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Preface

Since its appearance in 1972 the variational principle of Ekeland has
found many applications in different fields in Analysis. The best references
for those are by Ekeland himself: his survey article [23] and his buok with
J.-P. Aubin [2]. Not all material presented here appears in those places.
Some are scattered around and there lies my motivation in writing these
notes. Since they are intended to students | included a lot of related mate-
rial. Those are the detours. A chapter on Nemytskii mappings may sound
strange. However 1 believe it is useful, since their properties so often used
are seldom proved. We always say to the students: go and look in Kras-
noselskii or Vainberg! I think sume of the proofs presented here are more
straightforward. There are two chaplers on applications to PDE. However
I lunited myself Lo semilinear elliptic. The central chapter is on Brézis proof
of the minimax theorems of Ambrosetti and Rabinowitz. To be self con-
tained 1 had to develop some convex analysis, which was later used to give
a cumplete treatment of the duality mapping so popular in my childhood
days! I wrote these notes as a tourist on vacations. Although the main road
is smooth, the scenery is so beautiful that one cannot resist to go into the
side roads. That is why 1 discussed some of the geometry of Banach spaces.
1 would like to thank my colleagues at UNICAMP for their hospitality and
Elda Mortari for her patience and cheerfu) willingness in texing these notes.

Campinas, October 1987

Chapter 1

Minimization of Lower
Semicontinuous
Functionals.

Let X be a Hausdorfl topological space. A functional ¢ : X — RU {+o0}
i8 said to be lower semicontinuousif for every a € R theset {r € X : &(z) >
a} js open. We use the terminology functional to designate a real valued
function. A Hausdorfl topological space X is compact if every covering of
X by open sets contains a finite subcovering. The following basic theorem
implies most of the results used in the minimization of functionals.

Theorem 1.1, Let X be a compact topological space end d+ X — Ru{+oo}
a lower semicontinuous functional. Then (a) @ is bounded below, and (b)
the infimum of ¢ is achieved al a point 2 € X,

Proof. The open sets A, = {z € X : &(z) > ~n)}, for n € N, constitute
&n open covering of X. By compaciness there exists a ng € IV such that

ny,

U A, =X
=1

So®(z)> ~ngforall z € X.
{b) Now let £ = Inf®, £ > ~cc. Assume by contradiction that £ is not’
achieved. This means that

) ", l —
{zex: o(z)>e+ ;}'—X.

n=1l



By compattiess again it follows that there exist a n) € IV such that

U{:rE.\':tl'(:r) vf—,l‘}r.\’.

But this implies that $(z) > [+ ;“- for all r = X. which contradicts the fact
that € is the infimum of & T

In many cases it is simpler to work with a notion of lower semicontinuity
given in terms of sequences. A function @ - X — R {+900) is said to be se-
quentially lower semicontinvous if for ever) sequence {rn} with limz, = 2o,
it foliows that ®(xo} < liminf &(z,,). The relationship between the two no-
tions of lower semicontinuity is expounded in the fullowing proposition

Proposition 1.2. (a) Every lower semicontinuous funclion & : A -
R {-oc) is sequrntially lower semicontinvous. (b) Jf X' satisfies the First
Aziom of Countability, then every sequenitally lower sendeontincous fune-
tion is lower semiconlinuous.

Proof. (a) Let z, — zo in X. Suppose first that $(zp) < oo. For each
¢ > O consider the open set A = {z € X : ¥{x) > ®(zy) - ¢}. Since xy € A,
it follows that there exists ng = ng(¢) such that z, € A for all » > ng. For
such n's, ®(z,) > ®(zo) — €, which implies that liminf ®{z,) 2 ®(z0) - €.
Since ¢ > 0 is arbitrary it follows that liminf ®(za) > ®(20). If $(20) = +00
take A = {z € X : ®(z) > M} for arbitrary M > 0 and proceed in similar
way.

(b) Conversely we claim that for each real number a the set F = {xrefl:
®(z) < a)} is closed. Suppose by contradiction that this is not the case, that
is, there exists go € F\F, and so ®{x5) > a. On the other hand, let On be
a countable basis of open neighborhoods of zq. For each n € IV there exists
£, € FNQ,. Thus z, — xp. Using the fact that § is sequentially lower semi-
continuous and ®(z,) < a we obtain that ®(z) < a, which is impossible. O

Corollary 1.3. If X is a metric space, then the notions of lower semicon-
tinuity and sequentially lower semicontinuity coincide.

Semicontinuity at a Point, The notion of lower semicontinuity can be

localized as follows. Let ¢ : X — R U {+co} be a functional and 10 € X. 4

We say that & is lower semicontinuous al zg if for all a < D(x5) there exists
an open neighborhood V of zg such. that a < ®(z) for all z € V. It is easy

ter see that u lower semicontinuous functional is lower semicontinuous at all
puims 2 = X. And conversely a functional which is lower semicontinuous
at all ponus ie lower semicontinuous. The reader can provide similar delini-
tions and statements for sequential lower semicontinuity.

Some Examples When X = K. Let ¢ : R — R U {+0o}. It is clear
that @ is lower semicontinuous at all points of continuity. If zq is a point
where there is a jump discontinuity and ¢ is lower semicontinuous there,
then ®(zy) = min{&(ro — 0), Pz + 0)). I lnd{r) = +o0 a8 7 — 2o
then $(z,) = +o0 if ¥ is to be lower semicontinuous there. If ¢ is lower
sernicontinuous the set {r € R : ®(r) = +oc} is not necessarity closed.
Example: #(2) =0if 0< z <1 and $(z) = +00 elsewhere.

