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Heat-flow methods for harmonic maps of surfaces
and applications to free boundary problems

Michael Struwe

Abstract

In {17] the Eells-Sampson method for constructing harmonic maps
between manifolds wasg extended to maps from a surface to an ar-
bitrary compact manifold. We review the results in {17) and pre-
sent several applications: First a new proof of the Sacks-~
Uhlenbeck results is given. Then we study minimal surfaces and
surfaces of constant mean curvature with free boundaries on a

supperting surface in R3 .

AMS classification code:; 53 a 10, 53 C 20, S8 E 20, 58 G 11,

1. Basic definitions

Let M , N be compact Riemannian manifolds of dimensions
dim =2, dim N = N, and with metrics Y + 9 respectively,

For differentiable maps u =N + N let

E{u) = 5 e{u)du
M

be the enerqy of u with energy densitx e{(u) in local co-
ordinates being given by )

1 af i, k
efu) =3 9y 0y (x)3 u agu” .
L
i 3 i af
Here and in the sequel Buu = —a W . (Y} denotes the in-
ax

verse of the coefficient matrix (Yuﬂ) of y , and {gik) is

2 local representation of 9 . By convention double Greek in-
deces will be summed from | to 2, double Latin indeces
from 1 to n . oOf course, locally the volume element on M

al = /y dx
where y = dat(YnB) .
U is harmonic, iff E is stationary at u , i.e, iff

-1 eE) i= gy u - Mrw (gu,vw = 0

with

- r_ 1 —.aB, %
{ A“u) = r autlyy aBu ) . l<t<n

denoting the Laplace-Beltrami operator on M and

{"r(u)(Vu,vu)“)‘ =

= rt af i 4
Pik(u)y anu aBu R l<t <n,
where
| 2 1 25, a ] ]
fik =39 (9., +-q . -2 4 )
ik 2 aui jk auk ij aud ik

are the Christoffel symbols of the metric g .,

Note that formally at a smooth magp u : M+ N for any smooth

variation vector -]



d =
ac Efuveel) o
(1.2)
N k L
= 5 9y (0) (-4, 0 - r(u)(vuavulul ¢ dM ,

whence 4&E may be regarded as the Lz—gradient of E with
respect to the metric g{u)

By the Nash embedding theorem we may assume that N CIRN iso-
metrically. A natural space on which to consider E then is

the space

B2 000 = (ue BV 200RN) [uin < Ny

of Lz-functions from M into N having a dlstributional
derivative in Lz.

By a result of Schoen and Uhlenbeck (13] and since M is
2-dimensional, Hl'z(H.N) is the closure of the space of
smooth functions from M into N in Hl'z(M;RN) . Hence we
may continuously extend E to Hl'z{M;N) . Moreover, E |is
coercive with respect to the norm induced by Hl'z(M;RN) ‘

and therefore Hl'Z(M;N) is precisely the space of measurable
functioqs u: M+N a,e. with E{(u) < » ,

However, note that Hl'ziu;N) is not a manifold and hence E
cannot be differentiable on this space.

2. Existence of harmonic maps

Given the coerciveness of E on HI'Z(M,N) it is natural to
apply the direct methods in the calculus of variations to ob-
tain harmonic maps from M 1into N ag (relative) minimizers

ef E in this space.

Unfortunately, E trivially assumes its global minimum O

at any constant map u : M + N , Moreover {although as a conse-
quence of the Schoen-Ulhlenbeck result homotopy classes of
(continuous) maps between M and N are stable in the strong
Hl'ziﬂ;N)-topology) homotopy classes in general will not be
weakly closed in HI'Z(M:N) « Therefore, the extstence of non-
trivial harmonic maps and, tn particular, the existence of
harmonic representants of hohotopy classes of maps between M
and N does not follow from the direct methods.

Instead, in their pioneering paper [2) Eells and Sampson con-
sider the evolution problem

(2.1 2,4 - B - "F{u)(?u,?u)u =0

(2.2) =y

u t=0 [=]

for harmonic maps from ¥ into N , Their fundamental result
ls the following

Theorem 2.1 (Eells-Sampson): Suppose the sectional curvature
K of N 1is non-positive, Then for any smooth map u, : M+ N
there exists a smooth solution u : M x [0, + N of (2.1),
(2.2) which as t + = converges to a smooth harmonic map
uo: M+ N,

Remark that by (1.2) for any solution u of (2.1), (2.2)
E{u(-,t}) is non-increasing in t , so that in particular the
result of Eells and Sampson guarantees the existence of a
smooth harmonic map which minimizes E (relatively) in any
homotopy c¢lass of maps u : M + N , if N is non-positively

curved.



