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A SETTING FOR GLOBAL ANALYSIS!
BY JAMES EELLS, JR.

Introduction. The primary aim of this report is to present a broad
outline for a coherent geometric theory of certain aspecis of -on-
linear functional analysis. Its setting requires the calculus :n topo-
logical vector spaces, differential geometry of infinite dimensional
manifolds, and the algebraic and differential topology of function
spaces. For the most part the developments are of quite recr:.- nrigin,
and at present the theory is in a fluid state (its growth depending
strongly on its concrete applications). The beginnings of the subject
may be traced to the work of Fréchet, Gaiteaux, and Volterra; we
refer to the text {73} of P. Lévy for an exposition of some early ap-
plications (especially in the calculus of variations and integeable
differential systems)—and ask pardon for not presenting any his-
torical perspective in the present survey,

About ten years ago it was formally recognized [29] that many of
the function spaces which arise in global geometric mathematics
possess a natural infinite dimensional differentiable manifold struc-
ture. That was not a great surprise; for

(1) Many of the most interesting manifolds of differential geom-
etry are well known to have representations as function spaces of
rigid maps. (E.g., Riemannian manifolds arise as the configuration
spaces of dynamical systems, their cotangent bundles are interpreted
as phase spaces, and their Riemannian metrics in terms of kinetic
energy.)

(2) Much of the language of the classical treatment of the calculus
of variations—and the penetrating viewpoint and methods of M.
Morse—is that of a function space differential geometry. (E.g., the
Euler-Lagrange operator of a variational problem has an interpreta-
tion as a gradient vector field, whose trajectories are lines of steepest
descent.)

(3) Certain eigenvalue problems in integral and differential equa-
tions have interpretations in terms of Lagrange's method of multi-
pliers, involving differential geometric ideas in infinite dimensions
{e.g., focal point theory, and geometric consequences of the inverse
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752 JAMES EELLS, JR. [September

function theorem). Throughout our exposition these examples have
served as our guides.

Placing such classical problems in an appropriate geometric setting
usually involves certain technical difficulties. For instance, choice of

ate type of differentiability. In certain cases these difficulties have
been resolved—and then infinite dimensional differential geometry
has led to new methods and results in classical analysis, global Rje-
mannian geometry in finjte dimensions, and algebraic topology. We
have included here certain of these applications, the global calculus
of variations being the most thoroughty developed of these (see
§88-10). Many others appear throughout the text as examples,
Comments and carrections for a preliminary draft of this article
have beer made by R. Abraham, R. Bonic, K. Janich, J. McAlpin.
I herewith sxpress hearty thanks to them—along with my apprecia-
tion of the spirit of generosity and cooperation of the mathematical
community, which in particular has made available to me in preprint
or oral form a substantial part of the recent bibliographical references,

L Lintws . 2 background. This section contains a review (with
some new re:vits) of certain aspects of linear space theory; in par-
ticular, we establish conventions and notation, For suitable exposi-
tions we raic. o [13], [26].

(A} Let £ ienntea locally convex topological vector space over the
real number heln R (unless otherwise specified) ; thus Eisa Hausdorff
topological vector space having a fundamental system of neighbor-
hoods of its origin consisting of convex sets. We say that E is a
Fréchet space if its uniform structure is complete and metrizable.
If E is comglete and has its uniform structure given by a norm
(x—’[x] P ixl) (resp., by an inner product (x, ¥)—{x, ¥)x), we call
E a Beoun space (resp., a Hilbert space); we use that terminology

(in the family of equivalent norma determining the structure of E),
It has been established very recently, through combined efforts of
M. . Kadec, C. Bessaga, A, Pelczyfski, and R, D. Anderson, that
all separable tnfinile dimensional Fréche! spaces are homeomer phic,
Say that a closed linear subspace 4 of a Fréchet space K is a
direct summand if there is a closed lincar subspace C of E which ia
supplementary to 4 ; then E is topologically isomorphic to the direct
sum ADC. Any finite dimensional subspace is a direct summand;
50 is any closed finjte codimensional subspace (ie., a subspace A
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such that dim(E/4) < @}, and any closed superspace of‘A 'm. E: Any
closed subspace of a Hilbert space is a direct sum-mand. (.er_tam inter-
esting ideals in algebras of differentiable functions are direct aun(;-
mands; sce [40, Chapter 111 6; also §7C below]. On the other han .
Murray [84] has shown that L? (1 <p»2) always has closed linear
subspaces without closed supplements. - -

(B) For homotopy theory the following fact is important (dm-hm
dependently to Palais [90], [92] and Svarc [115in the =3 - : - Eia
a Banach space]):

Let E\CE;C - -« be an increasing sequence of finite dimensmr.ml
subspaces of a locally convex topological vector space E u-rlfose ;{r{\l;n
U{E: k21 ] is dense in I, For any subset U of Ewedef .. ., = 1;‘
and Ug=inj im U,, the direct limit space of t_he sequence (Uk)t;i[.] _f
U 1s open and paracompact, then the naturally induced map U,—Uis
@ homotopy equivalence.

In the same order of ideas [92]:

Let E and F be locally convex topological vector spaces, and ¢: E—F
a continuous linear injection of E onlo a dense linear subspace of F. If
Viis open in F, U=¢='(V), and both U and V are paracompact, then
&: U=V is a homolopy equivalence.

(C) Given two locally convex topological vect(?r spaces E and F,
we let L{E, F) denote the vector space of all continuous linear maps
#: E— F. There are many useful (Hausdorff) locally convex topologlea?
which can be put on L(E, F)—in particular, t‘he followmg_extremes.
the weak lopology (resp., the strong topology) is that of uniform con-
vergence on the finite {(resp., the bounded)‘sul‘)se‘ts of E. I E 1sha
Fréchet space and F is complete, then L(E, I") is complete in the
uniform structure of the strong topology. If h :imd F are Banach
spaces with distinguished norms, then L(E, F) is a Banach spa:ce
with norm ||u]| =sup] Iu(x)l EIrE O#xEE}. For Banach spaces
E, F, G the canonical map L(E, F)XL(F, GY—L(E, G), defined
through composition of maps, is continuous.

Let u& L(E, F) and F, be a closed linear subspace of F, We say
that u is transversal to F, if the composition E—»F—*F(Fo ‘of u -mth
the coset map w of Fy is surjective and has kernel E, w‘hlch is a.dlrect
summand of K If wou: EF/F, is surjective and F, has []mte co-
dimension in F, then codim (K, o) =codim (F, Fo) and u is trans-
versal to Moo Il E and F are Banach spaces, then thc‘subset of
L{L, F) consisting of those injections whose images are direct sum-
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mands is open in the norm topology on L(E, F). 50 is the subset of
those surjections whose kernels are direct summands; so is the sub-
set of topological issmorphisms [2, p. 40].

(D) We will need to consider topological vector spaces of multi-
linear maps EaX - - - X Ey—F of locally convex topological vector
spaces, which are jointly or separately continuous. In general that
requires the theory of topological tensor products, a survey of which
is given in [22]. For Fréchet spaces the separately continuous multi-
linear maps coincide with the jointly continuous ones. For Banach
spaces E, Flet (k21) L*E, F) denote the Banach space of k-linear
continuous (equivalently: bounded) maps a: EX - - - XE—F: thus
with distinguished norms on E and ¥

| azy, -+ -, 2) |r S const. |x,!;- .- |x.|; for all x;, C E,

and these norms induce a norm (whose topology is that determined
by the projective tensor product) on LY(E, F). There is a canonical
isometric isomorphism identifying LYE, F) with L(E, L*Y(E, F)),
where we agree to let L'(E, F) = F. We denote by SL*{E, F) the closed
linear subspace of L*E, F) consisting of those k-linear maps which
are symmetric in their arguments; similarly, ALYE, F) denotes the
subspace of alternating &-linear maps.

(E) Set E*=L(E, R), with strong topology. If E is a Fréchet
space, then E* is complete; £* is metrizable when and only when
E is a Banach space. lf uC L(E, F), we let u*C L(F* E*) denote the
adjoint of 4, characterized by (u*(y*), x)={y*, u(x)) for all xCE,
¥*C F*; here the left bracket denotes the canonical bilinear pairing
E*XE—R. Let Ker(u)=[xC€E:u(x)=0}, and Im(u) =u{E); in
case (E) is a closed subspace of F we define the cokernel of u by
Coker (1) = F/u(E).

We will be interested in certain subsets of L(E, F), especially in
case E and F are Banach spaces:

(1} Those u € L(E, F) with u{E) closed in F; these maps are char-
acterized {in case £ and F are Fréchet spaces) as the maps « carrying
open sets of i o open sets of u(F). A map has closed range if it
carries closed bounded subsets of £ into closed bounded subsets of F,
If u has closed range, then

Im(x) = [y C F: (3" ¥»=0 forall y* & Ker(u*)},
Ker(u) = [:C E:(«*,#) =0 foralls*C Im(u*)}.

(2) Those uC L(E, F) with closed ranges and finite dimensional
kernels (resp., cckernels); we call these left-(resp., right-) Fredholm
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operators. 1l E (resp., F) has finite dimension, then any s CL(E, F)
is a left (resp., right) Fredholm operator. Those u which are both left
and right Fredholm operators are called Fredholm operators. For these
their index is defined by ind(x) =dim Ker(x) —dim Coker (w). Ifuis
Fredholm, then dim E< w if and only if dim F< w. See i88] for
general properties of Fredholm operators.

(3) An operator k€ L(E, F) is compact if it maps bounded sets of
E into relatively compact sets of F (i.e., sets whose closures in # are
compact); the compact linear operators form a closed subspace of
L(E, F), where L{E, F) is given the norm topology. An operator
uEC L(E, F) is Fredholm if and only if there are maps v, 13y& L(F, E)
such that yu—1TI and un,— T are compact (where I denote~ +he jden-
tity map of the appropriate space). In particular, if # is Frodi:0lm and
k compact, then %k is Fredholm and ind(x +k) =ind (). The total-
ity of Fredholm operators forms an open subset of L(E, F) with the
index function constant on components; if E and F are Hilbert spaces,
then two Fredholm operators with the same index w.c i the same
component.

2. Smooth maps of Banach spaces. For the fundamental properties
of the calculus in Banach spaces we refer to [23], [s0], [64], [117],
and to the older works [42]-[45], [73].

(A) Let E and F be real Banach spaces, and U an open subset of
E. There are many senses in which a map ¢: U—F can be considered
as differentiable in U (e.g., in the sense of Gateaux, of Fréchet; point-
wise or uniformly), the choice often depending on the applications
under consideration. We proceed here as follows: A map ¢: U—F is
(Fréchet) differentiable at x,= U7 if there is a $EL(E, F) such that

M lim [$E 0 — 86 — 2@,

0 IDIE

for some (and hence any) choices of admissible norms on E and F.
Then ®(v) is unique, and is henceforth denoted by ¢,(x0)v or by
dep(xo; v), and called the differential of ¢ at x, in the direction vEEER,
We have

do(en, v) = lim 2E TR — #Gx0)
A0 h

conversely, if the right member exists as an element of F in some
neighborhood of x4, is continuous at xo, and dep(xy, v) is continuous in
vatv =0, then ¢ is Fréchet differentiable at xy, and the right member
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defines its differential. If ¢ is differentiable at xy, then ¢ is continuous
there,

Suppose that ¢ is Fréchet differentiable at every x& UJ; then we
have the map¢,: U—L(E, F) defined by x—¢_(x), and we say that
@ 15 of class (7' if ¢, is continuous on U. If ¢ is Fréchet diflerentiable
in U, then ¢ is C'if and only if ¢, is locally bounded and the limit
(1) is locally uniform in U (in the sense that for all xec U and >0
there is a neighborhood V of % and §>0 such that ]¢o(x+v) —¢{x)
-~ dp(x, v)i <e]v| for all x€V and Iul <8). U ¢, =dp: U-L(E, F)is
Fréchet differentiable, then we can define  d% = d{dg): U
—L(E, L(E, F))=LYE, F), which at each x& U is a symmetric
continuous bilinear map of EXE—F; we say that ¢ is of class C? if
d* is continuous on U. Then define ¢ of class Cr by induction, requir-
ing that d'¢: U—SL'(E, F) be continuous. Say henceforth that ¢ s
differentiablc on U if it is ¢ for all r20; let us agree that d'¢ =¢. The
compesition of Cr-maps is C; if ¢ is C* and d'p is C* then ¢ is Crte,
and d ¢ =d*(d'¢). Say that ¢ is analytic in U if each point xC U/
has a neighborhood in which ¢ can be expressed by the absolutely
convergent power series

#(x + 1) = 3 Pi(z, 0)/k!,
k=0
where Pi(x, v) =d*¢(x; v, - - - » ¥); again, the composition of analytic
maps is analytic. If E and F are complex Banach spaces, we say that
an analytic map ¢ is holomorphic; the elements of complex function
theory are gives in [24a], Iso].
We have the following version of Taylor’s formula:

Let U be a convex neighborhood of xoin E and ¢: USF a Cr-map
(r21). For uny LSj<rthereisa C—imgp Ry: USLAE, F) such that

¢lxg + ) = Z P:(xa, v/k 4+ Ry(xo + o} e, - -, ¥),
P

where
161 — A1
Rizo + 0)(v, - - - ;1) = f %:’:Td’ﬂxo + o)y, - - -, 0)di;

the tntegral is of course Banach space-valued, Furthermore, for every
e>0 there is a >0 such that for lvl =8 we have

l.b(x.. +v) — 3 Py, v)/kl' S el
i k=l

(B) If ¢ 18 2 one-one C -map of an open set U(CE onto an open set
VCF and if its inverse ¢=1: V—1/ is C", then we say that ¢ is a (-
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diffeomorphism. Say that ¢: U—F is o (local) split Cr-imbedding if
there is a representation F=F,@ F; as the direct sum of Banach
spaces with the following property: For each € U there are neigh-
borhoods U,, V, of %, ¢(x) and a C*-diffeomorphism y of V, onto an
open subset of Fi@® Fy carrying ¢(x) onto 0 and such that ¢ o ¢ is a
C-diffeomorphism of U, onto an open subset of F,@0. There is also
the dual concept of (local) split Cr-projection.

The following inverse function theorem plays a fundamental role,
both in the geometric and analytic aspects of the theory (see [23],
[43], [64]):

Let E and F be Banach spaces, U an open subset of E, ¢: U—F a
Cr-map (rz1). Then

(1) if x€ Uis a point for which ¢ ,(x): E~»F is injective and its image
is a direct summand, then there is ¢ neighborhood U, of x in U such
that the restriclion ¢| Us—F is a split Cr-imbedding,

(2) If ¢,(x): E—F is surjective and its kernel is a direct summand,
then there is a neighborhood U. of x such that ¢| U,—F is g split C-
prajection.

(3) In particular, if ¢ (x) is bijective, then ¢ maps a neighborhood
U, of x O-diffeomorphically onto ¢ neighborhood of ¢(x).

ExaMmpLE [108]. If ¢: E—F is a Ci-map with every differential
¢, (x) bijective and satisfying "¢,.(x)“" SK for some KER and all
xE&E, then ¢ is a C'-diffeomorphism of E onto F. In particular, the
conclusion is valid if E = Fis a Hilbert space, and (¢, (x)v, v) 2 ¢|9{ * for
some ¢>0 and all x, v& E. That last condition is equivalent (for C'
maps) to saying that ¢ is stromgly monolome: {(p(x) —é(y), x—y)
Zc|x—9|? for all x, yEE. o

Closely related to the inverse function theorem are several implicit
function theorems which have found varied analytic interpretations.
See [117, §§17, 26] for applications to integral equations, especially
in the study of branch points of operators. The Nash-Moser implicit
function theorem [83], [108] provides a very powerful iteration tech-
nique used to establish the existence of differentiable solutions of
certain differential equations. Under certain conditions on the differ-
ential of ¢ a form of the inverse function theorem is valid even though
¢, may not be continuous [S]. .

