf{Y}(\mathbf{f}) = 0$$

In local C^{∞} coordinates $(x^1, ..., x^m)$ for M, $(u^1, ..., u^n)$ for N (1) reads:

(2)
$$\Delta u^{3} + \varepsilon^{ij} L_{\alpha\beta} u_{i}^{\beta} u_{j}^{\beta} = 0 \quad (\delta = 1, ..., n)$$

Here, Ly denotes the Christoffel symbols on N, Δ denotes the Laplacian on M and $u_i^{\alpha} = \partial u^{\alpha}/\partial x^{1}$.

If $\dim(M) = \dim(N)$ and Mand N are orientable, then we may consider the larger class of C^{*0} mappings $f:M \to N$ which satisfy:

Here, D is a prescribed C vector field on N and $\mathbf{v}(\mathbf{f})$ = volume magnification factor of f with + or - sign according to whether f is orientation preserving or reversing with respect to fixed chosen orientations on M and N. In local oriented coordinates $(\mathbf{x}^1, \dots, \mathbf{x}^m)$ on M, $(\mathbf{u}^1, \dots, \mathbf{u}^n)$ on N,

(4)
$$\mathbf{v}(\mathbf{f}) = \sqrt{\left(\operatorname{let}(\mathbf{g}^{ij}) \cdot \operatorname{det}(\mathbf{h}_{u_i})\right) \cdot \operatorname{det}(\mathbf{u}_i^{\alpha})}$$

If $\dim(M) = \dim(N) = 2$, we may regard M and N as Riemann surfaces. For every choice of Riemann metrics g,h on M,N we may discuss harmonic maps $M \to N$ or maps satisfying (3). It is easily shown that the property of being harmonic or satisfying (3) is independent of the particular choice of Riemann metric g; indeed, in isothermal coordinates (x^1, x^2) on M, (3) becomes:

(5)
$$\frac{\partial^2 u^{\delta}}{\partial x^{12}} + \frac{\partial^2 u^{\delta}}{\partial x^{22}} + L_{\alpha\beta} \left\{ u_1^{\alpha} u_1^{\beta} + u_2^{\alpha} u_2^{\beta} \right\} = D^{\delta} \sqrt{\det(h_{\alpha\beta})} \det(u_1^{\alpha})$$

If $f:M\to N$ is harmonic with respect to a real-analytic Riemann metric on N or satisfies (3) with D a prescribed real-analytic vector field on N, f is real-analytic.

Our main result is:

THEOREM 1. Let M,N be compact Riemann surfaces, N with chosen real-analytic Riemann metric. Let $f:M\to N$ be a non-constant mapping which is either harmonic or satisfies (3) for some real-analytic vector field D on N. Then the total curvature K(f(M)) of f(M) is related to the Euler characteristic $\chi(f(M))$ of f(M) by the inequality:

(6)
$$K(f(M)) \geqslant 2\pi \chi(f(M))$$

COROLLARIES:

With hypotheses as in theorem 1:

COROLLARY 1. If f(M) is contractible, then $K(f(M)) \geqslant 2\pi$ COROLLARY 2. If N = the Riemann sphere with its standard metric, then if f(M) is contractible, f(M) must cover at least half the surface area of N. COROLLARY 3. If the metric on N has non-positive curvature, then f(M) cannot be contractible.

COROLLARY 4. If the metric on N has strictly negative curvature on a dense subset of N, then if f(M) lies in a tubular neighbourhood V of a closed geodesic Υ of N with V diffeomorphic via the exponential map to $\chi \times (-r, r)$ for some r, $0 < r < \omega$, f(M) must be contained in Υ .

NOTES. (1) Some of these results have similarites with results proved by convex function methods [2][1].

(2) Theorem 1 does not hold in general if M and N are not compact for take M=N=a Riemann surface with Riemann metric which satisfies the Cohn-Vossen inequality: $K(N) < 2\pi \chi(N)$, and take $f:M \to N$ to be any onto mapping (e.g. take M=N, f=identity map), then inequality (6) does not hold as it is in contradiction to the Cohn-Vossen inequality.