TFunctionals Defined in Banach Spaces. In the cuse when X is u Ba-
nach space there are two topologies which are very wseful. Namely the
norm topology * {also called the strong topology) which is a metric topol-
ogy and the weuk topology 7 which is not metric in general. We recall
that the weak topology is defined by giving a basis of open sets as fol-
lows. For each ¢ > O and each finite set of bounded linear functionals
#1....,Ln € X*, X" is the dual space of X, we define the (weak) open set
{z € X :|6{2)] < ..., thalx)) < €} It followseasilyThar—is a finer
topology than ¥, i.e. given a weak open set there exists a strong open set
contained in it. The converse is not true in general. {We remark that finite
dimensionality of X implies that these two topologies are the same]. It fol-
lows then that a weakly Jower semicontinuous functional ¢ : X — Ru{+oo},
X a Banach space, is (strongly) lower semicontinuous. A similar statement
holds for the sequential lower semicontinuity, since every strongly convergent
sequence is weakly convergent. In general, a {strongly) lower semicontinuous
functional is not weakly lower semicontinuous. However the following result

holds.

Theorem 1.4. Let X be ¢ Banach space, and ® : X — RU{+00} a convez
Junction. Then the notions of (strong] lower semicontinuity and weak lower
semiconlinuily coincide.

Proof. (i) Case of sequential lower semicontinuity. Suppose z, = Zo (the
half arrow — denotes weak convergence). We claim that the hypothesis of
@ being (strong) lower semicontinuous implies that

®(zp) < liminf ®(z,).



Let { = himinf ¢(z,,), and passing 0 a subsequence (call it z,, again) we
may assume that £ = lim®(x,). Il £ = +oc there is nothing to prove. If
~aoc < £« oc, we proceed as follows. Given ¢ > 0 there is ng = ng{e) such
that ®{r,) < €+ cfor all n > ng(¢). Renaming the sequence we may assume
that ®(x,) < £+ ¢ for ali n. Since z is the weak limit of {z,) it follows from
Mazur's theorem [which is essentially the fact that the convex hull co(z,) of
the sequence (2,,} has weak closure coinciding with ite sirong closure} that
Lhere exists a sequence

hy ky
_ NN N _ - N
yN'L“:’ﬁ Z“J =i a4y 20,
1= =1
such that yy — z, as N — co. By convexity

kpy
Plyn) = Z of‘l'(:,-) <f+
=1
and by the (strong) lower semicontinuity ®(zo) < £+ ¢. Since ¢ > 0 is
arbitrary we get ®(zp) < £. If £ = — 00, we proceed in a similar way, just
_replacing the statement ¢(z,) < £+ ¢ by ®(z,} < - M for all n > n{M),

T wliere M > 0 is arbivrary.

{ii) Case of lower semicontinuity (nohsequential). Given ¢ € R we claim
that the set {z € X : ®(z) < a} is weakly closed. Since such a set is convex,
the result follows from the fact that for & convex set being weakly closed is
the same as strongly closed. O

Now we discuss the relationship between sequential weak lower semicon-
tinuity and weak jower semicontinuity, in the case of functionals & : A —
IR ¢ {+oc} defined in a subset A of a Banach space X. As in the case of
a general Lopological space, every weak lower semicontinuous functional is
also sequentially weak lower semicontinuous. The converse has to do with
the fact that the weak topology in A ought to satisfly the First Axiom of
Countability. For that matter one restricts to the case when A is bounded.
The reason is: infinite dimensional Banach spaces X (even separable Hilbert
spaces) do not satisfy the First Axiom of Countability under the weak topol-
ogy- The same statement is true for the weak topology induced in unbounded
subsets of X. See the example below

Example (Vor, Neumnann). Let X be the Hilbert space (, and let 4 - *
be the se1 of puints 7, . mn = 1,2 ... whose coordinates are

1, if i=m
Tan(f)=1¢ m, if i=n
0, otherwise

Then 0 belongs 1o weak closure of A, but there is no sequence of points in A
which converge weukly 1o 0. [Indeed, if there is & sequence Tp,n, — 0, then
(¥.Zm,n,)ez — O.for all y € £ Take y = {1.172,1/3....) and see that this is
not possible. On the ather hand given any basic (weak) open neighborhood
of 0, {z € £ : (y,7)s= < ¢} for arbitrary y € 2 and ¢ > 0, we see that Tomn
belongs to this neighborhord if we Lake m such that ly,i < ¢/2 and then n
such that |y,| < ¢/2m].

However, if Lhe dual X~ of X is separable, then the induced topology in
a bounded subset A of X by the weak topology of X is first coumable. In
particular this is the case if X is reflezive and separeble, since this implies
X" separable. It is noticeable that in the case when X is reflezive (with no
separability assumption made) the following result holds.

Theorem 1.6. (Browder [19]). Let X be a reflexive Banach space, A a
bounded subset of X, 1o 0 point in the weak closure of A. Then there ezisls
an infinite sequence (zi) in A converging weakly to x4 in X.