(C) A basic problem [29] in the theory of infinite dimensional
manifolds is that of showing the existence of sufficiently many non-
trivial differentiable functions. Let us say that a Banach space E
1s C"-smooth if there is a nontrivial real valued C*-function on E with
bounded support. (The support S(¢) of a function ¢: E—R is the
closure of [*C E:¢(s)»0}.) The following characterization is due
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to Bonic and Frampton (see [16], [11], [37] for this and for most
of the examples below):

If E is a separable Banach space, then the Jollowing properties are
equivalent: (a) E is Cr-smooth; (b) any open subset U of E admits (-
parlstions of unity, (i.e., for every open cover U of U there 45 a System
(Wa) of nontrivial Cfunctions . U—R(z0) such that the set of all
supports S(¥a) is locally finite (each x€ U has o neighborhood whickh
meels only finitely many of the S(.)), each S(¥a) is contained in some
element of |1, and the sum D ate= 1); () for any continuous map ¢ of
U into a Banach Space F and any number €>0, there 15 a Cr-map
V: U F such that [¢(x) —¥(x)| r<eforall xcU.

In a separable space E satisflying these conditions it follows easily
that any closed set 4 is the precise locus of zeros of some Cr-function
¢: E—R. Furthermore, if Ao, A, are disjoint nonvoid closed subsets
of E, then there i3 a C-function ¢: E—R with D=¢(x) =1 for all
x&E, $(x)=0 (resp., ¢(x)=1) when and only when xc4, {resp.,

x€4,). The extent to which separability is needed in these results is
not clear.

disjoint closed sets in E. Any separable Hilbert space is C=-smooth,
since the square of the norm is quadratic, and hence C=. Restrepo
[97] has shown that a Banach space £ has a Cl-norm {except at the
origin) if and only if its conjugate space E* is separable; apparently
little is known about Spaces with (“-norms (r2 2). Thus if E* is
separable then E is Clismooth. The Banach spaces Le of all Lebesgue
pth power (1 5p < w) summable functions f: o, 1]-3R with norms

[f]r = [ f l ¥{0) lw]"'

are C*=-smooth for P an even integer 22, otherwise (1 5p < w) L
i8 C*-smooth if r ja the integer satislying r<p<r 41 (since its norm
i8 (" except at the origin}, but L» is not Cr+'-smooth. (This last asser-
tion is implied by work of Kurzweil [63]; in particular, ! is not (-
smooth.) As an application, we observe that I* and I¢ are not -
diffeomorphic, although by a theorem of Mazur they are homeomor-
phic. The Banach space ¢, (the space of sequences of real numberg
which converge to 0, with supremum norm) is C*-smooth; on the
other hand, the space C (all continuous functions f: [0, 1]5R with
Bupremum norm) is not C'-smooth.

Certain maps which are not sufficiently differentiable are deter-
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mined by their boundary values [11]: Let Ebe a BanachEsBaE::: c:mc-‘
taining a subspace isomorphic to I! {for example, ta'ke = . Eous
or (%), and F a reflexive Banach space. If ¢: T—F is afc;n ;111 ous
map of the closure of a bounded C(;nnectf:d ;(pg)l subset of £ whic

! en ¢ (boundary U) is dense in .
¢ ((E;]) ('Jl:htc:'e a?e(examples of C=-functions ¢¢: E—R deﬁrllezd tlm B.EII:-
ach spaces E such that the image in R of thF set of critica pomes
(i.e., points x E for which ¢, (x) =0} is (?f strictly posntwehme;:sgra.
Kupka [62] has constructed such a !uncnon for the case t ;tB 1sic
separable Hilbert space. The following example is due to h on(t).

ExaMrLE. Let a: R-+R(20) be a C=-function such t Ztﬁa )
=0 (¢50), a(®) =1 (:21). Let E=L= [0, 1] and ¢: E-R be ﬁi :;:r
by ¢(x) = fia(x())dt for all x€E. Then ¢ is C* on E; in particular,

do(x, ) = fn GO,

For any 05551 let x, be the characteristic function of ”;\'f,/ si 1[t
follows that ¢{x,} = 0, ¢(x;) = 1; on the other hand, ?b*(x., =,.S\ }gs’_ )
Thus s—x, is a (discontinuous) path in E on .the image (.u w-{u‘: 1 nfb is
not constant, and yet every point of which' is a critics! Tt ¢.

Thus we cannot expect a complete generalization to infinite d|m[el:n-
sions of the Brown-Morse-Sard theorem: however, (1) Sard [104{] tlz:s
recently obtained precise results on the Haustiorﬂ w i}sue o ;
image of the critical points of a Cr-map ¢: U——;P., where is ag.ope :
subset of R* and F is any Banach space; (2) using the fnite :meg
sional case and the inverse function theorem, Smale [111] has ob-
tained the following version of that result: e B

Let U be a connected open subset of a separatfle Bau.ﬁiz_: space
and ¢: U-—Fa C-map (r=1). The critical set of¢.; isC={zC U: 3¢(:)
is not surjective }. Say that ¢ is a Fredholm map if for every x& 1tl e
differential ¢u(x): E—~F is a Fredholm operat(?r; recall consequently
that F is infinite dimensional whenever E is. .The index of ¢ is
the constant value ind(¢)=dimKer(gs(x)) --dimCoker(qb,(x).). If
¢: U—Fisa O-Fredholm map with r> max(ind(cj:)'. 0), then {Iu; image
&(C) of its critical set is meager in F (i.e., ¢§C) is ‘exprlesmbe- as a;
countable union of sets whose closures contain no interior point o
F}. Smale [111] has used this to establish a lqcal uniqueness t}_;eore'rn
for certain second order nonlinear elliptic differential equations in
bounded domains of R* with Dirichlet boundary (.lata.

EXAMPLE. Suppose &: U—F is {(rz1) a_nd 15 a compact map
(i.e., & maps bounded subsets of U into relatlve_ly compact supsets
of F); then at every x& U the differential ¥, (x) is a compact linear
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map. (A partial converse of this a ion j
_ ' asertion is known: If
ixtell[f, ®,(x) is compact and if ¢, U=L(E, F) is cor::aci tfl:):ne;c‘h
:;( c)omql;)act (117, P 51].) Now if #: U->F has the for;n | )
; ) +P(x) Ior.a Fredholm operator ACL(E, F), then ¢ is } 2
redholm map with jnd ¢=ind 4. T fengleitaclla
o ii)s g’sdwallll ?)Ot emphasize complex function theory in Banach
e and g;a ras), except to indicate the following broad lines of
U"Fi;:; herll A1 lf_ E and F are complex Banach spaces, a map ¢:
olomorphic if and only if for any finite dimension'al comﬁlex-

linear subspace S of E .
the restrictj . \ . A
Then we have Cauchy’s formula (k gg)fb. SNUSFE is holomorphic.,

k1
dl¢(x; I ) = ¢(x + W)
Vo) T

2 . .
éel l;z;n:il)l:;:; ho[l;morphy in Banach spaces are studied in [14].
oo Dou ay 4fa] for the theory of analytic spaces. (3) The
dohmiile c](:: nfe:; o I;:uchsnan Broups are represented as boynded
Fimiars. in co pelx - anach Spaces, and have natural complete
be bronhe o b:::f: at:v; to which complex differential geometry can
Crmght to bea isee §5G below. (4!) Certain manifolds, such as the
ians of complex p-planes in complex Hilbert space, have a

natural (homogeneous)
: complex struct i
complex differential geometry, Hre and admit a good global

(F) There are several variations of the not

ous on . . g differentiabilit
s of certain second order ordinary differential equntionsl [ﬁ;if
r

[77], [54] and in the theory of Banach Li
‘ : : Lie groups [ ;
;g::i ,:e::)l:;;fot?:: the;e (IinHerentials be contiiuou[:s ir{ :r;ufﬁgr I(jga;r;:
i o rjatioonh. LYE, F). That is a convenj
L patemens iat r':it ip bet'ween closed linear operators and analytjc
o ameter atte,ﬁ m;‘)s, using the str_ong operator topology [50]. It
o e %Iuﬁg g[to.lmpose.a differentiable manifold structure
the toes © S.pace :s of dlﬂ'erentl_al e.quations-kin such a way that
linearized 100 iem a(reE:agt]i:Znt;otlfllmon |]S t'he and et aphutions of a
Spi(l?e)s ;:n.y fiiﬁcrentiab!y; see {l:;T{)f:r“::):;;;:l(iic:}t]:)trlthese angent
spac,;s ‘(L) :};;;ps"rtant to extend the theory of Cr-maps of Banach
et o maps o ]r(r:‘or:z general complete locally convex topological
g e 'ds' o Fréchet and nuclear spaces. (There are
3 ; s awatting such a theory; €.g., in nonlinear fung-
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tional analysis in the Fréchet spaces of C* real functions on an open
UCR®; in the Montel spaces of real analytic functions in such U
(with their van Hove topology [119]); in a study (undertaken by .
Leslie and R. Abraham) of groups of diffeomorphisms of 1 comoact
C= or analytic manifold; in the structure theory of certain gronps of
units of locally convex topological algebras {possessing continuous
inverses near the identity)). There seems to be substantial diffculty
in developing such a theory in a strictly topological framgwork: com-
positions do not behave well, and the inverse function theorem is
false, as we will see in the following example. There have been several
attempts to circumvent these difficulties; in particular, one by Bas-
tiani [6]. The central idea here is to replace the locally convex topol-
ogies of E and L¥(E, F) by a different sort of convergence, which stifl
respects algebraic operations and locally convex structures.
ExaMrLe. The inverse function theorem is false for separable
Fréchet spaces, with any reasonable definition of differentiability:
Let E=F be the space of all continuous real functions on R. Then
with the topology of compact convergence E is a multiplicatively
convex commutative algebra such that every neighborhood of the
function 1 contains functions which assume negative values on R,
and therefore which do not have inverses. Clearly the exponential
map exp: E—E is well defined, is injective and carries 0 into 1; its
differential must be exp,{0) =I. However, no neighborhood of 1 is
the image under exp of a neighborhood of 0. {In contrast, the space of
real analytic functions on a compact interval with the van Hove
topology is a complete locally convex algebra having continuous in-
verses near 1 (see [119]); that essential difference between these two
algebras was pointed out to me by C. Herz.)

3. Lie groups and algebras.

(A) There is a satisfactory local theory relating (Banach) Lie alze-
bras and (Banach) Lie groups, due primarily to G. Birkhoff 0] A
(Banach) Lic algebra is a Banach space L which is a Lie algebra (over
R) relative to a bilinear map x, y—[x, y] of LXL—L, and such that
[ Tx, ¥]| =|x| ]| for all x, yEL. A (Banach) Lie group germ is a
topotogical group germ modeled on a Banach space, whose group
operations are real analytic. (It suffices [74, §7] for analyticity that
these operations be uniformly €?; furthermore, all differentiability
hypotheses can be weakened substantially.) As in the finite dimen-
sional case, there is a bijective correspondence G—L(G) between (Ba-
nach) Lie group germs and (Benach) Lie algebras. As usual, the Lie
algebra will be identified with the tangent space to the necutral ele-
mient of the Lie group germ. Homomorphisms of Lie algebras cor-
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respond (via the differential) to local analytic homomorphisms of the
Lie group germs; closed Lie subalgebras (resp., ideals) correspond to
Lie subgroup (resp., invariant subgroup) germs [9], [27], [66], [74].
If G is a Lie group germ, K a closed invariant subgroup germ which
splits in G, then G/K has the induced compatible structure of a Lije
group germ with Lie algebra L(G)/L(K) [74]. Canonical coordinate
charts can be introduced in a neighborhood of the neutral element
of a Lie group germ, relative to which group multiplication is ex-
pressed by an absolutely convergent series involving the Lie bracket;
the associated exponential map defined in a neighborhood of 0 in the
Lie algebra carries straight lines through 0 bijectively onto 1-param-
eter group germs.

In contrast to the finite dimensional case, not every Lie group
germ can be enlarged to a global Lie group. A general method of
producing examples (set in the framework of Banach Lie algebra
cohomology) is given in [118], along with the following criterion for
enlargability:

If L is a Banach Lie algebra of a global connected and simply con-
nected Lie group G and A a closed ideal in L, then the quotient algebra
L/A is the Banach Lie algebra of a global Lie group if and only if A
generales (through the exponential map) a closed subgroup of G.

(B) ExampLE. Let 4 be an associative Banach algebra with unit 1,
and G(A) its group of units (i.e., the elements of 4 which have multi-
plicative inverses). Then G(4) is an open subset of 4, and is a Lie
group whose Lie algebra is 4, with bracket defined by [x, v] = uv —vu
for all u, ¥€A. The analytic map exp: A—G(A4)} is given by the
familiar power series exp(x) = Sut/kt,

Now take a real Hilbert space E, let A =L(E)=L(E, E), (a non-
separable Banach space in general, even if E is separable), and de-
note by B the closed Lie subalgebra of 4 consisting of the skew-sym-
metric operators (x*= —x). Then B is the Lie algebra of the closed
Lie subgroup O(E) of GL(E) of the orthogonal {(v*v=1) automor-
phisms. If £ is infinite dimensional, the exponential map exp: B
—O(E) is not surjective [96], although O(E) is connected. if uC L(E)
is symmetric, then exp(u) € P(E) CGL(E), where P(E) denotes the
open convex cell of symmetric positive definite ({u(x), x)2c|x|? for
some ¢ >0 and all xC E) automorphisms. Furthermore, the product
map induces an analytic diffeomorphism of O(E) X P(E) onto GL(E);
[64, p. 102].

A theorem of Kuiper [61] asserts that if E is any infinite dimen-
sional Hilbert space, then O(E) and hence GL(E) is contractible. (A
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similar result with a smaller topelogy on GL{E) was given by Dix-
mier-Douady [24, Lemme 3].) Kuiper's theorem is also valid for
Hilbert spaces (separable or not) aver the complex and quaternion
fields. Recently D. Arlt has shown that GL(co) is also contractible;
and in contrast A. Douady has found that GL{EXc) is not even con-
nected, where E is a separable Hilbert space of infinite dimension.

The totality of p-planes through the origin in a separable infinite
dimensional Hilbert space E forms a manifold BO(p) which can be
represented as a homogeneous space of the Lie group O(E), and has
the homotopy type of the limit space

lim O(k + p)/0(%) X O(p),

where O(k) =0(R"), of the Grassmannians of p-planes in Rk+», |f
EO(p}) is the homogeneous space of orthonormal p-frames in E, then
the natural coset map EOQ(p)—BO(p) is an analytic universal prin-
cipal O(p)-bundle. For instance, if we take p=1, then £O(1) is the
unit sphere in E, and BO(1) is the infinite dimensional real projective
space; the bundle EO(1)—B0O(1) can also be realized as the normal
0-sphere bundle of a 1.codimensional projective subspace of BO(1).

(C) ExamrLe. If E is a separable infinite dimensional Hilbert
space and C(E) is the totality of compact linear endomorphisms of E,
then C(E) is the only closed proper bilateral ideal of L(E) (as an
associative Banach algebra). The set GC(E) of all elementz ¢ GL(F)
of the form 1 44, where u € C(E), is an invariant closed Lic subigroup
whose Lie algebra is C(£); GC(E) has precisely two components.