The proof of theorem 1 consists of three stages: Firstly, in $\S2$, we show that if $f:\mathbb{N}\to\mathbb{N}$ is a C^ω map between connected compact C^ω surfaces whose Jaca obian is not identically zero, then $f(\mathbb{M})$ can be described as a subcomplex in some triangulation of \mathbb{N} ; then, in $\S3$, we show how to apply the Gauss-Bonnet formula to $f(\mathbb{M})$ using this description; lastly, assuming now that f is harmonic or satisfies (3) we use the Maximum Principle [6] to convert the

Gauss-Bonnet formula into the inequality (6).

DESCRIPTION OF f(M) FOR A C MAP

Let M be a connected C^{ω} surface. A subset A of M is called <u>semi-analytic</u> [5] if for every point $p \in A$, there exists a neighbourhood U of p and real-analytic functions r_1, \dots, r_s on U such that AnU is a finite union of finite intersections of sets of the form:

$$\{q \in U: r_{j}(q) > 0\}, \{q \in U: r_{j}(q) = 0\}$$

We say that a point p of a semi-analytic set $A \subset M$ is regular of dimension k [5] if for some neighbourhood U of p, $A \cap U$ is an analytic submanifold of M of dimension k. The <u>dimension</u> of a semi-analytic set is the maximum dimension of its regular points.

Now suppose that M is second countable. A <u>locally finite</u> (resp. <u>finite</u>) analytic triangulation of M [4] is a locally finite (resp. finite) simplicial complex K together with a homeomorphism T: |K| onto M such that:

(7) for any $\sigma \in K$, $T|_{\sigma}: \sigma \to T(\sigma)$ is an analytic isomorphism onto an analytic submanifold of M.

If $y = T(\sigma)$ where σ is a simplex of K of dimension r, we shall call $y = \sin p \log x$ of M of dimension r.

Now let $\{A_{\alpha}\}$ be a locally finite collection of semi-analytic subsets. Then an analytic triangulation $T:|K|\to M$ is said to be compatible with the $\{A_{\alpha}\}$ if

- for any $\sigma \in K$ and for any A_{∞} , $T(\sigma) \subset A_{\infty}$ or $T(\sigma) \subset M-A_{\infty}$.

 Lojasiewicz [4] proves that for any such collection $\{A_{\infty}\}$ there exists a locally finite analytic triangulation of M compatible with the A_{∞} . If M is compact, such a triangulation must be finite. Using this:

 LEMMA 1. Let M,N be connected real-analytic surfaces, N second countable,
- and let f:M->N be a real-analytic map. Then there exists a locally finite analytic triangulation of M such that
- (9) for each simplex ν of M, $f|_{\nu}$ has constant rank. PROOF. Let $\Sigma_i = \{ p \in M : \dim \ker df(p) = i, (i=0,1,2), \text{ let } \Sigma = \Sigma_1 \cup \Sigma_2, \text{ note that } \Sigma \text{ is the set of singular points of } f; \text{ let } \Sigma_{11} = \{ p \in \Sigma_1 : p \text{ is } \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^$

regular of dimension 1 and $\nabla_{\mathbf{w}}\mathbf{f}(\mathbf{p}) = 0$ for w tangent to Σ_1 at \mathbf{p} . Then it is easy to show [9] that M- Σ , Σ_1 - Σ_{11} , Σ_{11} , Σ_2 are semi-analytic sets, further they are mutually disjoint and have union M.By [4] there exists a locally finite analytic triangulation of M compatible with this collection of subsets; by a case-by-case study it is easy to show that this triangulation has the required property.

LEMMA 2. Let M,N be connected real-analytic surfaces, \mathbb{M} second countable, and let $f:\mathbb{M}\to\mathbb{N}$ be a proper real-analytic map whose Jacobian is not identically zero on M. Then if M is given a locally finite analytic triangulation having property (9) above, then for each simplex \mathcal{V} of \mathbb{M} , $f(\mathcal{V})$ is a semi-analytic subset of N.

PROOF. Case-by-case study (see [9]).

LEMMA 3. With hypotheses as in lemma 2, f(M) is a semi-analytic set of dimension 2 and its topological boundary, $\partial f(M)$ is empty or semi-analytic of dimension ≤ 1 .