Theorem 2.1 was later generalized to arbitrary target mani-
folds assuming the range u{lix [0,=[} to be a-priori bounded

in a gecdesic ball of radius R <—1: where K > 0 is an upper
2/K
bound for the sectional curvature of N ., cp. [8), [19). For

complete M , however, only constant maps can be harmonic and

have range in a ball of radius < —1: + and the above results
2/K
are useful only for harmonic maps of manifolds with boundaries.

While Theorem 2.1 is valid for all dimensions, Sacks and Uhlen-
beck in 1981 obtained significantly new results for dim(i) = 2,
¢p. [12]. In particular, they proved b

Theorem 2.2 (Sacks-Uhlenbeck): If N is compact, and
n2(N) = 0 , there exists an energy-minimizing harmonic map in
every homotopy class of waps from M - N .

For arbitrary targets W they can assert:

Theorem 2.3 {Sacks-Uhlenbeck): Every conjugacy class of homo-
morphisms from 11(“) into ll(Nl is induced by an energy-
minimizing harmonic mapifrom M into N .

If W= 82 moreover they obtain

Theorem 2.4 {Sacks-Uhlenbeck)}: i} If the universal covering space
of N is not contractible, there exists a non-trivial harmo-

nic map of 52 into N

il) There is a set Al of free homotopy classes of maps from s?

H Independently, related results were obtained by Luc Lemaire.

into N generating nz(N) acted on by '1(") and represented
by relatively energy-minimizing harmonic maps u, : s2 + N,

Remarks: i) By results of Gulliver, Osserman, and Royden a non-
trivial harmonic map u ; 52 + N is a branched minimal immer-
sion [S].

i1i) Note that in general not avery homotopy class of maps frbm
4 into N has a harmonic representant, cp. [3).

In order to obtain thejr results, Sacks and Uhlenbeck construct
4pproximate solutions as relative minimizers of a family of
perturbed functionals Eu ra>1 .78 a-+1 approximate solu-
tions will either converge towards a smooth harmonic map or
Larmonic spheres will tend to separate at finitely many points
of the domain M ip the senge that a sequence of blown-up so-
lutions will tend to a smooth, non-constant harmonic map

u: :IR2 - 82 * N, locally uniformly in the tangent space T M =r?

4% a point x e M ,

I3 [17) we have extended the heat flow method to maps from a
compact surface into an arbitrary compact Riemannian manifaold.
in the next section we review these results and indicate how
the theorems of Sacks and Uhlenbeck may be derived from them,

3. The evolution of harmonic maps of surfaces

Our basic result is the following [17, Section 4}:

Thecrem 3.1: Let M be 4 smooth, compact Riemannian surface,
and let N be a smooth, compact Riemanniap manifold of dimen-



sion n . For any smooth u, : N+ N there exists a global
(distribution) solution u : M x (0,=[ + ¥ to (2.1), (2.2)
which is regular on M x [0,=] with exception of at most
finitely many points (xl.tl). vue (xk,tk), 0« tj £ =, and
which is unique in this class,

At a singularity (x,t) of u a smooth non-constant harmonic
map u:s?au Geparates in the sense that for suitable
g0, e+ E, Xp * X in local coordinates

~ 2,22,
u(xm+rmx,tm) + u in HlocuR iN)

U has finite energy and may be extended to a smooth, non-con-
stant harmonic map u : §2 = RZ 4 g . Finally, as t + = ,
u{+,t) converges weakly in HI'Z(H,N) to a smooth harmonic
map u_ : M+ N, If all tj <w®,1c3<k, u{,t) + u,

even strongly in Hz’z(M,N) .