By means of an orthonormal base (ex)rzr in E we have the imbed-
dings GL(R")—GL(R*"*Y)>GC(E) for all n20: it is known [90],
[115] that these inclusions induce a homolopy equivales: .

lim GL (R%) — GC(E).

Ao
The left member is the direct limit of the groups GL(R™; itz homo-
topy properties are now well known through the periodicity theorems
of Bott [12]. Palais [90] goes on to establish the correspiding re-
sult for certain other Banach algebras of operators on E (contained
algebraically in C(E)), including the algebras of Lr-operators
(1=p < w).

Let G.C(E)= {vEGC(E):v(e.) =& for all k>r], and G C(E)
= IOEGC(E):u(e.,) =& for all k<r}. The homogeneous spaces
Ve=GC(E)/G'C(E) and Vi =GC)/G,C(E) are called the Stiefel
manifolds of v-frames and r-coframes of C(E)-vectors. We have the
successive fibrations
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I=V04—V|€—V2(——---

GOE)y=V'- VsVt ...

Every V., is contractible, and V* has the homotopy type of
Vr(lima... L(R") [75].

W p: L(E)=L(E)/C(E) is the coset map and G=G[L(E)/C(E)]
is the group of units of the indicated quoticnt algebra, then p—'¢
is identified with the set § of Fredholm operators of E, The map
P §—G is a Serre fibration with contractible fibres, and therefore
[52; see also §4A below] p is a homotopy equivalence. Also, the
identity component of G is isomorphic to GL(E}Y/GC(E); that latter
group can then be used as the classilying space BO for real vector
bundles. The following theorem is due to Janich [52]: Using com-
position of operators as addition and a multiplication derived from
the tensor product, § has up to homotopy the structure of a com-
mutative ring with unit, and those operations are continuous.

For any compact space X the totality [X, §] of homotopy classes of
maps X—§ 1s a commutalive ring with unit. There is a nalural ring
isomorphism [X, F1-KO(X) = [X, ZXBO] of (X, §] onto the ring
KO(X) of virtual real vector bundles over X. Here Z denotes the ring
of integers. The isomorphism is constructed as a generalization of the
notion of index of a Fredholm operator; the proof uses Kuiper's
theorem on the contractibility of GL(E). See [12] for the definitions
and properties of the functors K¢ and BO (=the classilying space
of the group lim,.. GL(R"): or BO=lim,., BO(p)). Completely
analogous assertions are valid for the complex case; and an appropri-
ate assertion can also be made for the case of the quaternion field.

(D} ExamrLE [31]. The following construction admits many vari-
ations of the sort considered in §6 below. Let ¢ be a connected Lie
group of finite dimension with Lie algebra L(G), equipped with some
inner product. We denote by E(G) the totality of absolutely continu-
ous paths on G starting at the neutral element e and having square
integrable tangent fields; thus E(G)=1%(], 0: G, €} in the notation
of §6D below. With group operations defined pointwise F(G) has
the structure of a contractible Lie group modeled on a separable
Hilbert space, and the Serre map p: E(G)-G defined by p(x) =x(1)
is a Lic epimorphism whose kernel Q(G) can be viewed as the Lie
group of loops (of the indicated class) of G, furthermore,
codim(F(G), 2(G)) = dim G. Its Lie algebra L(E(G)) = E(L(G)), and
the kernel of the differential p.: LIE(G)) = L(G) is just LIYEG)). (In
the special case that G is compact and semisimple and we take the
negative of the Killing form on L{G) for its inner product, then
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([x, ¥), 2)={x, [y, 5]} for all x, ¥, 2EL(G); however, we do not have
the corresponding relation in L{E(G)), so that L{(E(G)} should be
viewed as a Banach, not as a Hilbert, Lie algebra.)

Now suppose that X is a closed subgroup of G, and let r: G—G/K
=B be the (left) coset map. If E{(G, K}=p"1(K) and A=7 0 p then
E(G, K) is a closed Lie subgroup of E(G), and X\: E(G)— B is an analyt-
ic universal principel E(G, K)-bundle; thus E(G, K) is a Lie group
serving as the loop space of B.

(E) For lurther applications relating Banach algebraic and differ-
ential topological ideas we refer to

(1) Dixmier-Douady [24] and Tomiyama-Takesaki [116] for
studies of C*-algebras and continuous fields of Hilbert spaces by the
methods of cohomology and fibre bundles;

(2) Royden [103] for a theorem of Arens-Royden relating the co-
homology of the spectrum of a commutative Banach algebra to its
group of units;

(3) Wood [121] for a proof and generalization of the Bott period-
icity theorem in the setting of Banach algebras.

(4) Myers [85] and Pursell-Shanks [95] for theorems giving the
structure of a compact C"-manifold in terms of its algebra of Cr-
functions.

4. Manifolds and fibre bundles. ]

(A) A manifold (C*-manifold) modeled on a locally convex topological
vector space E is a Hausdorff topological space X such that with e::-lch
point x& X there exist a neighborhood U, and a homeomorphlsr'n
8, of U, onto a convex open subset of E with 8,(x)=0; the pair
(0., U,) is called a chart of X cenlered al x. Clearly X is completely
regular and locally contractible; in particular, every component of X
is open. Assume that E is metrizable; then applications of theorems
of A. Stone and Y. Smirnov show that X is metrizable when and only
when X is paracompact. If every component of X satisfies the second
axiom of countability, then X is metrizable [92]. [f X is paracom-
pact, then the components of X satisiy the second axiom of count-
ability if and only if E does [75].

Hyrotuesis. Henceforth we suppose that X s ¢ paracompact mani-
fold modeled on a metrizable locally convex lopological veclor space E.

A theorem of Dugundji [25] asserts that any convex set in a locally
convex topological vector space is an absolute retract. (A space U
(usually assumed to be metrizable) is an abselute retract if for any
metrizable space M, closed subset A (CM, and continuous map
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J: A—> U there is a continuous extension to a map M—U; if every f
can be extended to a neighborhood of 4 in M, then we say that U
is an absolute neighborhood reiract.) Dugundji's theorem insures
furthermore that we can extend any f: A—> U so that the extension
has its unagpx in the convex envelope of f(4). General principles and
a theorem of O. Hanner then imply the following result (proved
by the author in connection with his version of the Lefschetz Axed
point theorem (§11D below), utilizing a method of W. Hurewicz.
An independent proof. appears in [92]).

If X 15 a paracompact manifold modeled on a metrizable locally con-
vex topological vector space, then X is an absolute neighborhood retract.
X is contractible if and only if X is an absolute retract.

It is 2 consequence of a theorem of J. H. C. Whitehead that if X
and Y are two such manifolds and f: X >V a continuous map inducing
isomorphisms f: w( X)—x.(Y) of the homotopy groups for alii 20, then
J is a homotopy equivalence. Theorems of O. Hanner and J. H. C.
Whitehead [78] imply that if X is separable, then it has the homotopy
type of a countable locally finite simplicial polyhedron,

If X is given a metric, then X can be isometrically imbedded as a
closed subset of a normed linear space, having a neighborhood U with
X as a retract {i.e., there is a continuous map f: U—X which is the
identity on X) [4]. If the model E is complete, then we can always
s0 imbed X topologically as a closed subset of a Banach space. In
particular, the topology of X can be given by a complete metric, so
that X is a Baire space (i.e., a space such that any countable union
of closed sets having no interior points has no interior point). X is
locally compact if and only if its model E has finite dimension, by
a theorem of F. Riesz; thus a component of X is expressible as a
countable union of compact sets when and only when X is finite
dimensional.

(B) Let X be a manifold modeled on a Banach space E. A C-
structure on X (1 <7< «) is a subsheal of the sheaf of continuous E-
valued maps on X which is locally isomorphic (through charts) to
the sheaf of E-valued C™-maps on F; similarly for the notions of real
and complex analytic structures. That amounts to saying that a Cr-
structure is a maximal covering of X by charts such that all maps
{(between the indicated open subsets of E)

(2) 806, 6. (U. N\ U) = 0.(Us O\ U,)

are (. A ("-manifold is a C"-manifold with a specific Cr-structure.
For r>0 we have the related notion of Cr-manifold with boundary;
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however, there is not a suitable definition in case r =0 and the mani-
fold has infinite dimension, due to the absence of invariance of do-
main (See §11B below.) Indeed, Klee [56] has constructed a homeo-
morphism of a separable Hilbert space onto a closed half-space. A
C-map f: X—Y of Cr-manifolds is a map which respects the C'-
structures: For any C'-charts (8, U), (x, V) on X, ¥ the composition
xofo & 8(IN—x(V)is a C*-map. A bijective Cr-map f with Cr-
inverse is a C"-diffeomorphism.

If E,is a closed linear subspace of the mode! E and A a closed sub-
set of the (*-manifold X such that for every x4 there is an x-
centered chart (8, I/) of X such that # maps UN4 homeomorphically
onto 8(UYNE,, then these restrictions determine a (*-structure on
A, and 4 is called a ¢losed Cr-submanifold of X. A Cr-imbedding (resp.,
a C-immersion) f: X—Y is a C-map which is a Cr-diffeomorphism
(resp., locally a Cr-diffeomorphism) onto a closed submanifold of V.
Say that the imbedding or immersion splits if its model E, is a direct
summand of E (and be advised that some authors [2], [64] incor-
porate the splitting requirement into their definition of closed sub-
manifold). There is a concept dual to a split ("-immersion: A C*-
map f: X—Y is called a split Cr-local fibration if for all xE€X there
are C"-charts (8, U), (x, V) centered at x, f(x), where 8: U—U, X U,
maps U onto the product of two open sets in a product representation
E\ X Ey=E of the model of X, such that the composition x o fo -1
U X Ur—x{V) is a projection.

The following generalization of Whitney's imbedding theorem has
been proved by McAlpin [75]; see also [18]:

Every separable Cr-manifold modeled on a separable Hilbert space
can be split (*-imbedded as a closed submanifold of a separable Hilbert
space.

(C) There is a theory of Cr-vector bundles whose fibres arc Banach
spaces; its broad outline follows that of the finite dimeusicnal case
[64]). Of course, we must check certain technical aspects: (1) A
("-vector bundle whose fibres are Banach spaces over a - -rzaifold
is metrizable [92]. (2) In arguments involving partitions 7 unity
we should suppose that the base manifolds are modeled on ("-sooth
Banach spaces; e.g., the sheal of C-sections of a Crvector bundle
over a C"-manifold with C-smooth model is soft (i.e., any section aver
a closed subset of the base admits an extension over ~H ihe hase),
(3) In dealing with sequences

0—>A—f+B—¢vC—+0
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of vc.iz: Sundles over X we need a special notion of exactness: Say
that this sequence is exact if the restriction ¢: A.—B, of the bundle
map ¢ 1o the hbre over every point xE€ X is a continuous injection,
the restriction ¢: B,—C, is a continuous surjection with Ker(y)
=1m(¢), and every ¢(A,) is a direct summand of B,. This last re-
quirement insures a suitable local product structure for the maps
¢, ¥. (4) There are many different tensor products of vector bundles,
depending on the choice of topological tensor product in the fibres.

(D) Let X be a C*-manifold (r 2 1) modeled on a Banach space E.
Then as in the finite dimensional case [114] the differentials
(8, 0 87"+ of the coordinate changes (2) define transition maps of a
principal bundle GL{X)—X with structural group GL(E), called the
principal bundle of X. GL(X) has the structure of € manifold,
From Kuiper's theorem (§3B) we obtain the result:

Lvery paracompact infinite dimensional Cr-manifold (r 21) X modeled
on o separable Hilbert space is Cr'-parallelizable. l.c., its principal
bundle is C—-isomorphic to the product bundle X XGL(E).

From the natural action of GL(E) on E we obtain the associated
tangent vector bundle w: T(X)—X ; each fibre *=(x} = X (x), called the
tangent vector space to X at x, is a Banach space—but does not have
a preferred norm in general, even if E does. A Cr-map f: X— ¥ induces
through its differential a C*~'-map T(f): T{(X)—>T(Y) which is linear
and continuous on each fibre. Similarly for the various tensor bundles
of X.

(E I f: X—Yisa split C*-immersion, then the sequence
(3) 0~ T(X) — [ T(¥) = [ T(¥)/T(X) - 0

is exact, where f-!'T(¥)—X is the induced vector bundle. . XV
is a split Cr-local fibration, then there is a subbundle 4 X, called

the bundle along the fibres, which is the kernel of the differential of f,
such that the sequence

(4) 0— 4= T(X) — f'T(F) >0

1s exact. It may not happen that these exact sequences themselves
split as C*Lbundles; however, they do if X is modeled on a (Cr-
smeoth Banach space. In that case a choice of splitting in (3) identi-
fies f'T(¥)/T(X) with a subbundie of FIT(Y) supplementary to
T(X), called a transverse bundle of X in V. Similarly, a splitting in (4)
identifies f'7( V) with a supplement of 4 in T(X) called a horizontal
subbundle. :

An application [32], [64] of the inverse function theorem gives the
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following result (as formulated in the finite dimensional case by R.
Thom).

Let f: X—Y be a C-map (r> 1} of manifolds rnodeled on Bana.c:
spaces. Let B be a closed split imbedded C'-subma.mfaid t_)f Y on whic
f is transversal (i.e., for every xCf '(B) the differential f.(x) :_J‘((;)
— Y{(f(x)) is transversal to B(f(x)) in the sense of §1C). Then A =f-Y(B)
is a closed splil imbedded C-submanifold of X.

f codim (¥, B) =g < =, then codim (X, A) =g < =, Als:o, if dim B
< w and f is a Fredholm map of connected separable manifolds, then
dim A ~dim B=ind(f); Smale [111] has shown (as a consequence (:f
resuits of §2D) that for any Fredholm C'-ma? f: XI—vY there isa C'-
approximation lo the imbedding B-+Y on which f is iransversal, pro-
vided tha! r > max(0, ind(f)+dim B). o

LExampie. The diagonal A= {(y, y)E ¥ X ¥} is a closed split im-
bedded submanifold of ¥ X ¥, with transverse b-undle isomorphic to
T(V). Two maps fi, fo: X—V are transversal if the proiiluct map
AXfir X XX—¥Y XY is transversal on A, '.I'hctn (fr )(f',) (A‘) is a
closed split imbedded submanifold of X X X; its intersection “:lth the
diagonal of XXX is identified with the coincidence se.t 1 (f;,‘f,)
= | xEX: fi(x) =filx) l This situation occurs frequently in apphc%—
tions: for instance, let £: ¥—X be a Cr-vector bundle and ¢ a (-
section (i.e., a Cr-map o: X-+¥ such that £ o g{x) =x for all t:G X).
If ¢ is the zero section, then I'(a, {) is just the locus of zeros oi 4} the
condition that o, { be transversal is a nondegeneracy hypothesis on ¢.

{(F} 1f X is a C-manifold (r =2) modeled on a Banz?ch spafe, then
its tangent bundle T(X) is a C—'-manifold. The totality C-{T(X))
of C! sections (i.e., of C*—! maps v: X—T(X) such that'zr cv{x)=x
for all x& X) forms a vector space, with algebraic operations det:med
pointwise; these sections ate called vector fields on X. The Poisson
bracket [u,v] of two vector fieldsisdefined asan elemer_ltof CYT(X));
in particular, if r= o, then the bracket defines a Lie algebra struc-
ture on C={T(X}). ‘

The trajectories of a vector field v& C—'(T(X)) are the solutions ot
the differential equation

dé:dz) = v(d{x)),
dt
dolx} = x,

defined for some maximal interval a, <{ <8, of R containing 0 :F_he
existence, uniqueness, and differentiability with respect to the initial
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conditions of such solutions follow from standard methods [23,
Chapter X]; [64, Chapter IV]. The set D@)={(t, x) ERXX:
a,<t<B.} is an open neighborhood of 0X X, and on it the map
(¢, x)—¢{x) defines a l-parameter group germ of ( —)-diffeomor-
phisms of X. It is a matter of basic importance to know when D{v)
=RXX;ie., when the trajectories are full. That is a question of the
growth of v, and can be best described in terms of a Finsler or Rie-
mannian structure {see §5); in the case that X is a separable complete
Riemannian manifold good criteria are given in [68]; e.g., every tra-
iectary of finite length is full. See also §8 below for the case of gradient
fields.