PROOF. The set f(M) = the union of the semi-analytic sets f(D), D varying over all simplexes of M. By properness of f, this union is locally finite and therefore ([4],[5]) f(M) is semi-analytic and clearly has dimension 2. By [5] it follows that $\partial f(M)$ is empty or semi-analytic of dimension ≤ 1 .

PROPOSITION 1 (DESCRIPTION OF f(M)). Let M,N be connected compact C^{ω} surfaces and let $f:M\to N$ be a real-analytic mapping whose Jacobian is not identically zero on M. Then there exists a finite analytic triangulation of N compatible with $\{f(M), \partial f(M)\}$. In any such triangulation f(M) is a pure subcomplex of dimension 2, $\partial f(M)$ is empty or is a pure subcomplex of dimension 1. Further any 0-simplex of $\partial f(M)$ is the face of a non-zero even number of 1-simplexes of $\partial f(M)$. Any 1-simplex of $\partial f(M)$ is the common face of a 2-simplex of $\partial f(M)$, the 1-simplexes of $\partial f(M)$ with face v divide a

neighbourhood of v like a pie into an even number of sectors alternately in int(f(M)), N-f(M), (see FIG.1).

PROOF. The triangulation exists by Lojasiewicz, the rest of the proposition follows by simple topological considerations [9].

3-APPLYING THE GAUSS-BONNET FORMULA TO f(M)

Let M,N be compact real-analytic surfaces, N orientable, and let N be equipped with a real-analytic Riemann metric. Let $f:M\to N$ be a real-analytic map whose Jacobian is not identically zero on M. Triangulate N as indicated in proposition 1, then f(M) is a subcomplex of dimension 2 as described in that proposition. We wish to apply the Gauss-Bonnet formula to the region f(M), however f(M) is not necessarily bounded by a set of disjoint closed Jordan curves - for example $\partial f(M)$ might be in the form of a figure 8 - thus the Gauss-Bonnet formula cannot be applied immediately. However, we proceed as follows:

Firstly, orient N and orient each simplex of f(N) and $\partial f(M)$ accordingly. Next, partition the 1-simplexes of $\partial f(N)$ into subsets forming piecewise-analytic closed Jordan curves as follows: let α be a 1-simplex of $\partial f(M)$. The orientation of α determines one of its 0-faces as its initial point and the other as its final point and also determines a positive tangent direction at each point of α . Let v denote the final point of α . We define a 1-simplex S_{α} of $\partial f(M)$ with initial point v, called the successor of α as follows; for each 1-simplex β of $\partial f(M)$ which has initial point v, let $\partial (\alpha,\beta)$ denote the signed angle through which we must turn the positive tangent to α at v to bring it into coincidence with the positive tangent of β , $-\pi \leq \theta(\alpha,\beta) \leq \pi$. The successor S_{α} of α is defined to be the 1-simplex β for which this angle is algebraically least. Note that the sector between α and S_{α} lies in N-f(M) (see FIG.2). Now for any two 1-simplexes α , ω of $\partial f(M)$, write $\alpha \sim \omega$ if there is a sequence α , β , \ldots , ψ , ω with $\beta = S_{\alpha}$, $\delta = S_{\beta}$, \ldots , $\omega = S_{\psi}$ or $\psi = S_{\alpha}$, \ldots , $\beta = S_{\beta}$, at it is easy to see that ∞ is

к 1 **к** 1 an equivalence relation which thus partitions the 1-simplexes of $\partial f(M)$ into subsets which form piecewise-analytic closed Jordan curves. Now although these are not necessarily disjoint, we can apply the Gauss-Bonnet formula as follows:

PROPOSITION 2. (GAUSS-BONNET FORMULA FOR f(M)) Let M,N be compact connected real-analytic surfaces, N oriented, and let N be given a real-analytic Riemannian metric. Let $f:M\to N$ be a real-analytic map whose Jacobian is not identically zero on M. Then:

(10)
$$K(f(M) = 2\pi \chi(f(M)) - \sum_{\alpha} \int_{\alpha} kds - \sum_{\alpha} \Theta(\alpha, S\alpha)$$

where the summations extend over all 1-simplexes α of $\partial f(M)$.

Here, k is the signed geodesic curvature of α at a point of α , and θ (α , 3α) is the signed "corner" angle as defined earlier.