Proof, It suffices to construct a closed separable subspace Xp of X such
that zp lies in the weak closure of C in Xg, where C = AN Xg. Since Xp is
refiexive and separable, it is first countable and then there exists a sequence
(zx} in C which converges to zg in the weak sopology of Xg. So {zi) lies
in A and converges 1o z in the weak topology of X. The construction of .
Xo goes as follows. Let B be the unit closed bali in X*. For each positive
integer n, B" is compact in the product of weak topologies. Now for each
fixed integer m > O, each [&),...,@,) € B"™ has a (weak) neighborhood V
in B™ such that

- 1
N n{xEA:H“"i"“IoN(;}zO.
[21--wn JEV 3=1

By compactness we construct & finite set Fyy C A with the property that
given any [wy,...,ws] € B" there is 2 € A such that |{wj,z — zo)| < L for



all 3 =1,...,n Now lel

-40 = U an-

nm=1

Then Ag is countable and z; is in weak closure of 4q. Let Xq be the closed
subspace generated by Ay, So Xg is separable. and denoting by €= XoN A
it follows that zq is in the closure of C in the weak topology of X Using
the Hahn Banach theorem it follows that zg is the closure of €' in the weak
topology of Xq. =

Remark. The Erberlein-Smulian theorem states: “Let X be » Banach
space and A4 a subset of X. Let A denote its weak closure. Then A
is weakly compact if and only A is weakly sequentially precompact, e,
any sequence in A conlains a subsequence which converges weakly”. See
Dunford-Schwartz [35; p. 430]. Compare this statement with Theorem 1.5
and appreciate the difference!

Corollary. In any reflezive Benach epace X e weakly lower semicontinuous
functional ® : A — I, where A 15 o bounded subset of X, is sequentially
weakly lower semicontinuous, and conversely.

Chapter 2
Nemytskii Mappings.

Let 0 be an open subset of R¥, N > 1. A function [ : Q@ x R — Ris
said Lo be a Carathéodory function il (a) for each fixed s € IR the function
z.— f(z,8) is {Lebesgue) measurable in 12, (b) for fixed x € f¥{a.e.} the
function s — f(z,8) is continuous in [R. Let M be the set of all measurable
functions v : 1 — M.

Th‘eorem 2.1. Iff: N x R — IR is Carothéodory then the furt_:.;ﬁon L

x v f(z,u(z)) e measurable for allu e M.

Proof. Let un{z)} be = sequence of simple functions converging a.e. to
u(z). Each function f(z, ua(z)) is measurable in view of (a) above. Now (b)
implies that f(2,%.(z)) converges a.e. o f(z,u(z)), which gives its mea-
surability. [

Thus a Carathéodory function f defines » mapping Ny : M — M, which
is called B Nemytskii mapping. The mapping Ny has a certain type of con-
tinuity as expresed by the following result.

Theorem 2.2. Assume that 1 hos finite measure. Let (u,) be a sequence in
M which converges in measure to u € M. Then Njyu, converges in measure
to Nyu.

Proof. By replacing f{z,s) by g(z,s) = f(z,8+u(z)) - f(z,u(z)) we may
assume that f{z,0) = 0. And moreover our claim becomes to prove that if
(un) converges in measure to O then f(z,un(z})) also converges in measure
10 0. So we want to show that given ¢ > O there exists np = no{c) such that

Hzef: |f(z,ualz))| 2 ¢} <€ Vn 2 ny,



where .4 depotes the Levesgue measure of a set 4. Let
Ny ={zel: & < lik=|flz,8) < ¢}

Clearly 1y € 13 C +-- and 1 = U2, M(a.e.). Thus |l — 02]. So there
exists k such that {1 — |f17] < ¢/2. Now let

An = {7 N ug(s) = l,‘f}.

Since u, converges in measure to U, it follows that there exists ng = ng{c)
such thal fur all n > ng one has {1} - 1A, < /2. Now lat

Dp={z€0: fiz.uaz)) < ¢}.
Clearly A, 0 ﬂ; C Dy. So

i) = 1Dpt < (100 - i4a]) + {0 - 19]) <

and the claim is proved.

Remark. The above proof is essentially the one in Ambrosetti-Prodi [2].
The_proof in Vainberg |78] is due to Nemytskii and relies heavily in the
fullowing result (see references in Vainberg's book; see also Scorza-Dragoni
'74] and J-P. Gossez [47] for still another proof}. “Let f : (1 x ] — IR be
a Carathéodory function, where I is some bounded closed interval in .
Then given € > O there exists a closed set F < 2 with |\ F| < ¢ such that
the restriction of f 1o F x [ is continuous”. This is a sort of uniform {with
respect to s € J} Lusin’s Theorem.

Now we are interested in knowing when Ny maps an L7 space in some
other LP space.

Theorem 2.3. Suppose that there is o constent ¢ > 0, a furnction bfx) €
Lf(N), 1< ¢ < oo, endr > 0 such that

{2.1) |f{z,a}| <cls|" + b(z), VYzel, VseR.

Then (a) Ny maps L9 into L9, (b) Ny is continvous and bounded (that is,
1t maps bounded sets into bounded sets).
Proof. 1t follows from (2.1} using Minkowski inequality

(2.2) [I¥7ellze < elllulline + [1Bllee = cllullzer + [Ibllze

which gives {a) and the fact that Ny is bounded. Now suppose that v, — u
in LY. snd we claim Npu, — N:uin L9 Given any subsequence of (ug |
there is a further cubsequence (call it again u,,) such that ‘u,(z) = hiz) for
some h € L¥(11). It follows from (2.1) that

|f{z,ua{r)) < cth(z))" + b(x) € LO(5D).