Remarks: {5] alsoc applies in the case of Theorem 3.1 and we
conclude that the harmonic spheres separating at singular points
of the flow must be C" conformal branched immersions of s?
inte N,

We also remark that the time needed to create a singularity of
the solution u to (2.1}, (2.2) can be uniformly estimated
from below on an Hl'z—neighhorhood of the initial value u,
This permits to extend the existence result stated in Theorem
3.1 to inicial values of class HI'Z(H,N) ¢ cp. (17, Theorem
1.1). (Now, of course, we only obtain "interior" regularity
on M x ]O,w[\[(xj.tjjjl 23kl

By the non-existence result of Eells and Wood [3] e.g. for

initial maps u_ : 1% 4 52

of degree 1 the solution u to
(2.1}, (2.2) has to become singular at some point (x,t}
However, it is an open question if singularities of the flow

(2.1}, (2.2) appear in finite time.

Let us sketch for example how Theorem 2.2 may be deduced from

Theorem 3,1.

Proof of Theorem 2.2: Let

€ = inf E(ulu s % + N is a smootn,

non-constant harmonic map)
It is well-known that £, > 0 ; this also follows from Lemma
4.2 below,

Let [uO] be a homotopy class of maps from M into N , re-
presented by u, . We may suppose that u, is smooth and
fo

E{u') <« 4inf E(u) + -2 .
Q" - UE[UOI 4

Let u : M x [0, + N be the solution to the evolution pro-
blem (2.1), (2.2), guaranteed by Theorem 3.1. Suppose u be-
comes singular at a point (x,t) . Then for <t et

Xy *+ X and some rm + 0

~ 2,22
um(x) ] u(xm-l-rmx,tm) +u in nlocm H. 2]

where U may be extended to a smooth non-constant harmonic map
u S2 + N . In particular, we can find a sequence of radii

Rm + @ such that

Ry £ vu | - 950 » o

BBR
m

and



/o |vd)%ax - 0

R\B
Rm

wWe may replace the large
3¢

as m + = ., Inverting u in BBR

almost spherical surface um(BR ) having energy 2z “72 by a
m
€
small disc {essentially umz\l:l!l }) of energy £ < to obtain

m
a new map Ve P M * N | Since lztﬂ) =0 Yo lies in the same

homotopy class as u(-,tm) . 1.e. Va € [uol

On the other hand, since E{u{+,t)) is non-increasing in ¢t ,
cp. Lemma 4.3 below, we have:

£o
E(vm) < E(u('.tm)) ¥ .
‘o ‘o
S E(u)) = < < inf E(u) -~ -2
o 2 ue(u,) 4

The contradiction proves that the solution u through uo is
globally regqular and as t = converges to a smooth harmonjc

map homotopic to u, .
q.e.d.

Similarly, Theorem 2.3 can be derived from Theorem 3.1 and the
observation that the conjugacy class of homomorphisms from
nltu) into ll(N) induced by the maps u{+,t} envalving from
4 given map u, will not change if harmonic spheres separate,
Finally, also Theorem 2.4 can be proved using Theorem 3.1 by
arguing as in {12, Section S5).

- 10 -

4. Sketch of the proof of Theorem 3.1

It may be instructive to recall the essential features of the
proof of Theorem 3.1.

Let u be a smooth solution to (2.1), (2.2) in M x [g,T)
We can formulate a-priori estimates for u 4p terms of the
quantity

€{R,T) = sup S elu(t))aM
XM, t<T BR(x)

where 0 < R < RO + R, : the injectivity radius of H ., and

BR(x) is the geodesic bhall of radius R around x e M .

Lemma 4.1: There exists ¢ » 0, <, € R such that

Ao |

s lvzulzdﬂdt < ¢, E(u) (1+TR™%) ,
M - o o

whenever E{R,T) < € ,

The proof uses the following fundamental Sobolev-type inequal-
ity, cp. {17, Lemma 3.1):

Lemma 4.2: For any v e L”((0,71;L2(M M) wieh
lvv] € Lz(ux {0,T]) we have v e L‘(Mx [O,T]‘;RN] and for any
R < RO there holds

s ojvifande < cresup (s lvity [2amy .
M xeM, e<T BR(x)

L= |

T 2 1 T 2
R A 117 diddt +— s f|v|“dudt)
0 M R™ 0 M
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with a vniform constant c* = c*({M)

Moreover, we need:

Lemma §.3: There holds the energy estimate

T
E(u(*,T)) + 5 J |2 ul’duae ¢ E(u) .
0

Proof: Simply compute, using {l.1), (2.1)

d _ N .
ac Ef{u{-,t)) = £(~6Mu F(u)(Vu,Vu)“) Btu au

-

= - sla,ufan .
M

Proof of Lemma 4.1: Multiply (2.1) by auu and integrate to
obtain for sufficiently small ¢ » 0 :

T 2
sora d¥uly o, ul? duae
AN M
0 M
T 1 T 2 2
£ <8 7 rlvol®auae + s 5 rivuj2auae
0 M oM

| 1.