PROOF. Partition the 1-simplexes of $\partial f(M)$ into subsets forming piecewise analytic closed Jordan curves c_1, \ldots, c_r as described above. We now apply a construction of Kreysig [3] to deform these into C^1 -smooth closed Jordan curves c_1, \ldots, c_r - specifically, at each 0-simplex v of $\partial f(M)$, for each pair of 1-simplexes $(\alpha, S\alpha)$ of $\partial f(M)$, replace the corner at v by a geodesic arc $G_{\underline{e}}$ =AB of small radius whose tangents at the endpoints A and B coincide with those of α and $S\alpha$ respectively (see Fig. 3). The curves c_1^{ε} , ..., c_r^{ε} so defined are disjoint and bound a region $f(M)^{\varepsilon}$ slightly larger than f(M). For this region:

$$K(f(M)^{\epsilon}) = 2\pi \chi(f(M)^{\epsilon}) - \sum_{i} c_{i}^{k} ds$$

Now f(M) is a strong deformation retract of $f(M)^{\epsilon}$ and thus has equal Euler characteristic. Further it is easy to see that :

 $\lim_{\epsilon \to 0} \int_{c_i^{\epsilon}}^{k} ds = \int_{c_i}^{k} ds + \sum_{\alpha} (\alpha, S\alpha) \quad \text{where we sum over all 1-simplexes } \alpha$ of c_i. The desired result follows by letting $\epsilon \to 0$.

4-OBTAINING THE INEQUALITY FROM THE GAUSS-BONNET FORMULA BY USE OF THE MAXIMUM PRINCIPLE

THEOREM 2 (MAXIMUM PRINCIPLE) (Sampson). Let M,N be connected Riemann surfaces, N equipped with a smooth Riemann metric. Let $S \subset N$ be a submanifold of dimension 1 with non-zero geodesic curvature at b=f(p). where $p \in M$. If $f:M \to N$ is a C^{∞} map which is harmonic or satisfies (3), then no neighbourhood of p is mapped entirely to the concave side of S. PROOF. SEE [6] and [8],[7].

We now apply the maximum principle to give the PROOF OF THEOREM 1. Firstly we dispose of the case that the Jacobian of f is identically zero on M. In this case, [6], [9] f(M) is a closed geodesic of N. Thus K(f(M)) = 0, $\chi(f(M)) \le 0$ and thus (6) holds.

I hus we may assume that the Jacobian of f is not identically zero on M and we may apply the Gauss-Bonnet formula as in Proposition 2 equation (10). We now show that the last two terms of (10) are non-positive.

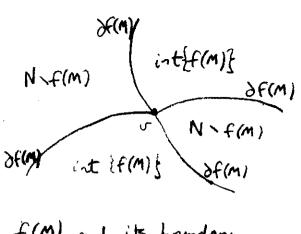
(1) Let b be a point on a 1-simplex \propto of $\partial f(M)$. By the Maximum Principle f(M) must lie to the convex side of \propto . Thus

(11) k≤0

(2) Let b=f(p) be a 0-simplex of $\partial f(M)$, and let α be a 1-simplex with final point b. As remarked in §3, the sector between α and its successor Sollies in N-f(M). Now if $\partial(\alpha, S_{\alpha}) > 0$, then we could construct a 1-submanifold S such that f(M) lies to the concave side of S (see FIG.4). Then some neighbourhood of p would map to the concave side of S contradicting the maximum principle. Thus

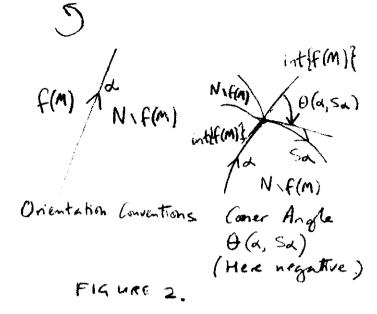
(12) ∂(«,Sx)≤0

Equations (11) and (12) show that the last two terms of (10) are non-positive and theorem 1 follows immediately.



f(M) and its boundary
FIGURE 1.

Construction of Kreysing (c.f. FIG. 2)
FIGURE 3.



Sal

Maximum Principles violated when $\theta(x, Sa)$ is positive.

FIGURE 4.