The integrability theorem of Frobenius is valid for Cr-manifolds
(r22) modeled on Banach spaces [23], [64], [73, Part [1]; we state
the result for r=w:

iet D e a C™-veclor subbundle of T(X) for which every fibre 5; is a
direct summand of X(x). Then the space C=(S) of sections is a Lie sub-
algebra of C*(T(X)) if and only if 5 15 integrable; i.e., X is a leaved
manifold having S as lhe langent bundle of the leaved structure. A split
C--incal fibration f: X— ¥ provides an example of this situation; see

PO

{(G) Let X be a C=-manifold modeled on a separable Hilbert space,
and A?T*{X)—X its vector bundle of p-covectors; its fibre over x
can be identified with AL?(X(x), R), the Banach space of continuous
alternating p-linear forms on X{(x). Denote by AT*(X) the direct
sum of these bundles for ail p€ Z; then the vector space C={(AT*(X))
of C*-sections, which are called differemtial forms on X, is a graded
associative algebra (over R) with unit, and commutative (in the
sense that pAY =(—1)*Y A¢ if € C=(A*T*(X)), $EC=(AT*(X}).
There is a linear map d: C*(APT*(X))—C*(Ar+1T*(X)), called the
exterior differential, which is a derivation (d(p \Y) =dep AY+(—1)2p
Ady with ¢, as above), which has square zero (d(d¢) =0), and which
assigns to each function ¢& C=(A*T*(X}) its differential. The space
3*(X)=Ker{d)/Im(d) is therefore a graded commutative algebra
with unit, called the de Rham cohomology algebra of X.

A p-simplex of class C= of X is a C*-map s: A*—X of a neighbor-
hood of an oriented rectilinear p-simplex A* of R?; a p-chain of class
C= of X is a hnite lincar combination (over R) of such p-simplexes,
and the boundary 3c of a p-chain ¢ is defined as usual in algebraic
topology. The p-chains constitute a vector space S,(X), and 3: S,(X)
—Sp1(X) is a linear map satisfying 3(d¢) =0 for all cES5,(X); if
S(X) denotes the direct sum of the S,{X) for all pC Z, then 3 is an
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endomorphism of S(X), and we define the graded vector space
H(X)=Ker{(d)/Im(d), the real homology group of X. H(X) is a
homology invariant of the space X.

For any p-form ¢ EC=(A*T*(X)) and p-chain c€5,(X) we define
the Riemann integral of ¢ over ¢ in the familiar manner, using the
transformation of integral formula. ‘Then we have Stokes’ theorem

I

80 that the integral induces a bilinear pairing
¥r(X) X H,(X)— R.

Otherwise said, each de Rham cohomology class (#)3e*(X) thereby
defines a linear form on the homology group H,(X), and thue a co-
homology class in H?{X) = Hom(H,(X), R). We obtain th- clowing
generalization of de Rham's theorem [29]:

Let X be a separable C*-manifold modeled on a separable Hilbert
space. Then iniegration defines a degree-preserving algebra isomorphism
of the de Rham cohomology algebra 3c*(X) onto the real singular co-
homology algebra H*(X).

‘ Several specific representations illustrating this theorem are given
in [31], [118]; the latter paper uses 2-forms on certain Banach Lie

groups to construct central extensions (for the purpose described in
§3A).

5. Differential geometry,

) (A) Certain aspects of local differential geometry (tensor analysis,
linear connections and covariant derivatives, geodesics, curvature
forms and sectional curvature, leaved structures) in open sets of
Banach spaces made their appearance in one form or another many
years ago; we refer to [77], [55], [65] and the references in [77] for
various treatments. Practically no global differential geometry has
be'en developed for manifolds modeled on Banach spaces ather =iwn
H.tlbert spaces; however, it seems likely that infinite din~2sicnal
Finsler geometry will play an important role in the future.

The foundations of modern differential geometry center around
the theory of integrable G-structures (for arbitrary Lic areips ).
We _will not deal in that generality here: however, let . - aark in
passing that there is an interesting aspect of the general theory
peculiar to the infinite dimensional case: FFor a C*-manifold X modeled
on a Banach space E we take G =GC(E), asin §3C. Then an integra-
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ble GC(E)-structure on X is determined by a covering of X by co-
ordin=ic charts, the differentials of whose coordinate changes (2) lie
in GC(E).

We now examine certain elementary properties—local and global—
of Riemannian geometry, thus taking G=0(E); the integrability
question does not arise. For the most part, the local theory follows
the finite dimensional case; the global theory is substantially differ-
ent. In itus section it is less important to be precise about the differ-
entiabiliiy classes of manifolds and bundles; we therefore often take
r=om,

{B} Lot X be a C*-manifold modeled on a Banach space E, and
£:7-»X a ("-vector bundle whose fibres are Hilbert spaces. We can
theis torm the vector bundle SL}V, R)>X whose fibre over any
point xE X is the space of continuous symmetric bilinear forms on
the fibre £~'(x) = V,. A C~-Riemannian structure on £ is a C=-section
of SL(V, R)—X which is positive definite at every point x, and
which as an inner product on V, determines its Hilbert space struc-
ture. If the model E of X is C=-smooth, then any such vector bundle
£ admits a C*-Riemannian structure; furthermore, these Riemannian
structures on { cotrespond bijectively to reductions of the general
linear group of the fibre to its orthogonal group [64, Chapter VII ]

Let C=(V) denote the vector space of C=-sections of £. A covariant
differential on { is a map V: CHT (X)) XC=(V)-C=(V), written
V{u, ¢) = V.9, such that (1) the map u— V.9 is C*(X X R)-linear {or
each¢ & C=(V); (2) the map ¢—V.¢ is R-linear for each u & C=(T(X));
(3) Vu(v¢) = (V)47 V.6 for each e C=(V), YEC=(X XR), where
Voy =dvy-u. (A covariant differential on t is equivalent to a linear
connection on £} The curvatyre of V is the map R: C=(T(X))
XC(T(X)) X C=(V)—C( V) given by

(5) R(ull “|)¢ = vslvug¢ - vugvul¢ e V|u',..]¢.

We have associated differentials for the adjoint bundle £*, for tensor
powers of £ and of £* and for direct sums and tensor products of
bundles with covariant differentials,

A C=-Riemannian bundle £: VX consists of a pair {V, g}, where
V is a covariant differential on £, gEC=(SLYV, R)) is a Rieman-
nian structure, and Vg =0 for all uc C=(T(X?).

(C) Suppose that the C*-manifold X is modeled on a separable
Hilbert space E. A Riemannian structure on X is a C=-Riemannian
structure g on its tangent bundle x: (X)X (and we say that X
15 a Riemannian manifold) ; these are in natural bijective correspond-
ence with the C*-sections of the associated bundle of the principal
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bundle GL(X)—X whase fibre is the cell P(EY=GL(E)/O{E). The
value of g at x is sometimes written g,(u ®u) = {u, v), for all », ve= X (x).
The fundamental theorem of Riemannian geometry is the ioll‘tlj_wing:

v

Let (X,g) be a Riemannian manifold. Then there is a unigue co-

uariant differeniial V (called the Levi-Civild differential of (X, _g)) on

the langeni bundle making it inio a Riemannian bundie, for whick the
torsion

{6) T(lll. uy) = V-.(“a) - v-,(ﬂl) - [“1, l‘:]
vanishes for all u,, u, & C*(T(X)).

The Riemannian structure g determines a metric p on X which is
compalible with its given topology; namely, given any two points x;, x;
in the same component of X we define the distance

) o5, %1) = inf { [ 170 |,(.,¢n}

over all piecewise differentiable paths v: I—X joining x, to x;, where
|7’(!)|.,(., denotes the g-norm of the tangent vector 7’(!)65){ {(v().
A consequence of McAlpin’s imbedding theorem is the following:

Every separable C*-manifold modeled on a separable Hilber! space
admits a complete Riemannian struclure g i.e., the metric (7) deter-
mined by g is complete (in the sense of Cauchy sequences).

More generally, we say that a C'-manifold X modeled on a Banach
space is a Finsler manifold if we have a continuous assignment of a
norm to each tangent space which is compatible with its Banach
space structure, locally uniformly on X; then, as above, every X
admits a Finsler structure which determines a metric on X compati-
ble with its topology [89], [91]; see also [67].

(D) Let X be a Riemannian manilfold, and x & X. Given two ortho-
normal vectors u, v X(x) we define the sectional curvature of the
plane direction u A\v (exterior product of the vectors) determined by
them through the formula

K{u A v) = (R.{v, w)u, o),

where R, denotes the curvature (5) of the Levi-Civita differential at
*. An immediate extension of the Clifford-Klein theorem [75], [77]
glves:

if X is a simply connected complete Riemannian manifold of infinite




e+ e
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dimension and constant sectional curvature, then X 1is isomelric to the
infinite dimensional elliptic, parabolic, or kyperbolic space.

In particular, if G is a finite group of isometries operating freely
and differentiably on the unit sphere S in infinite dimensional sepa-
rable llilbert space, then the orbit space .S/G is a Riemannian mani-
fold of constant positive curvature representing the classifying space
BG for G.

(E) If X is a Riemannian manifold, then its Levi-Civita differen-
tial V determines the notion of parallel transport along a C=-path
v: I—X; in particular v fs a geodesic (segment) if its tangent field
7" is parallel along v; i.e., v satisfies the Euler equation V,.(y") =0
along 7. All geodesics on a complete Riemannian manifold are full.

For every point x of a complete Riemannian manifold X there is a
C=-map exp,: X(x)—X defined by letting exp.(x) be the endpoint
of the geodesic segment emanating from x and determined in length
and direction by the vector 4. Local properties of exp, produce the
result: Every point of X has a convex neighborhood; i.e., a neighborhood
U such that any two points in U can be joined by a unique geodesic
segment lying in U whose length is the distance between its endpoints.

Furthermore, we have the following generalization of a theorem of
G. de Braun [15]:

Any separable Riemannian manifold X admils a couniable open
cover |1 by sels all of whose intersections are convex.

It follows upon application of a theorem of J. Leray that the co-
homology .~ X is canonically isomorphic to that of the nerve of U,
On the other hand, and in defiance of the fact (Section 4A) that X (if
separable) has the homotopy type of a locally finite polyhedron, we
have the theorem of Corson [20]: There is no locally finite cover of a
reflexs - oanach space of infinite dimension by bounded convex sets.

Ant...r consequence of the existence of convex neighborhoods is
the following:

If X is a closed C*-submanifold of the Riemannian manifold Y,
then there is a tubular neighborhood U of X in Y. Furthermore, the
diffeomorphism type of U is unique.

Thus U is diffeomorphic to the normal vector bundle of X in ¥,
and X is a strong C*-deformation retract of U. For a discussion of
the existence and uniqueness of tubular neighborhoods in C-mani-
folds modeled on other Banach spaces, see [64, Chapter vl.

(F) Let X be a connected complete Riemannian manifold. It is not
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known whether the map exp,: X(x)—X is surjective in general. The
situation is complicated [47] in the infinite dimensional case by the
fact that the differential of exp. may be neither injective nor surjec-
tive at a conjugate point of x. Furthermore, it is not always possible
to join two points by a geodesic segment of minimum length. A sim-
ple example [46], [75] is obtained by studying the geodesics joining
the axis points of an infinite dimensional ellipsoid in Hilbert space;
such a manifold is contractible and has strictly positive sectional
curvatures at every point.

We do have a generalization of the Cartan-Hadamard theorem, due
independently to McAlpin and Grossman [46], [75]; see also [47]
for a variant:

If X is a connected complete Riemannian manifold of nonpositive
seclional curvature, then for any point xE X the map exp.: X(x)—X isa
surjective C®-covering.

In particular, if X is simply connected, then it is diffeomorphic to
Hilbert space; and there is a unique geodesic segment joining any
two points, whose length equals the distance between them.

(G) For a surjective C'-map f: X— ¥ of C-manifolds modeled on
Banach spaces, we have described in Section 4B conditions on the
differential of f which imply that f is a split C'-local fibration. We
now impose differential geometric restrictions sufficient to insure that
fis a global Abration. Let e and § be Finsler structures on X and V.
If s: f'T(Y)>T(X) is a locally Lipschitz splitting of the vector
bundle sequence (4)—such a splitting always exists—we say that s
15 bounded locally over Y if for each y,& Y there is a number ,>0
and a neighborhood Vs of y, such that ||s(z)]|. Sn, for all xS f2(Vy);
here the norm of s(x) is that of L{¥{f(x}, X(x)) induced from the
norms o, fiy;). We have the {ollowing theorem [28]:

Let (X, @), (Y, B) be Finsler C'-manifolds, and suppose that X is
complele in the metric associated with o. Let f: X— Y be a surjective C1-
map whose differential f, (x) ol every x € X is surjective and whose kernel
is a direct summand of X(x). If there is o locally Lipschits splitting
of (4) which is locally bounded over Y, then f is a locally trivial fibration.

Local triviality means that every y,& ¥ has a neighborhood V for
which f~1(V) is homeomorphic (preserving fibres) to V X f~'(y). In
a context in which s is ™ we can establish local C*-triviality.

We now give an application taken from the theory of deformations

of complex structures, based on fundamental work of L. AhMors and

L. Bers.
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E£xAMPLE [28]. Let U be the open upper half plane in the space C
of complex numbers, and L=(U, C) the Banach space of all bounded
measurable complex functions on U. Let D={3E€C: |s]| <1}, en-
dowed with the complete Riemannian structure of constant curvature
= —4, and let op be its associated metric. Denote by M =L=(U, D)
the open disc in L=(U, C); we view M as a complex analytic infinite
dimensional (nonseparable) manifold modeled on L=(U, C). Define
the Finsler structure a on M at the point &€ M by

au(v) = sup { I v(z) I#t-): LS Ul

for alt vEL=(U, C), where [v(s)|,,m denotes the Riemannian length
of the vector »(2) in the tangent space D(u(z)) to D at u(z2). Then the
metFric

o alpe, #1) = sup foplus(2), m(x):s € U}

is that associated with o, and (M, a) is complete,
A theorem of C. B. Morrey insures that for each p& M there is a
unique solution w* of Beltrami's equation

dw Jw

—_——= ———

az az

it C. r -malized by requiring that 0, 1, ® remain fixed and that 1*
te ~onformal in the lower half plane U*. Let B denote the complex

(iicns;:;:arable) Banach space of holomorphic functions ¢ in U* whose
norm ’

[#ls =sup{|z -2 em)]:s€ U} < w.

If [w] ={w"/w') —(w” /w')?/Z denotes the Schwarzian derivative
{(when defined), then the assignment p—{w*] is a holomorphic map
®: M—B whose image A=®(M) is a bounded open subset.