Since f(z,un{z)) converges a.e. to f(r,u(z}), the result follows from the
Lebesgue Dominated Convergence Theorem and a standard result on met-
ric spaces. O

It is remarkable 1hat the sufficiem condition (2.1) is indeed necessary for
& Carathéodery function f defining 8 Nemytskii map between LP spaces.
indeed -

Theorem 2.4. Suppose Ny maps LV{fl) inte L)) for 1 < p<oo. 1 <
g < oc. Then there 45 o constant ¢ > 0 and b{x} € LYN) such thot

(2.3) |£(z, )| < cls|*? + b(z)

Remark. We shall prove the above thecrem for the case when {1 is bounded,
although the result is true for unbounded domains. It is also true that
if Ny maps LP(f1), 1 < p < oo into L*((1) then there exists a function
b(z) = L*{f1) such that if(z, )| < b{z). See Vainberg [78].

Before proving Theorem 2.4 we prove the following resuli.

Theorem 2.5. Let N be a bounded domain. Suppose Ny maps L¥(Q1) into
L) for 1 < p< oo, 1 € ¢ < oo. Then Ny is continuous and bounded.
Proof. (a) Continuity of Ny. By proceeding as in the proof of Theorem
2.2 we may suppose that f{z,0) = 0, as well as to reduce to the question of
continuity at 0. Suppose by contradiction that u, — 0in L? and ANyu 4 D
in LY. So by passing to subsequences if necessary we may assume that there
is & positive constant e such that

(2.4) 2”1;,.“1,(00 and fnu(z.u,,(:)nvza, Vn.

Let us denote by
a

Bo = {x € 03 /(@ ualzl)] > ()"}



In view of Theorem 2.2 it follows thar f, — 0. Now we construct a
decreasing sequence of positive numbers ¢, and select a subsequence {up, )
of {u,,) as follows.

1st step: ¢ = |1} u,, = u).

2ud step: chonse ¢2 < 6/2 and such that
a
j f(r,um ()9 < 3 YDC AL iDi< 20,
D

then choose ny such |By,| < 2.

3rd step: chosse ¢5 < ¢»/2 and such that
[Du(x,u..,(z))]v <% vpca, 1Di< 2.

then choose ny such that |B,,| < €.

And so on. Let D, = Ba \ U2, Ba,. Observe that the D} s are pairwise
disjoint. Define

u(z) = { tn (z) if x€ Dy, 7=12,...

0 otherwise

The function u is in LF in view of {2.4). S by the hypothesis of the theorem
J{z,u(z)) should be in L9(f1). We now show that this is not the case, so
arriving to contradiction. Let

K;= /D.. [f{z,e{z))" = -/D,. H(z,ua, (1)) = /" —f,, - =l - J.

Next we estimate the integrals in the right side as follows:

o= [ U@t = [ i@~ [ 11 D
. a—JE_ZE i
= 37 3

and to estimate J; we observe that B, \Dn, C UZ,,  Bn,. We see that
|Ba,\Dn,| € L2416 < 2¢543. Consequently J; < a/3. Thus K; > a/3.
And so

[ 1z w2 =" K= o0
n . r=1

10

{b) Now we prove that Ny is bounded. As in part (a) we assume that
f(z.0) = 0. By the continuity of Ny at 0 we see that there exists r > 0 such
that for all u & LY with jiulips < r one has | Nyw; 1 & ). Now given any v
in L¥ let n (integer) be such that ar’ < fjuil}, = (n = 3)r". Then 0 can be
decomposed into n + 1 pairwise disjoint sets [, such that fn, |ulf < 7P, So

n41l

]ﬂ|f(.r.u(:r})§'= ,g/;i, Jlzulz))¥<n+1 < (M,l_ 1 O

r

Proof of Theorem 2.4. Using the fact that Ny is hounded we get a
coustant ¢ > O such that

(25) [tz s e i [wtmrn
Now define the function H : 0 x B ~ R by '
H{z,s) = max{|f(z,s)! - e;e9. 0}.
Using the inequality o + (1~ a)? < 1 for 0 < a < 1 we get
(26) H(z,s)* < |f(z,8)[" ~ *|s for MH[z.,s)>0.

Let u€ LP and D = {x € N1 : H(z,u(z}) > 0}. There exist n > 0 integer
and 0 € ¢ < 1 such that

f ju(z){Pdz = n + ¢
D

So there are n 4+ 1 disjoint sets D; such that

n+l

D=|JD; and -[D |u(z)Pdz < 1.
=1 '

From {2.5) we get

./;J iz, u(z))¥dz = :S;:L.- If(z,u(z})il'dz < (n+ 1)

Then using this estimate in {2.6) we have

(2.7) [HEu@) < (e 1)t - (nr et <

11



which then holds for all w € LY,
Now uring the Lemma below we see that for euch positive integer k there
exists ugp € M with ugfz)) -+ & such that

bi{z)} = sup H(z,s) = H{z,u,(z)).
<k
It foliows fram (2.7) that b(r) £ L¥{11) and |beljpv < . Now let us define
the function b(x) by

(2.8) b(z)= sup Hiz.s)= .Iin;c by(7).

-0 AT

It fullows from Fatou's lemnma that b(z) € L9 and |ibljLs < c. From {2.8) we
finally obtain (2.3). O

Lemmma. Let [ : {1 x 1 — R be a Carathéodory function, where I i some
fired bounded closed interval. Let ue define the function

e(z) = max J{z,8).
Then c€ M and there existan € M such that
(2.9) e(z) = flz,u({z)).