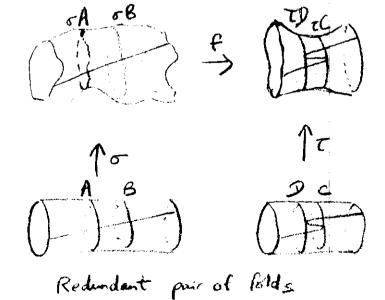
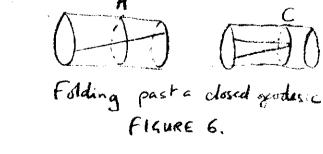


FIGURE 5.



5- REDUNDANT FOLDS

We now present another application of the Gauss-Bonnet formula and the Maximum Principle to harmonic maps between surfaces. Our first result shows that for a harmonic map mapping into a codomain with negative curvature, a pair of "opposite" folds which could be "pulled out" cannot occur.

Let M be a Coo surface.

DEFINITION. A <u>handle</u> of M is a C^{*0} submanifold-with-boundary, H, of M which is C^1 -diffeomorphic to $S^1 \times I$, i.e. there exists a C^1 -diffeomorphism, C^1 up to the boundary: $(S^1 \times I, S^1 \times \partial I) \rightarrow (H, \partial H)$. (Here S^1 = unit circle, I = closed unit interval.)

DEFINITION. Let $f:M \to N$ be a C^{∞} map between C^{∞} surfaces.

The <u>singular set of f</u> = $\{p \in M: J_f(p) = 0\}$ where J_f denotes the Jacobian determinant of f. A <u>fold line</u> of f may be defined as a C^{∞} 1-submanifold F of M such that at each point $p \in F$, there exist C^{∞} -smooth coordinates (x,y) centred on p, (u,v) centred on f(p) such that, in a neighbourhood of p, f has the form: $u=x^2$, v=y.

Fold lines can and do occur for harmonic maps [87[9].

THEOREM 3. Let $f:M\to N$ be a Composite map which restricts to a map $f:(H,\partial H)\to (K,\partial K)$ between handles of M and N. Suppose that this map is such that there exist C^1 -diffeomorphisms, C^1 up to the boundary:

$$\sigma:(s^1\times I, s^1\times \partial I) \rightarrow (H,\partial H)$$
, $\tau:(s^1\times I, s^1\times \partial I) \rightarrow (K,\partial K)$

such that the singular set of $f|_H$ consists of two closed fold lines $\sigma A, \sigma B$ where $A = S^1 \times \{a\}$, $B = S^1 \times \{b\}$, 0 < a < b < 1, whose images are two closed C^1 -smooth curves $\tau C, \tau D$ respectively, where $C = S^1 \times \{c\}$, $D = S^1 \times \{d\}$, 0 < d < c < 1.

Then, if N has a Riemann metric $\int_{N}^{C} strictly$ negative curvature on a dense subset of N, f cannot be harmonic or satisfy equation (3). (See FIG. 5) FROOF. We apply the Gauss-Bonnet formula to the region $T = C(S^1 \times [d, c])$:

$$\int_{T} K^*1 = -\int_{CC} k ds - \int_{CD} k ds$$

Suppose f is harmonic. Then by the Maximum Principle, $k \le 0$ on CC and CD. But by hypothesis, $\int K *1 < 0$, thus we have a contradiction.

NOTE. the result is not true if we remove the curvature restriction on N. For example, R.T. Smith [7] constructs maps from the torus to the sphere exhibiting any number of pairs of "opposite" folds.

Our second result concerns a harmonic map $f:M\to N$ which restricts to a map $f:(H,\partial H)\to (K,\partial K)$ of handles with a single fold. We show that if N has negative curvature, folding cannot occur "part" a closed geodesic "around" K.

THEOREM 4. Let $f:M\to N$ be a $C^{\bullet O}$ map which restricts to a map $f:(H,\partial H)\to (K,\partial K)$ where H and K are handles. Suppose that N has a Riemann metric of strictly negative curvature on a dense subset of N and suppose that f is such that there exist C^1 -diffeomorphisms, C^1 up to the boundary:

$$\sigma:(s^1\times 1,s^1\times \partial 1)\rightarrow (H,\partial H)$$
, $\tau:(s^1\times 1,s^1\times \partial 1)\rightarrow (K,\partial K)$

such that: (1) $f(\partial H) \subset T(S^1 \times \{0\})$ i.e. both ends of H map to the same end of K; (2) the singular set of $f|_H$ is a closed fold line σA where $A = S^1 \times \{a\}$, 0 < a < 1, and $f(\sigma A) = CC$ where $C = S^1 \times \{c\}$, 0 < c < 1.