T .22
(c(8)c*e (R,T) +6) s /|vu|“duat
oM

+

-2 T 2
cléle*e(R,T) R ° s J)Vu| “aMdc
(]

2upamae + c(6)18"2 sup E(u(-,t)) ,

t<T

Ia

T
26 1 1|¥
0 M

for any pre-assigned & > 0 .

q.e.d.
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Note that after integrating by parts for a.e. t T

<
119%)%a1 < ¢ flauf?aK + c fwupan
M T u u

Moreover, by Lemma 4.3
E{u{-,£)) ¢ Ew), vegr .

The claim follows.
q.e.d,

From Lemma 4.1 full regularity may be deduced. Differentiate
(2.1) in t and multiply by atu . Integrating one obtains:

2
latui

¥ (3

T 2
5 s )+ ]vatuj didt
oM

T 2 2 T 2
< ¢(8) L s1va|a u|“aMat + 6 s flvatul didt
oM 0 M
T 1 12 T 4 172
S €(8H{f f|vu] aMar) (I3 ul auar)
0 M oM

+6 1 1193 u)%auat ,

=R}

f
H
for any § > 0 .

f13 ul?
Let MI tu| dﬂ't achieve its supremum at ¢ = to .

We may assume to =T . By Lemma 4.1 and 4.2:
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T
2 2 2
‘J"latul auat |, . - lf'|a';u| g+ g ﬂjvatq dude <

T T T
< c(8) (£ |vultakat) uz-(sup(llatu|2dl) = (f 7|93, u) @t + 1 flatu|2audt)) vz,
oM t<T M ou oM

T 2
+8 [ /]98.u|"dMae ¢
oM
T 4. 172 ) 2 T
S (e sV aae) €+ f]-atul d“lt-'r +J f|va el Zauat + E(u,))
0 M I oM

By absolute continuity of the Lebesgue inteqgral of IVul‘ upon
choosing & , T > 0 small enough we can achleve that

T
ct8y s rivulta ae)M? + 5 < 142
0

and obtain that

2
sup f|a u] M < c fia ul“dMj __ .+ c E(u) .
t<T N t lt 0 o

Back to {2.1) and uging Lemma 4.2 for wv(x,t) = Vu{x,T) this
implies

2 .2 4 2
£|v uf du‘tzT Lc d]?u] duItBT +c jlatul d“|t=T
2
i ﬂlatu| d“|t=o + ¢ E(u}

+c c(R,T)(I]Vzulsz|t=T + R7? Efu ) .
L

- 14 -

-2
sup IIV uj 2au -] Ila ulad{ -+ c E(u_)(1+r"%)
t<T U t 't 0 o

Since H (M,R Y= c® (H.R ) . Ya <1, this estimate im-
Plies continuity of u on M x {0,T] . The regularity theory
of Ladyzenskaya, Solonnikov and Ural’ceva [10) now is appli-
cable, and we obtain a-priori bounds of all derivatives of

U on M x ]0,1} in terms of E{u) , R, f ERCY du|t=0 .
where 1 > 0 is determined by the condition that

f f]Vul dMdt be sufficiently small. These estimates are

translation invariant. Moreover, by Fubini's theorem and
Lemma 4.3

t
[]
inf  sjauj’a ¢ inf(e 7t g Ila 0%t < infie ot Ed)
t,otsest ) M sup{0, t -t

t20

Hence we obtain a-priori bounds on any interval {t,,T] in
terms of E(uoj + R, t, ¥ and Tt , Using Lemma 4.1 and a
Compactness argument, one finally can show that the modulus 1
is completely determined by E(uoj and R . This gives

Proposition 4.4: If u ;: M x [0,T] » ¥ is a smooth solution
to (2.1} with smooth initial value u, and e(R,T) < ¢ then
U and its derivatives are uniformly bounded on M x [0,T)

in terms of T , R, and u, - On any set ¥ x ]t T,

to > 0 , bounds will depend only on T , R , E(u ) . and t, -

Control of the energy density function ¢€(R,T) therefore is
crucial for Theorem 3.1:

Let

ER(V:XI = J e{v)dM .,
BR(x}
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Lemma 4.5: For any solution u of (2.1), (2.2) in H x {0,T)
and any R < Ro there holds the estimate

-2
Eglule,Thix) g Eyplujix) + ¢ TR Efu) .