Proof. (i) For each fixed a the function z — f,(z) is measurable. We claim
that

c(z) =sup{f,{z):8€ I, s-— rational}
showing then that ¢ is measurable. To prove the claim let xg € N{a.e.) and
choose 89 € [ such that ¢(zg) = f(zp, 5¢). Since sq is a limit point of rational
numbers and f(zq, 5} is a continucus function the claim is proved.

(ii} For each z € f)(a.e.)let F; = {s € I : f(z,s) = ¢(z)} which is a closed
set. Let us define a function ¥ : {1 — IR by u(z) = min, F;. Clearly the
function U satislies the relation in (2.9). It remains to show that Z€ M. To
do that it suffices to prove that the sets

By={z€:u(x)>a} Vael

are measurable. |Recall that W(z} € / for z € [1]. Let 8 be the lower end of
1. Now fixed a € I we define the function ¢, : £ — R by

ca(z) = max f(z,6)

12

wlich 15 measurable by part (i} proved above. The proof i+ corpleied b
ubmerving that
B,={z= 5t clz) » ecalz)}. T

Remark. The Nemytskii mapping Ny defined from L imo L¥ with1 < p <
oc. 1% ¢ < ocisnot conpact in general. In fact, the requirement that N,
is compact implies that there existe a b(z) € L¥(0) such that f{z.&) ~ b(z
for all s € B. See Krasnoselskin 153,

The Differentiability of Nemytskii Mappings. Suppose that a Cara-
thécdory function f(z, #} satisfiex condition (2.2). Then it delines a mapping
from L into L%, It is natural 1c ask: if f(7. &) has a partial derivative f'(z.s)
with respect 1o &, which is also a Cararbéodory lunction, dves f1(z. s) define
# Nemytskii map between some LF spaces? In view of Theorem 2.4 we
see that the answer to this question is no in general. The reason is tha
(2.3) poses no restriction on the growth of the derivative. Viewing the
differentiability of a Nemytskii mapping N associsred with a Carathiéodory
function f(x, s} we start assuming Lhat f)(z,s} is Carathéodory and

(2.10) iz, 8)| S cls|™ +b{z), vec R req.

where b(r) € L"(), 1 < n < oo, m> 0. Integrating (2.10} with respect
to s we obtain

¢
m+1

(2.11) 1/ (z,8)} < |s|™*! + b(z)|s] + a(x),

where a(z) is an arbitrary function. Shortly we impose a condition on a(z)
so as to having a Nemytskii map defined between adequate LP spaces. Using
Young’s inequality in (2.11) we have

m
m+1

c+1
m-+ 1

|si™*1 4 b(z)imeim 4 a(z).

[f(z,8)l <

Observe that the function b(z)(™*1)/™ is in L9(11), where ¢ = m n/(m + 1).
So if we pick a € L? it follows from Theorem 2.3 that (assuming (2.10)):

(212)  N;:LP = L' p=mn and g=mnf(m+1)

(2.13) J\'j_l LP — L™,
Now we are ready to study the diflerentiability of the mapping Ny

- 13



Theoremn 2.6. Aczsume (2.10) and the notation in (2.12) and (2.13). Then
Ny is continuously Fréchet differentioble with Np - LV — L{L¥. LY) defined

by
(214)  Njlulivl= Np(u) v (= filz,ulz))v(z)),  Yu, ve L.

Proof. We first observe that under our hypotheses the function
7 — ['(r, u{z))v(x) is in L9(). Indeed by Hélder’s inequality

e wls ) iz o)/ - ahyip-a)fe v elr,
jnu,(z, ()2l < (]n.f,( ,v(z)pe/te-ahyip-g '(fnl (2)P)

Observe that pg/(p — ¢) = n and use (2.13) above. Now we claim that for
fixed u € L¥
w(v) = Nylu=+v) - Ny(u) - fi(z,u)v

is o{v) for v e LF, that is |jw(v)jjes; liviles — O as [|vjips — 0. Since

flula)+ o() - Ja() = [ 5 Gz ula) + o))

- fn " 1z ulr) + tole))ola)dt
we have
1
Llu(u}r’dz: [n I.[o i(z, ulz) + to(x)) - f,(z, u(x))]v(z)dt|*dz.
Using Holder’s inequality and Fubini we obtain
[ totoyias <
1
< ([ [ 12 ula) + (@) - fita,ulz))dz d)ilul -

Using (2.13) and the fact that Ny« is a continuous operator we have the
claim proved. The continuity of N} follows readily (2.14) and (2.13). D

Remark. We observe that in the previous theorem p > g, since we have
assumed m > 0. What happens if m = 0, that is

1£3(z, 8)] < ¥(z)
where b(z) € L*{11)? First of all we cbserve that

N!::LP—'L" Yp2> 1

14

and proceeding ar above (supposing 1 < n < o)
Ne:BP —I¢ ep>1 and g=np’in-p

and we are precisely in the same situation as in (2.12). (2.13}). Now assume
n = +oc, l.e., there exists M > D

(2.15} iz, €M VYrefl, Vss R

Integrating we obtain
(2.16} if(z.8) £ Mis + b{1)

It follows under (2.15) and {2.16) that
CNp P L® Yi<p<o
Np: LV — LP  (taking b€ LF).