Then if f is harmonic or satisfies (3), int(f(H)) cannot contain a simple closed geodesic homotopic to CC, (see Fig.6).

PROOF. Suppose that int(f(H)) does contain a simple closed geodesic \mathcal{E} homotopic to \mathcal{E} . Then let \mathcal{E} be the region of \mathcal{E} bounded by \mathcal{E} and \mathcal{E} ; applying the Gauss-Bonnet to \mathcal{E} we get a contradiction in a similar way to theorem 3.

ILLUSTRATIVE EXAMPLE OF THEOREMS 3 AND 4

Let M = infinite circular cylinder, C, = $\{(x,y,z) \in \mathbb{R}^3 : y^2 + z^2 = 1\}$, let N = hyperboloid of revolution, B, = $\{(u,v,w) \in \mathbb{R}^3 : v^2 + w^2 = 1 + u^2\}$; give C and B the Riemann structures induced from \mathbb{R}^3 , note that N then has a metric of strictly negative curvature except on the central geodesic u=0. Parametrise the cylinder by cylindrical coordinates (x,ϕ) where $\tan \phi = z/y$ and parametrise the hyperboloid by (u,ψ) where $\tan \psi = w/v$.

Let $f:C \to B$ be a $C^{\bullet \bullet}$ "axially symmetric" map i.e. a map of the form: u=U(x), $\psi=\phi$, where $U:\underline{R}\to \underline{R}$ is $C^{\bullet \bullet}$. Then:

(1) if $U(x) \rightarrow \infty$ as $x \rightarrow \infty$ and $U(x) \rightarrow -\infty$ as $x \rightarrow -\infty$ then U must be monotonic increasing with $U'(x) > 0 \quad \forall x \in (-\infty, \infty)$;

(2) if $U(x) \rightarrow -\infty$ as $x \rightarrow \pm \infty$ then there exists $\xi \in (-\infty, \infty)$ such that U'(x) > 0, = 0, of or x < 0, = 0, = 0 respectively, further $U(x) \le 0$ $\forall x \in (-\infty, \infty)$.

This is easily seen from theorems 3 and 4 - note the result generalises to any surface of revolution N whose metric has strictly negative curvature on a dense subset.

In conclusion, I should like to thank J. Eells for help and encouragement, K.D. Elworthy for constructive criticism of my thesis and J.H. Sampson for his valuable results contained in [6].

MATHEMATICS DEPARTMENT, BRIGHTON POLYTECHNIC, MOULEECOOMB, BRIGHTON, BN2 4GJ, EAST SUSSEX, ENGLAND.

REFERENCES

- [1] Eells, J. & Sampson, J.H., Harmonic Mappings of Riemannian Manifolds,
 Amer. J. Math. 86 (1964) 109-160.
- [2] Gordon, W.B., Convex Functions and Harmonic Maps, Proc.Amer.Math.Soc. 33(1972)433-437.
- [3] Kreysig, E., Introduction to Differential Geometry and Riemannian Geometry, University of Toronto Press, 1968.
- [4] Lojasiewicz, S., Triangulation of Semi-analytic Sets, Annali Scuola Normale Superiore, Pisa (3) 18(1964)449-474.
- [5] Lojasiewicz, S., Sur les Ensembles Semi-analytiques, Actes Congr.
 Internat.Math. 1970, vol.2, 237-241.
- [6] Sampson, J., Some Properties and Applications of Harmonic Maps, (to be published).
- [7] Smith, R.T., Harmonic Mappings of Spheres, PhD. thesis, University of Warwick, 1971.
- [8] Wood, J.C., Singularities of Harmonic Maps and other Solutions of Systems of Quasi-linear Elliptic Partial Differential Equations, (to be published).
- [9] Wood, J.C., Harmonic Mappings between Surfaces, PhD, thesis, University of Warwick, 1974.

, T

i.

•

١.