¢, is a constant depending only on M and N .

1

Proof: Multiply (2.1) by a£u¢2 where ¢ & C;(an(x)) is
=1 on BR(x) and integrate to obtain

Ia

[~

(=N ]
-

r1a,ul%? + St etule,t))p2auat 71%u][3,u||v|gauat
W M

<
-

(X1
[~ ]

The lemma follows.

q.e.d.

Remark 4.6: i) In particular, if for some R > 0
up E_{u_;x) <« £
sxp RV’ -2

for any solution u to (2.1), (2.2} we will have

CR2

2 Elu) - Thus, by Proposition 4.4 we

€(R,T) ¢ for T =

will have uniform bounds on u in M x [0,T] in terms of u,

alone. This permits to construct local solutions to (2.1) for
smooth initial data u, - By the same token we obtain uniform
a-priori bounds locally on M x ]0,T] for solutions u with
initial values in an Hl'z—neighborhood of u, . Hence we
may extend the flow u also to initial values ug of class
Hl'z(M;N) - By Lemma 4.3 u assumes its initial values con-

tinuously in w2

flatﬁlzvzdudt + cTR-ZE(uo)
M

- 16 -

ii} By Proposition 4.4 and Lemma 4.5 a local solution to (2.1)
as above may be continued to an interval [0,T1{ . where T
is characterized by the condition that

1

lim inf (sup Eplul-,t);x)) 2 ¢
xeM

tJ'Tl

for all R >0 . If {xl,...,xk} are points in M where

lim Sup (En(u('ft’txj) 2€,1 23 2k,

tarrl

1
let R < < inf dist (x,,x.) . Then for all t close to T
2 145 1’73 1

-t
EzR(u(-,t);xj) > ER(u(-,tj);xj) - €y —ii— E(uol

and by suitable choice of tj the right hand side can be
made > €/2 for all Jo=1,...,kx .

But by choice of Rr

k
€
k= . + .
7 < jEIEZR(u( ,t).xj) Z E{ul-,t)) ¢ E(uol

2E({u }
and k £ L2

is uniformly a-priori bounded.

Moreover, u({:,t) —»: u, € HI'ZIM;N) weakly, and we may
simply continue u to some larger interval [O,TZ[ by let~-
ting u solve (2.1) on ITI'T2[ with initial value u

etc.

l *

Since wu(-,t) -+ u, in LZCM,N) as t - Tl » the extended
function u will also ba a distribution solution to (2.1)

on M x [O,sz .
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Note that E(ull X lim ! e(ul)dﬂ
R+0 “\UB2 (x.)
i R
< lim lim /' alu(e,e))aM < E(u,) - KE

R+0 t*tl \uB

(x.}
j 2R

In particular, by {teration of our above argument there can
be at most finitely many singqularitias (xj,tj) ' tj = ,
satisfying the condition

lim sup Ea(u(-,t};xj) 2 €

tAE,
J

for any R . .

A more detailed analysis as in [i7) shows that if for
(x,£) € 4 x )0,=(

lim sup Ep(ul,t);%) < ¢
tAE

for some R > 0 « then wu is reqular in a neighborhood of
{x,t) .

iii) as tp * @ suitably, by Lemma 4.3

2
flacu|“au| _ -0
ulle e ty

Suppose that T = o jg non-singular in the sense that

lim sup (sup Egtul-,t),x}) < ¢
Ero xeM

for some R > 0 .,

- 18 -

Then Lemma 4.2 (applied to vix,t) = u(x,tm}) assures that
at t = tm

119%u]am < ¢ sjou)tan + e s1a,u)%an ¢
i M "
£ % ffvzulzdﬂ + c Ef{u) +0(1)
" (o]

where O(l) +0 (m + =) . By Rellich's theorem we may assume
that u(-,tm) * u_,  strongly in HI'P(H,N} ¢ fOor any p < &=
But then by (2.1}

- oy uteaty) + royu, v, = - 8, v,

in L% . thus, u_ e n® 2,k 1s harmonic (and hence
regular). Moreover, u(-,tm) + u, strongly in HZ'Z(H,N) .