For any Fuchsian group T (i.e., discrete group of Mgbius trans-
formations of U} let M(I') denote the subspace of T-invariant ele-
ments of M, and A(T)=&(M(I")); A(T') is traditionally called the
Teichmiiller space of T. The quotient Finsler structure on A(T} in-
duced from that of M has associated metric equivalent to that of
Teichmiiller's metric. The hypotheses of the preceding thearem are
satished, whence ®: M(I')—A(T) is a locally trivial fibration (with com-
plex analytic fibres). In particulur, whenever A(T') is contraclible (and
that is the case if dim A(I") < o or if I'=¢), we conclude that for every
G A(L) the fibre ®'(¢) is contraciible.

6. Manifolds of maps. In this section we endow certain function
spaces of maps (or sections of a fibre bundle, more generally) with
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differentiable manifold structures, necessarily of infinite dimension
in general. The basic idea here is that a function space F(S5, M) of
maps of a space S into a space M often reflects much ol the structure
of M. In particular, if M is a differentiable manifold, under certain
conditions we have an induced manifold structure on §(5, M); the
most important of these conditions are (1) that the topology on
F(S, M) be larger {Z) than the uniform topology; (2) that ¥ behave
well under maps of S and M. We begin by illustrating these properties
for special classes of maps of Banach spaces.

(A} Suppose that E and F are Banach spaces, and that I/ is a
subset of E.

ExAMPLE 1. The totality of bounded maps ¢: U—F is a Banach
space B{U, F) with algebraic operations defined pointwise, and norm
|¢| new.m =sup | |¢(x)| (xC Ul ; thus convergence of a sequence in
B(lJ, FY is precisely uniform convergence of that sequence on U. If
Fis a Banach algebra, then so is B(U, F). Any map f: Ui~ U, induces
through composition a bounded linear map f: B(Uy, F)—B(lh, F).
Dually, a map g- Fi—F; carrying bounded sets of F into bounded
sets of Fy induces a map g: B(U, F)—=B(U, Fi). ‘

The vector subspace BC(U, F) of bounded continuous maps is
closed in B(U, F); in general, BC(U, F) is not separable. Further-
more, the evaluation map BC(U, F) X U—F defined by (¢, x)—¢{x)
is continuous. Note that if I/ is compact and V is open in F, then the
subset BC(U, V) =|¢EBCU, F):¢(U)CV} is an open submani-
fold. Ascoli’s theorem gives the {ollowing characterization of the rela-
tively compact sets [23, p. 137].

Let U be a compact subset of E. Then a subset A of BC(U, F) is
relatively compact if and only if A is equicontinuous, and for each x= U
the set A(x) of all ¢{x) such that $E A is relatively compact in F.

ExampPLE 2. Now suppose that U/ is open in E. Let BC(U, F) de-
note the Banach space of C-maps ¢: U—F all of whose differentials
05k <r < ®) are bounded on U/, with norm

8 |¢|r = l ¢|Bc'w.n = sup{ E |d*¢(:r)]:x€ U} .

kw0

Thus BCYU, F)y=BC(U, F). If U is an open disc in E, then that
norm is equivalent to

sup { | 6(2) | + | drp(0) |: 2 € U},
The space BC=(U, F) =y, BC(U, F) is a Fréchet space with metric
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- l ¢ — ¢/ |r

The map which assigns to each & BCO(U, F) its kth differentjal
is a bounded linear map d*: BO(U, Fy—+BC—*(U, SLYE, F))
(0sk=<r). 1f fEBC(Uy, Us), where Ui and U; are open subsets of E,
then f induces a bounded linear map f: BC(Us, )>BC(U,, F).
Dually, we have the theorem [23, pp. 182-183, 2]

Let U be a compact differentiable n-manifold with boundary in the
n-dimensional space E, so that BC (U, F)=C*(U, F), the Banack space
of all C-maps of U into F. Let G be a Banachk space. If V is open in F
and g BOY(V, G), then the snduced map g: BC(U, V)->BC(U, G)
is of class C* for all 0S5 sv. Again, BC(U, V) is open in BC (U, F).
If Uis open in E and dim F < w, then for any r 2 1 the inclusion map
BCO(U, F}>BC—'(U, F) is compact,

(B) Suppose that M is a separable C=-manifold modeled on a
separable Hilbert space E, with tangent vector bundle x: T(M)— M.
If M has a complete Riemannian structure and mC M, we let
eXpuw: M(m)— M denote the exponential map as in §5E; its associated
metric is denoted by p=p,,.

Let S be a compact topological space, and C'=C(S, M) the totality
of continuous maps x: S—M: we give C the topology of uniform con-
vergence (in this case, the compact-open topology). The metric py
on M induces an admissible metric on ¢ by

#(x, 3) = sup {ou(x(s), y(s)): s € §}.

C is separable and complete, because M is. The evaluation map
C(S, M)XS— M is continuous. .

The following result is fundamental, and is typical of the various
modifications discussed in this section [29]:

For any compact space S and separable C=-manifold M modeled on
a Hitvert space, the Junction space C(S, M)isa C=-manifold modeled
on a separable Banach space. If M is imbedded as a closed submanifold
of a Hilbert space V, then C(S, M) is a closed C=-submanifold of the
Banach space (S, V). A Riemannian structure on M induces a Finsler
structure on C(S, M).

The basic idea in the prool is to introduce some complete Rie-
mannian structure on M, and then to proceed as follows: (1) Con-
struct the fangent vector space C(x) to the map x&C(S, M) as the
tota.:ty of continuous maps u: S—T(M) such that v o u(s) =x(s) for
all s&8: then C(x) is a Banach space with norm
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[l = sup { | «(s) frc0r:s € ).

Note that C(z) = C(x'T(M)), the space of continuous sections of the
induced vector bundle x~'T(M)—S, through the map x: S—M. (2)
Use the exponential map of M to construct an x-centered coordinate
chart on C(S, M); namely, since x(5) is compact, there is a number
A >0 such that each point of M whose distance from any x(s} is less
than X, is joined to x(s) by a unique geodesic arc of length <A,;
then the map $—={f(u)s = exp,yu(s) gives a bijective correspondence
¥ between the A -disc of C(x) centered at 0 and the A;-disc of C(S, M)
centered at x; whence a coordinate chart on (S, M). (3) Use the
diflerentiability of exp: T(M)— M to prove that the transitions be-
tween these charts are C=-differentiable.

The differentiable structure of C(S, M) isindependent of the choice
of the Riemannian structure on M, since a C=-map g: Mi— M, in-
duces a C*-map §: C(S, M)-+C(S, My). Furthermore if g is an imbed-
ding, then so is §. If f:51—5: is o continuous map of compact spaces,
then f induces a C=-map }: C(Sh, M)—=C(S, M). If f is an inclusion
mapand dim M < «, then Jisa CO-locally trivial fibration over {C(S,, M).
(This last assertion is a slight modification of a theorem of K.
Borsuk.)

There are many variations of this example; beyond those described
in the following sections, we mention three: (1) If S, is a closed
subset of S and M, a closed submanifold of M, then C(S, So; M, M)
=lxEC(S, M): x(S)) CM,} is a closed submanifold of C(S, M).
D If Misa C**:-manifold modeled on a C**-smooth Banach space,
then C(S, M) has a C*-manifold structure [2]. The point is that we
can use a ("*partition of unity to construct a C*-spray [64] on M,
which amounts to an exponential map exp: T(M)—M having the
properties required for the above construction. (3) We can view
C(S, M) as the space of all continuous sections of the trivial bu. .
SXM—S, and then generalize the theorem, replacing SXM '.v 4
nontrivial bundle with C*-fibres.

(C) Let Sbeacompact C*-manifold, and 0 57 < @ ; form the space
C (S, M) of C*-maps x: S—»M with the topology of uniform cen-
vergence of all derivatives of orders =r. C*(S, M) is dense in every
Cr(S, M), U A s imbedded as a closed submanifold of a I{ilbert
space V, then (S, M} is a closed subset of the Banach space C(S, V)
with norm as in (8).

For every 0<r < w the spuce C°(S, M) is a C=-manifold modeled on
@ scparable Banach space. 4 Riemannian structure induces a Finsler
structure on C'(S, M). The same complementary remarks as in (B)
apply here. In [24&] Douady has demonstrated an analogous theorem
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for C*(&, M)—suitably defined-—where S is a compact subset of a
finite dimensional C*-manifold, M is an analytic manifold (real or
complex), and s=r4a (0 Za<1andr 21 is an integer.

Furthermore, we have the following result {2]:

Suppose that both S and M are compact C=-manifolds and that N
33 & C=-manifold modeled on a Hilbert space. Then the composition
induces a map

Cr(S, M)} X Cr+o(M, N} — C*(S, N)
which 15 Ce.

Similarly, taking § as a point we find that the evaluation map
C(M, N)XM-—N is C". On the other hand, taking S= A =N, com-
position defines an associative continuous multiplication in the mani-
fold C*(M, M) and a group structure in the C*-diffeomorphisms of M,
but the composition is not C* (pointed out by R. Abraham).

(D) For applications [35], [36], [94] to potential theory and the
calculus of variations it is important to work in the context of Le-
spaces, especially p=2. We now produce manifold structures on cer-
tain of these spaces.

Suppose that S is a compact oriented Riemannian manifold of di-
mension #, we will write the volume n-form of S as *1. Fix a Hilbert
space V. Then for any real number p (1 £p < ) let L3(S, V) denote
the Manach space of Le-maps from Sto V with norm (9) below with
r=:dox v any integer r20 let LY(S, V) be the Banach space of such
maps %, all of whose differentials d*x are of class L* (0<% =7), whose
norm can be given by

LR,y = [f.s { E | d*x(s) |2} "'2‘ 1]"’_

In particuiar, for all 20 the space L3(S, V) is a Hilbert space with
inner product

9 | =

e = 5 | (@), dy(s)y e 1.
8

Clearly for gsp and s=r we have L?(S, V)CLYS, V) and
LI(S, VYC LS, V), since S has finite volume. The following Sobolev
imbedding theorems are basic [112]:

Laat2p, g< @, Then

() LYS, V) CLUS, V) forOS sSrand1/qgz 1/p — (r— s)/n 2 0.
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(2) LS, V) C CHS, V) for 7 > w9 + k.

The inclusion sign indicates an algebraic subspace whose inclusion
map is continuous. Furthermore, if s<r and 1/¢>1/p— (r—s)/n,
then both tnclusion maps are compact. Il f: 5,—S,is a C “-immersion,
then f induces a bounded linear map f: L}{(S, Vi—LI(S:, V) [91,
Chapter X1 D].

Let us take k=0 and r>n/p; then the topology on L!(S, V) is
larger than the uniform topology. Furthermore, the composition of
an LP-map with a C®-map is an L7-map. Thus once again we are in
a position to apply our construction to obtain the theorem [29], [35],
[36), [89], [04]:

Let M be a closed C=-submanifold of u Helbert space V, and let
L)(S, M)={xCLX(S, V):x(s)EM for almost ali SES). Then
LIS, M) is closed in LS, V). If r>n/p, then LIS, M) is a dosed
C=-submansfold of LI(S, V). In particular, L3(S, M} is modeled on a
Hulbert space, and the embedding of M in V induces a complele Rie-
mannian structure on L3S, M). Y

If g: Mi— My is a C=-map, then g induces a C*=-map g: IS )
—LS, M), if r>n/p.

Again, many variations of this example are possible: (1) We may
permit S to have a C=-boundary, and take it into account in dehning
LS, M). (2) In the definition of LS, V) we can permit suitable
weight factors (e.g., the Bessel potentials) for which the analogues of
Sobolev’s theorems are valid [S1, Chapter 2]; in particular, we can
define L#(S, V) for real numbers r20.

(EY The inclusion maps (S, M)—CUS, M) (0<rs w) and
LIS, M)—Ce(S, M) (r>n/p) are homotopy equivalences. See {91,
Chapter XI] for an elegant proof based on the lemma of Palais-
Svarc. Thus the homotopy types of C*(S, M) and L}(S, M) depend
only on the underlying topological structures of S, M.

7. Transversality of maps. This section describes uses of differen-
tiable manifold structures in function spaces to establish generic
properties of differentiable maps of differentiable manifolds. The
results in (A) and (B) are due to Abraham {1], [2], extending funda-
mental work of R. Thom and H. Whitney (based on the Brown-
Morse-Sard theorem).

(A} Let X, ¥ be ¢*-manifolds (r=1) modeled on Banach spaces.
Consider a subset @ C (X, ¥) which is a C-manifold such that
the evaluation mapev: XXV defined by ev(g, x) =¢(x) is C. If
K is a subset of X and B a closed Cr-submanifold of ¥, let Qx5
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= [¢€ a:¢| K is transversal to B }. The main theorem is the following :

If K is compact, then Qx.p is open in Q. Let dim X =n< w,
codim (Y, B)=¢< «, and r>max(n—gq, 0). If the evaluation map is
transversal to B on K, then Gx g is residual in @ (i.e., is a countable
tnlersection of open dense subsets).

That result can be modified in many different ways; for instance,
(1) in the second assertion, instead of a closed submanifold B in ¥V
we can take a (™-map 8: B—Y il both B and ¥ have finite dimension.
If r>max (dim X —dim Y+dim B, 0) and the evaluation map is
transversal to § on K, then @rs={¢E@: | X is transversal to 6}
is residual in @. (2) The theorems can be formulated for C-sections
of a fibre bundle, generalizing the present case of sections of the
product bundle X X ¥—X.

(B} The fact that (X, ¥) is a {*-manifold (r< o) if X is com-
pact—and in particular is a Baire space, so that every residual set is
dense—permits wide applicability of the preceding theorem, Let
£: VX be a C-fibre bundle, and J*(£): J¥V)—X its bundle of &-
jets of sections (0 Sk Sr); the fibre of J*(}) over x X consists of the
equivalence classes of sections ¢ defined in neighborhoods of x,
identified when their differentials dig(x) coincide (0=i=<k). Its total
space J¥(V) is a C"*-manifold (and J*(£) is a vector bundle if £ is).
The natural map j*: C*(V)—C—+{(J%(V)), which assigns to each (-
section (assuming that one exists!) ¢ its equivalence class at each
point xC€ X, is called the kth prolongation of ¢; j* is an imbedding.

Now for simplicity of exposition take V=XXV—X , so that
JHX XY) is identified with the bundle of k-jets of maps X V.
Then the above result produces the following theorem of Thom:

Suppose that X and Y are finite dimensional Cr-manifolds and B a
closed Cr*-submanifold of Y. For every FCO¥B, JH{X X Y)), the
subset @p(X, V)= [¢C (X, V): F(#) 1s transversal to F) is residual
in C'(X, V), provided r>max {dim X —dim JHX X ¥)+dim B, 0}.
In this assertion it is not necessary that X be compact.

Applications of Thom’s theorem include
(1) Whitney's immersion theorems:

If X and Y are C*-manifolds (r 26) and dim Y22 dim X, then the
smmersions are residual in C°(X, Y). If mzmax(dim X, 2) and
dim ¥>2 dim X, then the imbeddings are residual in C(X, Y).

(D) If X 1is a C-manifold (r 23 with 25dim X < o, then the non-
degenerate functions (§9B below) are residual in C(X, R).
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(C) Let X be a compact C*-manifold and A a closed submanifold
of X. Then the inclusion map f: A—X induces a C*-map [: C"(X, ¥)
—C"(4, Y) for any 0Zr <= its differential ], (¢) at every point is
surjective and has kernel a direct summand of the tangent space to
C(X, Y) at ¢. Asin §4B we conclude that [ is a split C=-local fibra-
tion over its image; in particular, fO(X, Y) is ¢ C*-manifoid, and Jor
every ¢EfC(X, Y) the subsel J-'(¢) is a closed Co-submany. o
C(X, Y). The subsets Im"(X, ¥) and Em*(X, Y) consisting . the
immersions and imbeddings in C'(X, ¥) are both submanifolds
{157 <=); and the same properties of J pertain to these. The fibre
space structure of f on Im"(X, ¥} and Em*(X, ¥) is basic ia the im-
mersion and imbedding theory of Hirsch-Smale and of J. Ce:’.