It is interesting 1o observe that such an Ny cannot be Frécher differentiuble
in general. Indeed:

Theorem 2.7. Assume (2.15). If Ny : LP» — LFP is Fréchet differenticble
then there ezist funchions af{e}el%end-b(z) € L such that f(x,8) =
a{r)s + b(z). '

Proof. (a) Let us prove that the Gateaux derivative of Ny at u in the
direction v is given by

d ' —_
L Nytu) = fiz,ul2)etz).
First we observe that fi(r,u(z))v(z) € L. So we have to prove that

wi(z) =71 |f(z, u(z) + to(2)) ~ f(z,u(2))] ~ fi(z, u{z)}e(z)

goes to O in LP ast — 0. As in the proof of Theorem 2.6 we write

wr) = fol[f:(x, uf{z) + tro(z)} = f,(z,u(z))]v{z)dr.

So

]
jn lor(z)Pdz < jﬂ fn |4z, u(z) + tro(z)) ~ £1(z, u(z))Plo(z) "dzdr.
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Now for each 7 € 0,1} and each 7 & (Ma.c.) 1he integrand of the double
integral goes to zero. On the other hand this integrand is bounded by
(2M)*le(x}*. So the result follows by the Lebesgue Dominated Convergence
Theorem.

{b) Now supposc Ny is Fréchet differentiable. Then its Fréchet derivative
is equal to the Gateaux derivative, and assumning that f(r,0} = 0 we have
that
(217) Wl (e - [ Ouip ~ 0 s i — O

Now for each fixed { = R nnd ¢ € 0 consider a sequence uilz) = fyp,(5.),
i.e., a multiple of the characteristic function of the ball Be(z;). For such
functions the expression in {2.17) raised to Lthe power p can be written as

1

ool Br (7) a0 7 el O,

So taking the limit as § — 0 we abtain
1
Eif(zo,t) — fi(20,0)¢ = 0, zp € (Hae)

which shows that f{zp, £) = f!(x0,0}. Since the previous arguments can be
done for all zp € f{a.c.) and all £ € IR, we obtain that f(z,5) = a{r)s where
a{r) = f,(z,0] is an L™ function. 0.

The Potential of a Nemytskii Mapping. Let f(x, 5) be a Carathéodory
function for which there are constants 0 < m, 1 < p € oo and a function
b{z} € LP/™(01) such that

if(z.8)1 < e18]™ + b(x).
Denoting by F(z,8) = Jy f(z,7)d: we obtain that
|F(z,8)) < e5]8]™"" + ¢(z)

where ¢c(z) € L?/(™+)){[7). (See the paragraphs before Theorem 2.7). Then
Ny :LF — LP/™ and Np : [P — [p/Im+1)

In particular, if p= m + 1, (= p > 1) the inequalities above become
(218)  If(zs) < clefP™ +b(z),  b(z)e L¥,

+

)=

1
P
|F(z,s)| <.crlsl’ + e(z), c(z)e Ll
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and we have that A, L' — LV and Ny LF — L.
Theorem 2.8, Aszume (2.18) Then
wq:Lrummwx
defines a continuous funchronal & @ LP(Q) — K. which 15 continuously
Frichel differentiable.

Proof, The continuity of Ng implies that ¥ is continuous. We claim that
V' = Ay So all we have 10 do is proving that

wlv) = _/;, F(T-“‘*")‘LF(I-")‘LI(T-")"? o(v)

as v — 0in L?. As in the calculations done in the proof of Theorem 2.6 we
obtain

wlv) = fnj;l[f(:r,u + tv) = f(r,u)iv di dz.

Using Fubini's theorem and Holder’s inequality
1
(ol € [ 1IN+ 19) = Npfupditisdhun
0
The integral in the above expression goes to zero as {|vjjo» — O by the
Lebesgue Dominated Convergence Theorem with an application of Theorem

2.3. So
ivligw(v) =0 as  ([vfle—0. O

17



Chapter 3

Semilinear Elliptic
Equations I

We consider the Dirichlet problem
(3.1) —Au=f(zr,u) in 1, uwu=0 on 30,

where © is a bounded smooth domain in BY, N > 2 and 80 denotes its
boundary. We assume all along that f : (1 x R — IR is a Carathéodory
funciion. By a classical solution of (3.1) we mean a function v € C*(1) N
CO(1) which satisfies the equation at every point z € {1 and which vanishes
on d(). By a generakized solution of {3.1) we mean a function v € HE(Q)
which satisfies {3.1) in the weak sense, i.e.

(3.2) AVu-Vu:j;f(z,u]v, Yve Cr(M).

We see that in order to have things well defined in (3.2}, the function f(z, s)
has to obey some growth conditions on the real variable s. We will not say
which they are, since a stronger assumption will be assumed shortly, when
we look for generalized solution as critical points of a functional. Namely
let us consider

(3.3) ®(u) = %jnwuﬁ—jnnz,u)

where F(z,5) = [§ f(z,7)dr. In order 1o have & : H{{(01) — R well defined
we should tequire that F(z,u) € L'((1) for v € H}(?). In view of the
Sobolev imbedding theorem H} — LP (continuous imbedding) if 1 < p <

18

SN IN-2){N3and) < p< xif N =2 So usiug Theorem 2.8 we

should require that [ satisfies the following condition
(2.4) iz e) < es? V4 b(x)
where p satisfies the conditions of the Sobolev imbedding and
| 1
- I
¥r)e LY, » 5 1

Using Theorem 2.8 we conclude that:

tf | satisfies {3.4) the functional & defined in (3.5} 45 conlinvous Fréche!
differentiable, ie., C?| and

(3.5) (P (u),v) = [ Vu: Vv - / J{z,u}v, veeH]
n n
where { , ) denoles the inner product in HA{(f).

It follows readily that the critical points of ® are precisely Lthe generalized
solutions of (3.1). So the search for solutions of {3.1) is transfurmed in the
investigation of critical points of &. In Lhis chapier we study conditions
under which & has a minimum.