Again, a local analysis shows that alsc if T = = is sipgular

in the sense that at points {xl,....xk}

lim sup E_(u(-,t),x.,) > ¢
tﬂ R r JJ ey

for all R > 0 , then for suitable numbers tm + = the
family {u(-, )} will be equi-bounded locally in #2’? on

M\{xl,...,xkl + and hence accumulate in H2’2

loc{u\{xl,...,xk},u)

at a harmonic map u_ M\(xl,....xk} + N . Since
E(u ) < E(uoi + by [12, Theorem 3,6) u, may be extended

to a smooth harmonic map u_ : M+ N,
iv) If at (x,t} for all R > 0 there holds

lim sup Eatu(-,t).i)z 3
tAE
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{m)

we can rescale u -+ u {x,t) = u(xm+rmx.tm+t:t) such that

~ilm

lim sup sup El(u(m)t-.t).x) < El(u(m)(-.O).Dl =
0 rmlxI<Ro

¥

while by Lemma 4.3 and absolute continuity of the Lebesgue in-

tegral
<]
;g lo,u'™ %axat + 0 (m o+ w .
-18B (0)
Rolrm
Note that u(™ solves an equation like (2.1) on

By /r {0} = [-1,0) , Hence a local estimate like Lemma 4.1 jis
m

valid and we obtain uniform local a-priori bounds for u(m) .
A reasoning as in 1ii) now shows that u(m)(-,Tm) =u -+

m
stronqu locally in H2 2aR2 iN} for some sequence

m € (-1,0] , where u is harmonic and has energy

e -
32 E(u) hd E(uo) - By (12, Theorem 3.6] again, u may be ex-
tended to a smooth, hon-constant harmonic map
T:s?am?ay,

This essentially proves Theorem 3.1.

We now proceed to give further applications of this method to
surfaces of prescribed constant mean curvature with free
boundaries on a supporting surface in R3 .

- 20 -

5. Ahpplications to H-surfaces with free boundaries

v

Let S5 be a smooth embedded compact hypersurface in IR3 .
An H-surface supported by § is a surface X of mean cur-
vature H which meets § orthogonally along its boundary .
Suppose X is of the type of the disc

B = (w enzllwl < 1) ,
then we may 1ntroduce isothermal coordinates w= (w! oW ).X(WJ
(x (w), x {w), x (w}) over B on X . In these coordinates
the following relations hold:

{(5.1) AX = 2H 31)( A azx P
(5.2) (3,12 - Jax)?=0=13.x-2.x
. 1 2 PXr X,
(5.3) X[yp t 38 5,
2
(5.4) n X(w) | Tx(w)S r YWE I .

Here, "A" is the exterior product in IR3 ¢+ "+" denotes

scalar product, n is the unit exterior normal on 3B ,
"l" means orthogonal; and Tps denctes the tangent space to

S at p .

In particular, if H =0 a solution X to (5.1) - (5.4) is
a {parametric) minimal surface supported by § ,

Minimal surfaces supported by compact hypersurfaces or
Schwarz' chains consisting of a collection of Jordan arcs
and plane segments have been studied as early as 1816. The
famous Gergonne problem was solved by H.A. Schwarz in 1872
[14]). For smooth supporting surfaces of positive genus
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Courant [1] proved the existence of minimal surfaces mini-

mizing Dirichlet's integral
DIX) = 3 /[9x]%aw
B

among surfaces X with boundary X(aB) in any given homology
class of curves on § .

Courant's results were generalized to H-surfaces by Hilde-
brande {6] under the condition that |H|R X1l for some R >0
such that § c By (0) c®®

If s = s2 Courant's approach fails since §° does not
support any non-trivial l-dimensional cycle.

In fact, if s is strictly convex (the boundary of a strictly
convex body in .R3) it is easy to see that the only relative
minimizers of D among surfaces X with boundary X(3B) Cc §
are the constants X(w) : PES.