8. Critical point theory.

(A) Let ¢: X—R be a differentiable function defined on a differ-
entiable manifold X modeled on a Banach space E. A critical point
of ¢ is a point x& X at which the differential &, (1) =0. A critical level
of ¢ is a number ¢ C R such that ¢—!(c) contains a critical point: from
§4E we see that if ¢ is not a critical level, then ¢~ '(¢) is a closed
differentiable submanifold of X of codimension 1.

Suppose now that E is a separable Hilbert space. Then X admits a
differentiable Riemannian structure g as in §5C, relative to which
the gradient field V& C=(T(X)) of ¢ is characterized at each point
x as the contravariant representative of the differential:

by (%) -4 = (Ve(x), w), forall u € X(x).

Of course V¢ depends very much on g, but its zeros do not, being just
the zeros of ¢.

We want next to decompose X according to the limes of steepest
descent of ¢; these are the trajectories of — V¢; t.e., the solutions of
the differential equation

dy(x)

(10 dt

= — Vg(ve(x)) with vo(x) = 2.

Henceforth we will use the term trajectory to refer only to the positive
half-solutions (y{(x))..0. As in the finite dimensional case we have
the following elementary property:

Let X be a complete Riemannian manifold and ¢: X—R(Za) a
differentiable function bounded below by a. Then the solutions of (10) are
defined for all tER, and provide a full 1-parameter group of diffeo-
morphisms of X; its fixed points are just the critical points of .
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(B? -Lel: X be a complete Riemannian manifold. We now establish
mnd:tlol}s under which the function ¢: X—R(=24a) has sufficiently
man; critical points. In various forms—but always involving some
m‘rt of compactness—such conditions have been widely developed.
(Eg., in the abstract variational theory of Morse [81], [82], the
pondmons of ¢-accessibility of X and upper reducibility of ¢ suffice
In the presence of lower semicontinuity of ¢.) .

The following hypothesis has been verified in several different con-
crete contexts {34], [35], [36]. It is the mildest tractable condition
we know for proving the existence of critical potnts:

Conpition (CT). There is a critical point of ¢: X—>R(Za) in the
closure of every trajeciory of — V. -

This condition is assured whenever every trajectory is relatively

compact; e.g., whenever V¢ maps trajectories into relati
sets of T°(X). ) o relatively compact

) Conc!ition (CT) is satisfactory for basic existence theory, but is
insufficient for a full-Aedged Morse theory (see §9). The f(;llowing
much stronger hypothesis, formulated by Palais and Smale [o4]
[89], [110] and applied successfully by them, is satisfactory for that
(whenever ¢ is nondegenerate in the sense of §9B below). It is moti-

vactled by the facts thaton any trajectory (v.{x)},,0 we have ¢ bounded
an

inf { | ¥(vi(9)) |y,0: 1 € R(20)} = o.

Thus roughly speaking, Condition (CT) is Conditi
trajectories of ¢. (CT) is Condition (C) along the

CONI?ITION (C). Let ¢: X—R be a differentiable Junction. Whenever
(xi)iar 35 o sequence of points of X on which ¢ is bounded and suck

that Vg{x,)—0 (eguivalenily, & (x)—0), then there 5 a convergent
subsequence.

A first result is the following:

If X is a complete Riemannian manifold and ¢: X— ]
X : R(2a) satisfies
Condition (CT), then there is a critical point in each component of};'.

If ¢ satisfies Condition (( ), then there is a mini TRER
' minimum
componernl. mmmum poinl in each

) ExaMPLE, Suppose ¢: X—Risa proper function (i.e., the inverse
image of any compact set of R is compact in X). Then Condition (C)

H Y S H H H
18 satislicd; furthermore, dim(X) < o, since X is necessarily locally
compact,
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ExampLrE. Take for X a Hilbert space and for ¢: X—R(ZJ} a con-
tinuous positive quadratic form. Then there is a unique bounded
positive self-adjoint operator v L(X) such that ¢(x) = {p(x), x)/2 for
all x€ X, so that v(x) is the gradient of ¢ at x. The trajectories of ¢
are given explicitly by v.(x) =exp(—uf)x. As t— o each trajectory
converges to a point in the kernel of v, the space of critical peints of
¢. Thus Condition (CT) is satisfied ; on the other hand, Condition (C)
is not satisfied if the kernel of v is not zero. (That these critical points
appear as limits of the trajectories, rather than merely limit points,
is due to the quadratic character of ¢.)

(C) We now give lower bounds—described in purely topological
terms—Tfor the number of critical points of a differentiable function
¢: X—R satisfying Condition (C); the general idea here is due to
Lusternik-Schnirelman, and has been fit to the present situation by
J. T. Schwartz [107]. For simplicity we will suppose that X is con-
nected.

If 4 is a closed subset of X, its category cat (A4) relative fo X is the
least integer k for which there exist k closed (or open, since X is an
absolute neighborhood retract) sets Ay, - - -, As of X whose union
contains A and such that each inclusion map 4,—X is null homo-
topic. f no such k exists, we define cat(4) = @ ; then cat{4) sdim(4)
+1t. If mis an integer such that 1 £m S cat(X), we define

cm(®) = inf {sup(e(x): z € A):cat(d) 2 m};
AcX
clearly () Sc{¢p) = : - - . For any real number ¢ let K, be the set
of critical points of ¢ in X at the level ¢; Condition (C) implies that
K, is compact. Then we have the following theorems [107]:

Let X be a connecled complete Riemannian manifold, and ¢: X—R
a differentiable funciion satisfying Condition (C), not conslant on any
open subsel of X. Suppose that mSn and that — o <ca(p) =c=c.{¢p)
< 4. Then cat( K)zn—m+1, and dim(K.) 2n—m. Thus even if
n=m, K.1is nol emply. If ¢ is bounded below, then ¢ has at least cat(X)

critical poinis.

There is a well known lower bound for cat{X): Define cuplong (X)
as the greatest integer n such that for some coefhcient field ¥ and
elements £, H(X ; F) with b, 21 (1 £1<n) we have the cup product
2+ - - 2,70. Then cat(X) Z cuplong (X}+1.

These results have been extended by Palais [93] and F. Browder
[16, in the case of manifolds modeled on unilormly convex Banach
spaces] to complete Finsler manifolds, and to C'-functions whose
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differentials satisly a local Lipschitz condition and which satisfy
Condition (C): that is important, {or instance, for applications (as in
§10) to variational theory of 2 nonquadratic character. The idea is to
introduce certain Lipschitz vector fields on X with [ull trajectories,
which play sufficiently well the role of the gradient field of ¢.

ExampLE. As in §3B, let BO(p) be the homogeneous space of p-
planes through the origin of a separable infinite dimensional real
Hilbert space E; then cuplong (BO(p)) = . In particular, the unit
sphere S of E is the universal cover of BO(1): and any differentiable
function ¢: S—R( 2 a) bounded below and even (@(—x) =¢(x) for all
2 S} which satisfies Condition (C) has infinitely many critical points
on S. Applications of that property to show that certain eigenfunc-
tion problems have infinitely many solutions have been given (1) by
Sobolev [60, Chapter VI, §4] for Hammerstein integral equations,
and (2) by F. Browder [16] for elliptic boundary value problems.
See also Anosov [3] for the case of a function on § which is invariant
under certain finite cyclic groups of transformations on S,

(D) Suppose now that X is a closed differentiable submanifold
of a complete Riemannian manifold ¥, and that ¢: Y- R is a differ-
entiable function. Then for any xC X CY we can form the gradient
Vyé(x) & Y(x) relative to the Riemannian structure of ¥, and the
gradient Vr¢(x) € X(x) relative to the induced structure on X, Let
P Y(x)>X(x) be orthogonal projection, and v(x)=(I—P.,)Vyh(x).
Lagrange's method of muliipliers is contained in the following asser-
tion:

Vrp{x) = P,Yvd(x); in particular, the point xCX is a critical point
of ¢: X—R if and only tf Vyd(x) is orthogomal to X (x) sn Y{(x). Let
(Y ezo be a trajectory of ¢: X -R, and Cy=1(y,) its image under the
imbedding map i: X Y. Then

dy,

ar,
PP Vxé(vi) when and only when&—‘ + Vre(I') = »(I',).

The next typical criterion for establishing Conditions (CT) and
(C} has been used in several different contexts, starting with the
special case of Weyl's method of orthogonal projection [34-36; see
also §§9, 10 below]:

Let X be a closed submanifold of the Hilbert Space E, and ¢: ESR
a differentiable functiop. Suppose that

(1) the gredient Vg = Ve has the form Vg(x) = 4 {x) +K(x) for some
compact map K: X—E and linear Fredholm map A on E;

(2) if we decompose V(x) into its tangential and normal components
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Vo(x} = Vad(z) + v(x) forall z & X,

then v: X—E is compact on trajectories (resp., 4s a compact map);
(3) every subset of X on which ¢ and | Vxg| are bounded is bounded
tn E. Then ¢: X—R satisfies Condition (CT) (resp., Condition (C)).

9. Nondegenerate critical point theory.

(A) The fundamental viewpoint of Morse theory [81], [82] of a
real-valued function ¢: X—R on a topological space is that the order
of the real number field induces a filtration (¢.).cx of X by the sets
$o={xEX :d(x) S¢ }. Then the relative homology groups H{gy, ¢.; F)
with coefficients in a field F can be used to define critical levels of ¢;
and with mild restrictions on ¢ the filtration determines a homology
spectral sequence which produces a form of the Morse inequalities
(11) relating the number and types of critical levels to the homology
of X.

In the special case that ¢ is a differentiable nondegenerate function
on a compact manifold X, that theory admits a sequence of refine-
ments, starting with Morse’s inequalities as given below and cul-
minating with Smale's handlebody theory. In the case that X is an
infinite dimensional manifold there are several special cases where
Morse theory has been adapted and applied to concrete situations.
(E.g., $10D below, and Klingmann {59] for the study of a class of
(possibly degenerate) differentiable functions on a Riemannian mani-
fold which satisfly Condition (C) and for which a weak form of the
Morse inequalities (11} is satished.) However, the most precise and
satisfactory form of the theory at present (in both assertion and proof
strictly analogous to that of the compact case) is that presented in
(C) and (D) below.

(B) We say that a critical point x,€X of ¢ is nondegenerate ii
d*(x0) (sometimes called the Hessian) is a nondegenerate bilinear
form on X(xo); say that ¢ is nondegenerate if all its critical points
are. The inverse function theorem implies that each nondegenerate
critical point is isolated. The Morse index (resp., co-index) of x, [or
of d’qb(xn)] is the supremum of the dimensions of the linear subspaces
of X(x,) on which d%(x,) is negative definite [resp., the index of

—d%(x0) ).

Suppose that x, is a nondegenerate critical point of ¢ and that
#(x0) =0. An application of the spectral theorem to d%(x,) and
Taylor's theorem shows that fhere is an xo-centered chart (8, U) in
which ¢ (8-'(x)) = l le Z—I(I—P)xi * for all xCO(l)), where P is a
conlinuous orthogonal projection in E. Thus the index (resp., co-index)
of xg is the dimension of the range of I — P (resp., the dimension of the
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range of P). This was established in the case dim E < « by M. Morse;
his proof was modified by Rothe [99] in a special infinite dimensional
case, and by Palais [89] to fit the present situation.

It is most important to be able to compute the index of a nonde-
generate critical point. A good tool is provided by the Morse focal
point thearem, which has been abstracted by Hestenes [48]: A resolu-
tion of the identity for a Hilbert space E is a 1-parameter family
(£ g0 50, of closed linear subspaces such that (1) E# =0, EM= K.
(2)if A5y, then EACE#: (3) if NySu <)y, then Fr=(| B*: u<Ash;
(4) Er = 259 = Closure of U [ E* ho g\ <pl for every Ao <p S\, Say
that a quadratic form a&SLNE, R) is a Legendre form il it is expres-
sible as the difference a=f—v of two quadratic forms, where 8 is
positive definite and v is weakly continuous. Given a Legendre form
a: £--R, for each \;E\ <), we choose a maximal linear subspace
CrCE such that (1) no x50 in C is a-orthogonal to any £ with
BN, (2) if xEC then alx, ¥}=0 for all y&I> Set C*=0. Then
M) =dim < o, and only finitely many ¢(A)#0. If we let i(\)
=index (a) an E*, then the focal point theorem can be stated as
follows:

Let a: E~+R be a Legendre Jorm, and (B0, @ resolution of the
wentity for E. Then for every ASEASA, we have c(N) =i\ +-0)
—1(A—0). Furthermore,

index (@) = Y ().
A<k,

(C) Let M be a differentiable manifold modeled on a Hilbert space
and N a closed submanifold: both M and N may have boundaries.
We say that M arises from N by differentiably attaching a handle of
type (, k) if (1) thereis a homeomorphism & of Dix D# (the product
of j- and k-dimensional closed discs (054, k< »}) onto a closed subset
of M, and M=NUW(DiIxXDY; (2) B SV DY s a diffeomorphism
onto INNMR(DIX D*}; (3) k| Int(D)XD* is a diffeomorphism onto
M —N. The main theorem of differentiable Morse theory is the fol-
lowing [94], [89], [110]:

Let X be a complete Riemannian manifold and ¢: X >R a differ-
entiahle nondegenerate function salisfying Condition (C). Then

(1) the critical levels of ¢ are isolaled, and there are only a finile
number of critical points of ¢ on any level;

(2) of there are no critical levels of din [a, b}, then ¢, i5 diffeomorphic
to ¢,

(3) if e<c<b and ¢ is the only critical level of ¢ in la, b] and
X1 c o vy %, are the critical points of ¢ af level ¢, then &y s diffeomorphic
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to da with r handles of type (i, k), - - -, Ue. k) disjointly and differ-
entiably atlached, where j; and k; are the index and co-index of x;
(1sisr).

We remark that in virtue of Dugundji's theorem [25] the sphere
in infinite dimensional Hilbert space is a strong deformation retract
of the disc, whence the homotopy type of ¢y in the third statement
above is not altered by neglecting to attach any handle of infinite
index.

An aigebraic consequence of that structure theorem is contained
in the Morse inequalities (whose proof can also be given on the basis
of much less precise structure):

(4) If a<b are not critical values of &, pila, b) the number of critical
points of ¢ of index i in ¢~1[a, b), and B¢, de; ) =dim Hidy, d.; F)
Jor some coefficient field F, then Sor every integer 220 we have

& k
2 (0B, 8 F) S 3 (—=1)*“(a, b).
i} i
Equality holds for k large.
(5) If ¢ is bounded below, then for every i we have B(X; F) Sulg),
the number of critical points of ¢ on X of index i. Of course, these num-
bers may be infinite. If each pi(p) < w (0Si g k), then

k L3
(1) 2D BGR s Y (1) de).

(o]

A major qualitative aspect of these inequalities is that the left mem-
bers involve only the homology structure of X, whereas the right
members depend on the local analytic structure of ¢ (that latter be-
ing determined (as in Section 9B) in the neighborhood of a nonde-
generate critical point).

ExAMPLE [75]. Let X be a complete Riemannian manifold and
¢: X—R a nondegenerate function satisfying Condition (C). If ¢
is bounded below and has precisely one critical point, then X is
diffeomorphic to a Hilbert space. If ¢ is bounded and has just two
critical points, then X is homeemorphic to a sphere.