@ i8 bounded below if the following condition is satisfied:

1
(3.6) F(z,8) < 3 w8’ +a(z)
where a(z) € L'(1) and u is a constant 0 < u < X;. [Here 3; denotes the

first eigenvalue of the Laplacian subject to Dirichlet boundary conditions].
Indeed we can estimate

o) 25 [ (V3= 3u [ - [ ()2 - [ ata)

where we have used the variational characterization of the first eigenvalue.

® is weakly lower semicontinuous in H} if condition (3.4) is satisfied with
1<p<2N/(N-2)ifN23and1<p<ooifl N=2 Indeed

o(w) = 3 lullhs - ¥(w)
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where Wiu) = [, F(r.u} has been studied in Section 1.2, and the claim fol-
lows using 1he fact that the norm is weakh lower semicontinnous and under
the hypothesis W is weakly continuous from H) into R. Let us prove this
last statemeni. Let u, — u in H}. Going to 2 subsequence if necessary we
have u, ~ u in L? with p restricted as above to insure the compact imbed-
diug H) — L¥. Now use the continuiy of the functional ¥ to conclude.

Now we can state the following result

Theorem 3.1, Aesume (3.6) and (34) with ] <p < 2N/ (N-2)ifN >3
end ]l € p < ac f N =2 Then for eachr > Q there exist A, < 0 and
up € HY with , wlly, < r such that ¥'(u,) = A,u,, and @ restricted to the
ball of radius v around O assumes its infimum al u,.

Proof. The ball B,{0) = {u € H} : Hu||g: € r} is weukly compact. So

applying Theorem 1.1 1o the functional & restricted to B, (0) we obtain a
point u, € B,(0) such that

®(u,} = Inf{®{u} : v € B,(0)}.

Now let v € B,(0) be arbitrary then

T O(u,) < P(tv+ (1 - ue) = Sfu,) + 1P (ur),v - up) + o(1)

which implies
(3.7) {(®'(w}v-wu) 20

If u, is an interior point of B,(0) then v — u, covers a ball about the origin.
Consequently ®'(u,) = 0. If u, € 3B, (0) we proceed as follows. In the case
when @'{u,) = 0 we have the thesis with A, = 0. Otherwise when ®'(u,} # 0
we assume by contradiction that &'(v,)/]|®'(u,)l] # -u./||u,|]. Then v =
—r@'(u,)/}i®'(x,)|| is in 3B,(0) and v # u,. So {v, u,) < r?. On the other
hand with such a v in (3.7) we obtain 0 < {-v,v - u,} = r? < {v,u,),
contradiction. D

Corollary 3.2. In addition lo the kypothesis of Theorem 8.1 assume that
there ezists r > O such that

(3.8) P(u)y>e>0 for wuedB,(0)

where a 15 some given constanl. Then @ has a critical point.
Proof. Since ®(0) = 0, we conclude from {3.8) that the infimum of ¥ in

20

L, (0) is achieved a1 an interior point of that ball. o
Remarks {Sufflicient conditions that insure (3.8}).

1) Assume g < Ay in condition (3.6). Then

] » " ]

(&mqu;fﬁw-gfw—cmg;u-quwwucm
- = : ]

where we have used the variational characterization of the first eigenvalue,

I foliows frum (3.9) that ¢(u) — +oc as ||u]| — oc, that 15, & is correive.

So (3.8) is satisfied.

2} In particular, if there exists 7 < Ay suel that

f{z,5)

Yimsup—"—+ < g
[#]—e0

then one has (3.6) with a g < Aj, and @ is coercive as proved above.

3) (A result of Mawhin-Ward-Willem [60]). Assume that

{3.10) Iimsup-z-f(—j-ﬁ <afz) < A

lof=oc ¢
where a(z) € L™(0]) and a(z) < Ay on a set of positive measure. Then
under hypotheses (3.4) and (3.10), the Dirichlet problem has a generalized
solution u € H}(11). To prove this statement all it remains to do is to prove
that eondition (3.8) is satisfied. First we claim that there exists ¢p > 0 such
that

(3.11) m@sﬁww-Lqﬂmzm Vilully = 1.

Assume by contradiction that there exists a sequence (u,) in H}{f1) with
Hunligs = 1 and 8(u,} —~ 0. We may assume without loss of generality that
tn — ug {weakly) in A} and v, — u in L?. As a consequence of the fact
that a(z) < A; in {1, we have 6(u,) > 0 and then

(3.12) 0< '[|Vu0|2 —/u(:)ug <0

On the other hand, 8(u,) = 1- [ a{z)u3 gives  e(z)ul = 1. From (3.12) we
get |[ug||1 = 1, which implies that u, — uq (strongly) in H}. This implies

21



that ug # 0. Now observe that 8 : H) — R is weakly lower semicontinuous,
that 8(u) > 0 for all u € H} and B(u,) = 0. So ug is a critical poim of 6,
wlich implies that u, € H}{1?) is a gencralized solution of - Dugy = ofr}up.
Thus ug € W22(01) and it is a strong solution of an elliptic equation. By the
Aleksandrov maximum principle (see for instance, Gilbarg-Trudinger 146,
p. 246]) we see that up £ 0 a.e. in ), Using (3.12) again we have

A,fnug < fnivuulz < fa(:r)uf,< A,/uf..

which is impossible. So (2.11) is proved.
Next it follows from (3.10} that given « < Ajeo [the 1y of (3.11)) there
exists a constam ¢, > 0 such that

s +e, VYrefl, vscR

F(z,8) 9-(3-');15

Then we estimate @ as follows
1 1 3
Plu) > EfiVujz - 5[0(1}"2 - Efu!-— c|1Y.
Using (3.11) we get
i . _1
TS 300 f Vuf? - %Ail [ Vul? -~ e

which implies that ® is coercive, and in particular {3.8) is satisfied.