In 1984, by adapting the Sacks-Uhlenbeck approximation method,
the author was able to establish the following existence re-
sult {16):

Theorem 5.1: Suppose S 1is diffeomorphic to the standard
sphere 52 in .R3 - Then S supports a non-constant mini-
mal surface.

Simultaneously, Smyth [15) obtained existence results for the
tetrahedron. His proof, however, cannot be extended to more
complicated pPolyhedral boundaries Oor smooth supporting sur-
faces.
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Later, Griiter and Jost (4], [9) improved Theorem 5.1 for con-
vex surfaces § and established the existence of smoothly em-
bedded minimal discs supported by s .

Recently, the author succeded in extending Theorem 5.] to sur-
faces of prescribed constant mean curvature [18):

Theorem 5.2: Suppose S C BR(O) c RB is diffeomorphic to
s2 - Then for almost every (in the sense of Lebesgue measure)
HeR satisfying the condition |H|R ¢ 1 there exists an
H-surface supported by s .

By absence of suitable a-priori bounds of Dirichlet's inte-
gral for solutions to {5.1) - (5.4} in the case of non-va-
nishing H Theorem 5.2 could not be derived by the Sacks-
Uhlenbeck method.

Instead, the heat flow methods outlined in Section 3 proved
applicable - as we will explain. (For Simplicity we restrict
ourselves to the case H = @ .}

Remark that by regularity of § there exists a é-neighbor-
hood Us{s) of s such that any point P € Us;(8) has a
unique nearest neighbor #(p) € 5 ;

Ip - s{p) = inflp-q) .
qes

This defines the reflection R : Ug(s) ~ UG‘S) .
Rip) = 2%tp) = p in s . 1f 5ec™, m>1, then

R e ™1 |

Reflecting X in 3 we obtain a surface
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of p . Hence the Christoffel symbols T related to g wiil
Xtw) weB be smooth in p , bounded and measurable in w € D(X)
i(w) =

w w Similarly, a solution to the evolution problem“
R‘*"‘Ti”' w§gB, X(_—_E’ € UG(S) '
Iwl

fw
(5.5) atx ~4X =0 in B x {0,T]
defined in a domain O(X) > 5 .
Note that since R ig involutory there holds (5.6) *(38 x [0,T) c s
- - 3 m
R(X(w)) = xe ") . Y we DEnE . (5.7 an X L Ty, S 0 ¥ (We) €38 x 0,7
wli
Inserting into (5.1) we see that X satisfies an aquation (5.8 xlt=0 = xo

like (1.1) with a metric

-

with D(XD) < @ XO(QB) C § , can be extended to a solution

Eik‘p’ - -.ii. R(p) - _3_k R(p) X:0(X) 5B x [0,7) » R} of an evolution problem
ap

ap
on P(X)\B carrying the metric ;uB induced by the re- (5.9) ati - ATx - 9r(i){vx,v§) =0
flection w + —¥ .
[wl - - X,{w) on B
(5.10) X = X =
t=0 o
If now we let w
R{X_(——)) else
o IwI2
Iyk(pPew) = for a harmonic map from a domain in ®%,y} fnto m3,q)
gik(P;H) s else
6 e B A-priori bounds for (5.5) - {5.8) may now be derived from
w
) = ag ¢ (5.3), (5.10) in the same way as outlined for (2.1), (2.2)
aB

= in Section 4. We rely on the following observations:
Y“B {w} ’ else

may be viewed as a (generalized) harmonic map
W&,y + @m,q . b

L2 1]

This model of the moticn of soap films with free boundaries
has the best mathematical properties. Physically, the model
Note tha i¢ corresponds to the assumption that boundary (adhesive) forces

© 9. v are Lipschitz continuous in w = re act Instantaneously to create a vertical contact angle bet-
and even smooth in angular direction ¢ and as functions ween the soap film and the supporting surface, Surface ten-
slon then governs the response "in the large”,
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Observation 5.3: For any smooth solution X to (5.5) - (5.8)

O3

s1a,x1%awat + o(x(-,m) < D(X) .
B

Proof: Multiply (5.5) by atx and integrate by parts using
that th' ;L X £ 0 as a consequence of (5.6), (5.7).

' q.e.d.

Observation 5.4: Suppose (as we may) that P (X)C B,{0) * {0,T] .