(D) There is a generalization [75), [76], [120] of nondegenerate
Morse theory (made first in the compact case by R. Bott) whki-k i5
important for applications in infinite dimensions: Again, let ¢: X - +J2
be a differentiable function on a complete Riemannian manif=la. A
connected closed submanifold N of X is a nondegenerale criiical
mansfold of ¢ il every xE&N is a critical point of ¢ whose tangent -
space N(x} C X(x) coincides with the null space of the Hessian of 4
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at x; in particular, the restriction of the Hessian to the orthogonal
complement N*(x) of N(x) is nondegenerate. The index of N is the
constant value of the index of the Hessian on N. We define 4differ-
entiably attaching handlebundles” as we did “differentiably attaching
handles” above, using disc bundles in place of products of discs.

Let X be a complete Riemannian manifold and ¢: X—R a differ-
estiable function satisfying Condition (C), whose critical set is @ union
o/ nondegenerate critical manifolds withou! interior. Then

(1) for any a <b the critical set in ¢—[a, b) is the union of a finite
number of disjoint compact critical submanifolds of ¢;

(2) 1if there are no critical values of ¢ in [a, b, then ¢, is diffeo-
morphic lo ¢y;

(3) if a<c<b and ¢ is the only critical value of ¢ in [a, b] and
(N)1x4se are the critical manifolds of ¢ at level c, then ¢n is diffeomorphic
to ¢ with r handlebundles disjointly and diff erentiably attached.

(4) If a<b are not critical values of ¢ and (N)igisr are the critical

manifolds of finite indices ()1s45. whose levels are in la, 2], then for
every inieger k>0 we have

h r &
20" Bn b Z) S 3 (— D8y (N; Zy).
[7]

Jumt

Equality holds for k large.

The choice of 2, as coefficient field is dictated here by the unknown
homological position of the N;in X,

10. Applications to variational theory.

(A) We offer first some illustrations of the use of differen tiability
in classical existence theory in the calculus of variations, following—
in oversimplified form—the viewpoint developed by L. Tonelli and
C. B. Morrey (see [79, Chapter 1, II] and the references therein for
the appropriate generalizations).

Let ¢: U=R be a C:-function on a convex open subset {J of a
Hilbert space E. First of all, il ¢ has a relative minimum at x,E U,
then clearly ¢y (x,) =0. Secondly, it is an easy consequence of Taylor's
theorem that if d(x; v, v) = Oforallxc U and vCE, then ¢ is weakly
lower semicontinuous in U; ie., given any net (x,) and x,& U/ such
that the inner products {(%ay ¥}—(x0, ¥) for all YEE, then ¢(x,)
=lim inf ¢(x.). It follows that suck ¢ & assumes its absolute minimum
on any weakly compact subset of U; but these are precisely the subsets
which are weakly closed and bounded in norm [26, Chapter Vi.

ExampLE. If g, - - -, g, are nonnegative real numbers, then the
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function x—p{x) = Z:—o a.|x]" 13 weakly lower semicoptinuous on
E: and ¢ assumes its minimum on any convex closed (in the normn
topology ol E) bounded subset of E. . .

ExamPLE. Let a: E—-R be a Legendre f9rm; that is equivaient to
saying that « is a quadratic form on the Hilbert space E, expressible
in the form a(x) = | Ax|?/2 for some left Fredh:olm operator A [49].
Every Legendre form is weakly lower semicontinuous. This example
abstracts the Dirichlet principle for elliptic operators, as we see from
the following application to differential geometry [33]:

Let M be a compact oriented differentiable manif.old wilthout bfmndary
( for simplicity of exposition). Let £, ¢ be_ﬁn_ztc ‘dtmenswnal differents-
able vector bundles over M, and A an elliptic lmca.r operat?r fronf the
space of differentiable sections of £ lo that of 9. Given a d:ﬂercnlwbt'e
section  of 1, there is a differentiable section ¢ of £ .mch’ t.hat Ad=y¢ if
and only +f ¥ 15 LY-orthogonal to the kernel of t_he a_d;om{ A* of A.
Furthermore, the kernels of both A and A* are finite dimensional.

To place this problem in the setting of Legendre forms, we proceed
as follows: We introduce Riemannian structures on M, §, anq 7,
relative to which we can construct the Hilbert spaces Lf.(EJ of sections
of £, as in §6D. If A has order r, then A4: L,z(E)-—'-L;(‘?) isa left_ Fred-
holm operator (this amounts essentially to Girding’s |nFquallt¥ for
the strongly elliptic operator 4*A [33]). Theref_ore, the Dlruz:hlet inte-
gral alp) = | A¢o|.’,/2 is weakly lower semicontinuous on L! (5).. Thi.lt
was the viewpoint adopted in the proof of Hodge's theorem given in
[80]; see also [33] for a simplified proof in the general case, -

(B) The following general viewpoint of the calculus of variations
in its differentiable context is that of [35], {36] and [94].

Let M be a compact oriented Riemannian manifold, and +: V—?M
a differentiable fibre bundle. A variational density on v of ord.er risa
function f: J'(V)—R on the bundle of r-jets of sections of y. We
define the function F: C*(V}—R through the diagram

i T
Ce((V)) 1> C=(M X R).

Here the right hand arrow denotes integration over M of a real-
valued function:

Fg) = f.. fGrd) o 1.
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Voo w . Laatf s (quadraticaily) Cr-extensive il F admits an extension
to a C*function I/(V)—R. In the case that ¥ is a vector bundle
Smale [110] has given conditions to insure that f be C'-extensive,
and that the second differential of the extended map have satisfac-
tory properties. Of course, if fis a quadratic form on a vector bundle
» then its restriction to any closed differentiable subbundle v is C=-
extensive.

The next theorem summarizes several recent contributions [35],
[36], [94]. We state it for the case that the base manifold M has no
boundary; the modification of our formulation and methods to include
boundary value problems, while presenting analytic and geometric
features of interest, does not present severe difficulties,

Let y: VM bea differentiable fibre bundle over g compact oriented
Rismannar manifold. Suppose that f is a -extensive, positive (f = 0},
variaticaal demsily on v of order r>dim(M)/2. Thus f determines a C2-
Sunction F: L(V)—R(20); and if F satisfies Condstion (CT), then
F has a critical point in every component of L}(V). If F is nondegener-
ale and satisfies Condilion (C), then we have a Jull Morse theory for F.

This result—and certain variations on it—provide existence theory
in L}(V); taken together with certain examples [34], [35], it suggests
that in general it is easier to solve high order variational problems
than low order ones. Of course, there remains the local matter of
showing that such L¥{V)-solutions have sufficiently good differ-
entiability properties; see [79].

(C) ExAMPLE, Let N be a compact Riemannian submanifold of
the Euclidean space R*: we choose an imbedding here solely for sim-
plicity of exposition. We treat M XN as a trivial subbundle of the
Riemannian vector bundle MX R+, and view its sections as maps
from M to N. For any PELY{MXRY we define its rth energy

i
E.(¢)=_é_f' |(d+d*)¢| .1,

where 4* denotes the adjoint of the exterior differentiation operator
d, using the Riemannian structure of M. The restriction of E, to the
closed submanifold LY M X N) is differentiable il r>dim(M)/2, and
its extremals are called polyharmonic (or r-harmonic) maps of degree
t from M to N. They are known to be differentiable.

If M and N are compact Riemannian manifolds, and M is oriented,
then every comtinuous map ¢: M—N is homolopic to an r-karmonic
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F

) i 3 Riemannian sec-
ovided r>dim{M)/2. If r=1, or if N has_
::3! i;mturc Riem (N) 50, then the same conclusion holds.

This was proved a few years ago [34], [35 ], based on a form of ‘the
rojection theorem of §8D); a problem similar to tl_1e ‘ﬁrst assertion
Eut involving boundary values was solved (with a similar projection
method) by Palais [89]; his approach can be applied to produce that
assertion with no essential difficulty.

Added in proof. A treatment has been given by ]. 5. Saber, Mani-
folds of maps, Ph.D). Thesis, Brandeis Univ., December, 1965.

ExaMrLE. If dim M =1, then M is diffeomorphic to the circle S*.
In this case L}(S!, R?) is a Hilbert space with inner product

@ ks = [ @+ [ @6, v

The 1-harmonic maps ¢: S'—N are just the closed geodesics of_N
{parametrized proportionally to arc Iengt‘h). A treatment of geodesulcs
and closed geodesics—in particular their Morse theory:——f"r.om t‘le
present viewpoint has been given in [35], [58], [75], [89]. it exis-
tence of a nontrivial closed geodesic on IV {first prove.d by A. L. .F.et)
is an immediate consequence of the fact that E, sat'lsﬁes Condlta(;)n
(C); furthermore, strong methods [58], [75] are available for esfzia >-
lishing the existence of more closed geodesics (ex_tendmg Mx':nb]eds
work on estimates of the number of closed geodesics on manifolds
i hic to the n-sphere). )
dl‘;";O;; (;;pnoi compact, Iihen Condition (C) is never satisfied; hcniv-
ever, if N is complete and its Riemannian structure possesses certain
growth conditions at infinity, then Condition (CT) is satisfied [34]-
y 175].

[3?113)[A2)plications of Morse theory have been .ma.de by E. H.
Rothe, in the case of certain nondegenerate functions ¢ defined on
convex bounded open subsets U of a Hilbert space E. (See [99],
[100], and [101] for a survey. Also [102] for the theory under rather
general boundary conditions.) He supposes that the gradient of ¢ is
expressible in the form x—Vé(x) =x+ K(x) for some fzqmpact map
K: U—E; then in the projection theorem of §8D condmons:, gl) and
{2) are verified, whence some form of (3) insures that Condition (C)
is satisfied. See also §11B below.

11. Fixed point theory. Certainly among the most widely L{sed
algebraic topological tools in analysis are the theories of fixed points
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and topological degrees. We cannot begin to do justice to them in
this report; we will treat their theoretical aspects, and refer to 21},
[60], [69], [70], [72] for applications to the existence, uniqueness,
stability of solutions of ordinary and partial differential equations,
and of integral equations.

(A) A first basic result is the Schauder-Tychonoff fixed point theo-
rem [26, Chapter V]:

If A is a convex compact subset of a locally convex lopological veclor
space E and ®: A—A a continuous map, them there is a point o€ A Jor
which B{a) =a,

The main technigues of the proof involve the approximation of &
by a map into a finite dimensional subspace of E, the application of
fixed point theory in finite dimensions, and homotopy invariance
properties. s a consequence we cite the following: If A is a bounded,
convex, clusec subset of a reflexive Banach space E (whence A is weakly
compact) and $: A— 4 s weakly continuous, then d has ¢ fixed point.

If E iz wmetrizable and 4 a convex subset of E, then 4 is compact if
and on!v if 4 has the fixed point property [57].

Imporiant for other applications are the following properties:

(1) The closed convex envelope of a compact set (i.e., the inter-
section of all closed convex supersets of 4) in a complete locally con-
vex topological vector space E is compact [13].

(2} I 4 is a closed subset of a metrizable space X and &: A E is
a continuous map with relatively compact image, then there is a
continuous extension of & to a map of X into E whose range lies in
the closed convex envelope of $(4) [25].

In case E is a Banach space the Schauder-Tychonoff theorem can
be modified as follows [41], [98]:

If®: D—Eisa compact map of a closed disc D of E having ®(3D) C D,
then  has a fixed point.

There are many variants of the Schauder-Tychonoff theorem {e.g.,
relaxing the condition of local convexity of E (V. Klee), permitting

set-valued mappings (S. Kakutani)), of which we cite the following
two:

(1) Let : E~E be g compact map of the Banack space E, and \, o
real number (0 SN <1). Then either there is & point aCE with \d(a)
=a, or |xCE:M(x)=x for some M0 <) <M} is unbounded [21,
Chapter 111].

(2) Ifd: E>Eisa compact map such that for some positive inleger
m the iterale d(E) is bounded, then ® has a fixed point [15], [71].
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ExAMPLE. Some compactness assumption is essential in 'hes . 4s-
sertions. If D denotes the closed unit disc in a normed lije SO
E, then there are fixed point free maps ®: D—D if and only ii dira E
= o [25]. If E is a separable infinite dimensional Hilbert spuce, then
Kakutani (see [56], [57] for generalizations) has exhib” . 3 fived
point {ree homeomorphism of D onto itself; in this order of ideas
Kiee [56] has shown that the sphere @0 is homeomorpl.~ ‘o any
closed convex body (i.e., subset with an interior point} in E. Every
infinite dimensional compact convex subset of a normed linear BDACe
is homeomorphic to the Hilbert parallelotope {57].

(B) We next obtain a count for the algebraic number of fixed
points of certain maps; that is achieved through the Leray-S- suder
degree (developed in [72] for Banach spaces, and extended in [70],
[86] to locally convex spaces).

Let U be an open subset of the locally convex tapological vector
space E. Suppose that ¢: U—E is a continuous map expressible in
the form x-s¢(x} =x~d(x) for all €T, where ®(T) is relatively
compact. (It might be helpful to think of ¢ as a vector field on U)
Then for any point bCE—¢(bdy U} the Leray-Schauder degree
d[p, U, ] of ¢ in U relative to b is an integer defined [70], {86],
through a finite dimensional approximation of ®(T), roughly speak-
ing as the algebraic number of times that b is covered by ¢-images of
points of U. It has the following properties:

(1) If d[p, U, 8]0, then bES(U)).

(2) If Ur, U, are disjoint open subsels of U such that U=0U,\JT,
and bC E—g¢(bdy U\\Ubdy Uy}, then

dlé, Uy \J Uy, b] = d[g, Uy, 8] + d[o, Us, 8.

(3) The integer d[s, U, b] is invariant under continuous deforma-
tions of ¢, U, b, if ¢, maintains its Jorm x—x —~&(x) with the deforma-
tion &,(T) contained in a compact set for 05151, and b never lies in
$(bdy(L)).

(4) If Uyis an open subset of U containing ¢='(b), then

d[¢; Uol b] = d[¢) U1 b]

(5) Let V be an open subset of E conlaining ¢(U), and (V,) the
components of V—¢(bdy U). If §: V—E is a conlinuous map of the
form x—(x) =x—W(x) with ¥(V) relatively compact, and bCE
—¥o¢(bdy U)—¢(bdy V), b;E B., then

dlyos, U, b] = E dle, U, b;)d[y, v, b].
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The Schauder-Tychonoff theorem is an easy consequence of these
properties. L can prove the following restricted version of Brou-
wer's {heorem on invariance of domain {70], {106}, [86]-

If E is @ Fréchet space and ¢: U—E is a one-one map of the form
above, then $(U) is open in E, and for any bES(U) we have d|¢, U, b]
= + 1. Schauder [105] has used such invariance of domain in Banach
spaces in studying solutions (in particular, in establishing existence
from unigueness assumptions) of second order elliptic quasi-linear
equations with Dirichlet data. Invariance of domain also implies the
Fredholie alternative for linear operators ¢ such that x—x —g(x) is
conrpact, [6o], I70].

1} Lew J Le a bounded open subset of a Banach space E, and
a = U an isolated fxed point of & and [/, a neighborhood of ¢ in U/
containing no other fixed point of ®. Letting ¢ =7 —, then d [, U.. 0]
is independent of the choice of U., and is henceforth denoted by
dlg, a], the index of a. If $—'(0) consists of isolated pointsay, - - -, a,
€U, thend(s, U, 0] = P dl$, a;] is called the algebraic number of
eeros of & in U. In particular, suppose that ®: U—E is Fréchel differ-
enliadle at a fixed point a U, If +1 s not an eigenvalue of the differ-
enital ®ola}. ihen g is an ssolated zero of ¢ with index

d[¢r G] = (=1),

where a is the sum of the orders of the eigenvalues of the compact linear
operator da{c) in the open interval (0, 1) [60], f72].

If ¢ is it:e gradient feld VW of a nondegenerate function ¥: U-R
defined on a bounded open convex subset of a separable Hilbert space,
and a is a critical point of ¥, then a is the Morse index of ¥ at a.
Again letting u;(y) denote the ith Morse number of critical points in
U of §, we obtain the formula of Rothe [o9]:

AV, U 0] = 3 (= 1)iuiy).
(P11
In particular, |2[v¢, U, 0]| is a lower bound for the number of criti-
cal points of ¢ in U. See [100] for an extension to the case that ¢ is
degenerate. This formula has been used by Rothe [99], [60] to estab-
lish existence and qualitative properties of certain systems of non-
linear integral equations, including the Hammerstein equation,

(D) The following result is a genecralization and application of the
Lefschetz fixed point theorem for absolute neighborhood retracts.
We write H(X; @) for the direct sum of the singular homology groups
Hi(X; @) of X with rational coefhicients; and for a map ®: X— X let

®. denote the direct sum of the induced endomorphisms &,: H.(X: Q)
"-'Hi(X: Q)-
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Let X be a C*-manifold modeled on a Fréchet space, and : X3X 6
conlinuous map withrelatively compact image. Then the image® H(X ; Q)
of the rational kamology group is finile dimensiomal, so that the Lef-
schelz number

A(®) = 3 (—1) Trace (&)
[+
of & 1s defined. If A(®) =0, then & has a fixed point. '

Suppose that X is acyclic over @ (i.e., Hi(X; @) =0 for all i>0, and

Ho(X; @)=@). Then ® has a fixed poini.

The idea here is that X is imbeddable as a closed subset of a
Banach space V' as a retract of a neighborhood U in V. Then we can
construct a compact absolute neighborhood retract P such that $(X)
CPCU, and a map ¥: P-~P with A(¥) =A(®) and such that any
fixed point of ¥ in X is a fixed point of &; but we can apply Lefschlez’s
theorem to ¥. (A special case of this theorem (X is a (*-manifold
modeled on a (P-smooth separable Banach space) has been flound
independently by F. Browder [17], and then generalized by him to
iterated maps; see also [71].) As a simple illustration, let X be. an
infinite dimensional projective space (real, complex, or quaternionic);
then any continuous map f: X—X with relatively compact image has
a hxed point.

H in the above theorem & has only isolated fixed pointsay, - - - , g,
€ X, then with each we can attach the index d[®, a,}, and

A®) = 2 d[® o).
=1

See [71] for the relations between local degrees and the Lefschetz
number. In the special case that X is a Riemannian manilold, each
d[®, a,] can be computed analytically. -

(E) Smale [111] has suggested the following notion (ge'nera.hzmg
a concept developed extensively by L. Pontrjagin in the finite dimen-
sional case) of degree for certain maps of differentiable manifolds.
Let X and Y be connected separable C"-manifolds modeled on Banach
spaces {which we will suppose infinite dimensional), and f: X —Y a
proper Fredholm C*-map of index (f)=p20 and r>p+1. Then'for
all points b€ ¥ except for a meager subset of ¥ the set f'(b) is a
closed Cr-submanifold of X of dimension p, as in §4E. That deter-
mines a definite element y(f) of the unoriented bordism group R,(X)
of X, which is independent of the choice of b. (For definition and
calculation of N,(X) see [19, §§4, 8].) y(/) is called the degree niod 2
of f. That concept has many properties of degree; e.g., (1) il fo, fi:
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X—Y are Fredholm homotopic, then y{(fo) =y(fi); (2) if (/) =0,
then f is surjective. If index (f) =0, then ¥(f) can be interpreted as an
integer modulo 2; and in case X is an open subset of a Banach space
E=Y, then y(f)=d[f, U, b] mod 2.

12. Homological duality. In this section we describe certain as-
pects of manifolds centering around Poincaré and Alexander-Pon-
trjagin duality. We begin with a theorem (closely related to the Gysin-
Thom isomorphism theorem) on the cohomology of a closed finite co-
dimensional submanifold, which is a combination of these two dual-
ities.

(A) Let X be a (®-manifold modeled on a locally convex topological
vector space E, and 4 a closed submanifold of codimension p21.
If to each open subset U of X we assign the relative singular co-
homology group H*(U, U—A) with integer coefficients, and to each
open VU the natural homomorphism H*(U, U— 4)—H*(V, V—4),
then that assignment determines a sheaf 3—d4 (the orientation sheaf of
the pair (X, A)) locally isomorphic to the integers. We will let
H*(4; 3) denote the singular cohomology of 4 with local coeffi-
cients 3.

The following theorem is the principal result [30], [32], [87]: a
generalization can be given, taking into account supports, general
coefficient sheaves, and muitiplicative structure.

Let X be a (™manifold modeled on a locally convex topological veclor
space, and A a closed p-codimensional submanifold (p=1). There is a
canonical isomophism for all 1 Z

¢: Hi(A; 3) — H*(X, X — A).

Both cohomology groups are based on singular cochains; the right
member uses relative cohomology with integer coefficients. The proofl
has two aspects: (1) If X is any paracompact space and 4 any closed
subset, tiwi the graded sheaf 3—A4 can be defined, and there is a
spectral sequence with Ey=[*(4, 3), Cech cochomology with coefh-
cients in the sheaf 3, converging to H*(X, X — 4); (2) a local study
{admitting interesting generalizations [87]) of a neighborhood of A4
to produce triviality of the spectral sequence.

We say that the pair (X, A) is oriented if the sheaf 5—4 is simple,
and if a definite isomorphism 3=2Z has been chosen. The class (1)
=aCHM(X, X — A} is called the fundamental class of (X, A), and we
can express the isomorphism ¢ in the form ¢(x) =x-a (cup product).
Thus we have the interpretation of H*(X, X — A4) as a free H*(A4)-
module of rank 1, generated by the fundamental class a. Furthermore,
we have an exact sequence
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(A2 - S HYX — A) 5 Br(4) S B0 S B — 4)—

where £: X —A—X is the inclusion map, 5 corresponds to the Gysin
honiomorphism (of the normal bundle of 4 in X, when that makes
sense), and X\ is the cohomology analogue of Alexander linking be-
tween cycles of 4 and cycles of X — 4.

If (X, A) is an oriented pair we can define (following the proccdtire
of Thom) its Euler class W,(X, A)=¢7[$(1) - (1) |EH?(4}. (In
the differentiable case this is just the Euler class of the transverse
bundle of 4 in X.) More generally, for any p-codimensional sub-
manifold 4 in X we can define the total Stiefel-Whitney class w(X, 4)
=¢~1 5q ¢(1) using Z;-coefficients, where 5q denotes the Ste.rrod
square in cohomology over Z,.

ExAMPLE. If the inclusion a: 4—X imbeds A4 as a deformation re-
tract of X, then the homomorphism n of the above exact sequence is
given by multiplication: 9(x) = (a*)~'[x- W,(X, A)]. I X is such a
neighborhood of 4 in a manifold ¥, then W,(X, 4) is an invariant of
the imbedding 4—Y.

(B) The Brouwer-Jordan separation theorem is intimately con-
nected with Alexander-Pontrjagin duality on manifolds:

Let X be a C*-manifold modeled on o locally convex topological vector
space, and A o closed submanifold of codimension 1. If H(X) =0 and
Bo(X)=dim Hy(X) is the number of components of X, then

Bo(X — A} = Bo(X) + Bo(A).

Similarly, (1) if 22 and X is connected, then so is X —A; X
is acyclic, then we have the isomorphism \: Hi(X —A)—=Hi-r+1{4)
for all §21. These properties follow from the exact sequence (12)—
in particular, from the segment (using Zi-coefficients throughout if
(X, 4) is not oriented)

0 — H(X) — HY(X — A) 5> H'»(4) 0.

In another direction we have the following separation property
[30], [70], closely related to the invariance of domain of $11B:

Let E be a Banach space, A a closed bounded subset, and ¢: A—E a
homeomorphism of A onto a closed subset ¢{(A). If the map x—x —¢(x)
is compact, then E—A and E—~¢(A) have the same number of com-
ponents.

On the other hand, it has been established by Klee [S6; this refer-
ence contains several generalizations to Banach spaces of such theo-
rems] that if 4 is compact and E is an infinite dimensional Hilbert
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space, them E— A is homeomorphic to E. Bessaga [8] has shown that
E -0 is C=-diffeomorphic to E; furthermore, the diffeomorphism can
be put in such a form that it produces a C*-diffeomorphism of £
onto its unit sphere S.

(C) Closely related to Alexander-Pontrjagin duality in a Banach
space is the following treatment of cohomotopy theory, due to K.
Geba [39]. Fix an infinite dimensional Banach space E, and choose
a decreasing sequence of closed linear subspaces E=E=DE=!
DE=D - -+ such that codim (E*, E**) =k for all 220; let
Pet=FE="t—0. For any closed bounded subset X of E we consider
the continucus maps ¢: X —P** of the form ¢(x) =x—B(x), where
®:X—E i. compact. Say ihat two such maps ¢, ¢: X—P=* are
specially homotopic if there is a homotopy & between them of the form
hix) =x—H(x), where H: X XI—-E is compact. These special
homotopy classes form an abelian group ***(X), called the kth
cohomotopy group of X, with addition patterned alfter K. Borsuk’s
cohomotony addition. (Similarly, if € is a closed subset of a finite
dimensionat se inace of E and [X, E—C]s denotes the totality of
special homotopy classes of maps ¢: X—E —(, then [X, E—C]s has
a natural abelian group structure [7, 39a].) That definition can be
relativized io produce an abelian group »~*(X, 4) for pairs (X, A),
where 4« . closed subset of X;if f: (X, 4)—+(V, B} is a map of pairs
of thc forre f(x) =x-- F(x), where F is compact, then f induces a
homomorphism f**. x=*(Y, B)—g=—%t(X, A) for all 220. Geba
[38], {39] Las shown that (;r=-%, f=~%) forms an extraordinary coho-
mology iheory (in the category of spaces, maps, and homotopies under
consideration). Furthermore, Spanier-Whitehead duality is satisfied
[39]:

If X it a closed bounded subset of ¢ Banach space E, then there is a
canonical isomorphism x=X)— 3, (E—X) Jor all 220, where

Y (E—X) are the S-homotopy groups [113), defined as the direct
limil of the sequence

BE = X) i SE = X) = S wfSE— X)) > - - -,

where S/(E— X) denotes the jth iterated suspension of the space E—X.

In particular, #*(X) is a free abelian group, and there is a bijective
correspondence between its generators and the bounded components
of E—X.

[f we take X =S, the unit sphere in a Hilbert space E, then x=%(5)
is identified with the &-stem ol the homotopy groups of spheres:
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*H(S) ~ lim xpyu(S7).

On the other hand, »=—*(5) can be tdentified with special homotopy
classes of maps ¢: S—P= of the form &(x) = A (x) —®(x), where A is a
fixed linear Fredholm operator on E of index k, and &: S—FE is a com-
pact map [38], [39], [115). The special case k=0 is due to Rothe

98], as an application of the Leray-Schauder degree; it can be viewed
as a variant of a classification theorem of H. Hopit.

(D) Alexander-Pontrjagin duality suggests that a p-codimensional
submanifold 4 of X should represent some sort of homology class of
X of dimension « —p; and from intersection theory of such sub-
manifolds there should be a form of Poincaré duality relating singular
p-dimensional cohomology groups H»(X) to p-codimensional ho-
mology groups 3¢, ,(X). We are not now in possession of a definitive
theorem of that kind; however, the following construction may be of
temporary interest [7]:

Let U be an open subset of a separable Hilbert space V. Choose an
orthonormal base (e,);,, for V, and let Vi be the space spanned by
(er1gise; set U= UM V. Then the natural map inj lim U,— js a
homotopy equivalence by the lemma of Palais-Svarc, so that we have
the canonical isomorphism H{(U)=H(inj lim U,) for all i€ Z. On
the other hand, each U, is a k-dimensional oriented manifold, so that
Poincaré duality in finite dimensions defines an isomorphism

Dy Hi(Uy) — LFH, (U,),

where the right member denotes the singular (¢ —1)-homology group
of Uy based on locally finite chains. For any coefficient group G and
any 1CZ we let 3o_(U; G) denote the inverse limit

.'IC.._.-(U, G) = pl‘Oj Hm LFH;_,'(U}; G)

determined by the inclusions n: Uy— Uiy and the duality isomor-
phisms Dy. The elements of Kol U; G) can be viewed as sequences
ofcycles ( « -, s ¢, Zpyy, - - - ), where B¢ =M{sk1_y) and n, is the
Umkehrungshomomorphismus of the inclusion map 1.

Let U be an open subset of o separable infinite dimensional Hilbert
space, and G a coefficient group. Assume either (1) H{U) is finitely
generated for all i, or (2) G ¥s a field. Then we kave the cavaect is6-
morphism

D:H(U; G) -+ R iU &)
for all icZ,
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Examples [7] show that some restrictions such as {1) or (2) are
necessary; however, we do not know whether that is merely due to
a defect in our definition of Xwi(U; G).

(E) The following constructions were first given in [30], [32] ina
differentiable context (using the inverse function theorem), and in
the present more general and improved form in Namioka [87], using
a local fibre structure of certain maps to replace the inverse function
theorem.

Let M be a manifold modeled on a locally convex topological vector
space, .S a finite polyhedron, and S, a subpolyhedron of S, For any
subset PC M we let C(S, S;; M, P) = Cp(M) denote the totality of
continuous maps (S, So)—( M, P} with the topology of uniform con-
vergence, Suppose that P is a closed submanifold of M of codim (M, P)
=p21, and that (M, P) is an oriented pair. Taking for S, a vertex
of S we find that (Cu (M), Cr(M)) is an oriented pair of codimension
#, and from the theorem in (A) we have the canonical isomorphism

¢: H{(Cp(M)) — H**(Cu(M), Cu_p(M)),

with its special multiplicative structure.

ExaMPLE. We specialize S to be the closed unit interval, and fix a
point mo€ M. Let Co.p(M) = {xE Cu(M): £(0) = m,, x(1)EP}. Tak-
ing into account the contractibility of Cy (M) we obtain the linking
isomorphism

M HEYCo (M) — H=#(Cy, p(M))

for i>0, where p =codim(M, FP). (Let us observe in passing thatif M
is a Hilbert space E, then Co,r(E) (resp., Co.g_p(E)) has the homo-
topy type of P (resp., E~P), and our isomorphism becomes the Alex-
ander duality isomorphism A: HSE - P)y—H~*»(P) for 1>0.)

Especially interesting is the situation in which P, Q are closed sub-
manifolds of M with P (resp., Q) contained in M—Q (resp.,inM —P)
as a deformation retract. Applying the preceding isomorphism twice
shows that the cohomology of Cy »(M) is periodic. For instance, let
A be the n-sphere S* with P, Q antipodal points; then Co,p(S") has
the homotopy type of the loop space ©5*, and the linking isomor-
phism A: H= 05y Hi=n (5™ expresses M. Morse's theorem that
HXQS) =Zif j=0 mod (n— 1), and 0 otherwise.

Other applications to the computation of the cohomalogy of path
spaces, of snaces of circles, of multiplicative structures (both in co-
homology and homology), can be found in [32], [87].
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