Then any pointwise or integral estimate for X on B=x [0,T]
entrains a corresponding estimate for X on V(X)) and vice

versa.

Observation 5.5: The analysis of Section 4 can be localized

to the set
{(w.t) e p(X)|Jwe B or X(w,t) € Us/2(5)}
by means of the following cut-off function:

. i, weB
?("lt’ =

vidist{X({w,t),5} , else

where y ¢ C; equals 1 in a neighborhood of 0 and vanishes

for arguments 2 d8/2 .

~ [ ]
Note that |Vy| < c [VX]| , etc. and partial derivatives of ¢
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will contribute "error terms” of the same order as have to be
handled in Lemma 4.1.

emma 4.1 now conveys to our flow (5.9}, {5.10), and we obtain

Theorem 5.6: For any x_ e h'Z(B:R%) wien X,(3B) C S there
exists a unique distribution solution X : B x [0,w[ - n3 of
15.5) - (5.8) which is regular on B x 10,=[ with exception
¢f finitely many points [(wj.tj]l + 123 <k, and unique in

this class.

X assumes its initial value X, continuously in Hl'z .

AL a singularity (w,t) a smooth, non-constant minimal surface
X supported by s Separates in the sense that for suitable
0t v, w, > w after a possible rotation of coordi-~
nates

x(wm+rmw,tm) - X (m + =)

strongly in H2‘2 on relatively compact subdcomains of the
upper half-plane Ri .

X has finite Dirichlet integral and may be extended to a
smoth, non-constant minimal surface X : B = Rf -+ R3 .

2 to a minimal

As t + @, X{(',t) converges weakly in H'‘
surface X_ supported by 5 . If ali tj cwm,1<3<k,

X(*,t) «+ X, even strongly in Hz'2 .

We caution the reader that inspite of “good" a-priori estimates
local existence for (5.5) - (5.8) cannot be established easily.
Incead, it is a consequence of a rather delicate fixed point
arcument, [18, Lemma 3.16],
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Now we can give a proof of Theorem 5.1 as follows: Let § be

diffeomorphic S2 ,» and let
1,2 3
C(s) = (X eH (B;R”) |X(3B) C s}

be the class of Hl'z-su:faces with boundary on 5 .

If for some X, € C{(S) the flow x through X, becomes sin-
qular at some (w,t) , by Theorem 5.6 there exists a smooth
non-constant minimal surface supported by S

Otherwise, the flow induces a continuous deformation of C(5) .
Now argue indirectly: Suppose S supports only constant
(trivial) solutions to (5.1) - {5.4). Then the flow defines a
homotopy equivalence of C(5) with the space-of constant maps
X 2 p€S . The space C(5) contracts to the space

€,(8) = (X € C{5) |aX = 0} . This latter space (by harmonic
extension) is topologically equivalent to the space of closed

1
.
r
curves H2 (3B;S) on S which relative to the constants

Supports non-trivial l-dimensional cycles. In particular ((S)
cannot be homotopically equivalent to the space of constant
maps. The contradiction proves Theorem 5.1,

qg.e.d,

Open Problem: Taking account of the 0(2)~action on Dirich-
let's integral induced by rotation ¢ - ¢ + ¢0 and reflection
¢ 2% - ¢ of the angular coordinates of points w = re1¢ € B
and the rich topological structure of the quotient space of
the space of curves on § by this 0(2)~action, cp. (7],
(11}, we expect higher multiplicity results for minimal sur-
faces supported by a surfage s = s? . However,

to this moment only partial results are known (9], [15).
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A possible approach to this question would be to prove global
regularity of the flow (5.5) - (5.8) (at least for convex
supporting surfaces) and thus to make problem (5.1) - (5.4)
accessible by Ljusternik-Schnirelman or Morse theory.

Proo€ of Theorem 5.2: As stated earlier, by lack of suitable
a-priori bounds for H-surfaces, H # 0 + Theorem 5.2 is much
hardzr to prove. Employing also variations of the parameter H
howe rer, we do succeed in fihding Hl'z-bounds for the H-sur-

face flow for certain values of H corresponding to the points
of d.fferentiability of a monotone function and obtain Theo-
rem 5.2, For details of the proof we refer the interested rea-
der to [18).
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