Remark. We observe that in all cases considered above we in fact proved
that & were coercive. We remark that condition {3.8) could be attained
without coerciveness. It would be interesting to find some other reasonable
condition on F to insure {3.8). On this line see the work of de Figueiredo~
Gossez [42).

Final Remark. (Eristence of a minimum without the growth condition
{3.4)). Let us look at the functional & assuming the following condition: for
some constant b > 0 and a{z} € L}((7) one has

(3.13) F(z,5) < bisl” + a(z)

where 1 < p<2N/(N-2)if N>3and1<p<ooif N=2 Forue H}
we have

f F(z,u(z))de < b fn lu(z)PPdz * j a(z)dz
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where the integral on the left side could be —oc. In view of the Scholev
imbed:img it 1s < ~3¢. So the functional & could assume the value +o0.
Let us now check its weakly Juwer semicontinuity at a point u. € nim
where ®(ug) < +oo. So F(z,ug{z)) € L'. Now Lake a sequence up — ug in
H]}. Passing to subsequence il necessary we may ruppose that u, — g in
L' unl7) — wo(7) ae. in 0 and luy(z)| < h{z) for some h € L.

It follows then from (3.13) that

F(z,un(r)) € bh(z)" + a(r).

Since the right side of the sbove inequality is in L1 we can apply Fatou's
lernma and conclude that

limsup[ F(z,un(x})dz < /F{t,uu(:r))d:r
n
Consequently we liave

lim inf @(un)

v

lim inf%/ [Vuni? - limsup[ Flz,ua)
1
> ;f|vuu|= - f Flz, uo).

So @ : H(f1) » RuU{+oo) is defined and weakly lower semicontinuous. By

Theorem 1.1 & has a minimum in any ball B,{0) contained in Hj. I F sat-

isfies condition (3.10) (which by the way implies (3.13)) we see by Remark
3 above that & is coercive. Thus & has a global minimum in H}. Without
further conditions {(namely (3.4)) one cannot prove that such a minimum is
a critical point of ¢.
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Chapter 4

Ekeland Variational
Principle

Introduction. We saw in Chapter 1 that a functiona) bounded below
assumes its infimum if it has some type of continuity in a topology that
renders (local) compactness to the domain of said funciional. However in
many situations of interest in applications this is not the case. For exam-
ple, functionals defined in (infinite dimensional) Hilbert spaces which are
continuous in the norm topology bul not in the weak topolugy. Problems
with this set up can be handled efficiently by Ekeland Varistional Principle.
This principle discovered in 1972 has found a multitude of applications in
different fields of Analysis. It has also served to provide simple and elegant
proofs of known results. And as we see it is a tool that unifies many resulis
where the underlining idea is some sort of approximation. Our motivation Lo
write these notes is to make an atiempt to exhibit all these features, which
we find mathematically quite interesting.

Theorem 4.1. {Ekeland Principle - weak form). Let (X, d) be a complete
metric space. Lel @ : X — Ru{+oo)} be lower semicontinuous ond bounded
below. Then given any ¢ > O there exists u, € X such that

(4.1) @(u) < Infx® + ¢,

and

(12) @{u) < d{u)+ed{u,u), VYueX with u#u,.

For future applications one needs a stronger version of Theorem 4.1. Ob-
serve that (4.5) below gives information on the whereabouts of the point
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uy. As we shall see in Theorem 4.3 the peint u, 1 Theorem 4.2 ior u, i
Theorem 4.1; 15 a sort of “ahmost™ critica) point Hence its impon ance.

Theorem 4.2, (Ekeland Principle - strong form). Let X be a complete
metric epace and ¢ © X — R U {+cc) o lower semicontinuous function
which iz bounded bilow. Let ¢ > 0 and u € X be given such that

(4.3) O(i) < Wix® + 5.

Then given X = 0 there exists uy € X such that

(4.4) P(u,) < P{u)
(4.8) Bfu,) < dlu) + i diu,uy) Yu # wuy.

Proof. For notational simpiification let us put dy(r,y) = {1/2)d(z,y). Ler
us define a partial order in X by

u < ve $u) < Plo) - e dau,v).

Jt is straightforward that: (i) (reflexivity) u € u; (ii} (antisymmetry) u < v
and v < u imply u = v, (iii) {transitivity) v < v end v < w imply u < w; all
these three properties for all u, v, w in X. Now we define a sequence (S,)
of subsets of X as follows. Start with u; = @ and define

. €
Sy ={UEA :uSul}; u €5, &1 4>(u3)$]nfs,¢+ 2—2
and inductively

Sn={ueX:ugus); uns €85, st @{ups1} < Infs &+ _2-"'{'*_1
Clearly 81 5 S; 2 53 0 -+ Each S, is closed: let z, € S, withz; - r €
X. We have ®(z;) < ®(u,) - € dy(z;,u,). Taking limits using the lower
semicontinuity of ® and the continuity of d we conclude that z € §,. Now
we prove that the diameters of these sets go Lo zero: diamS, — 0. Indeed,
take an erbitrary point € S,,. On one hand, z < u, implies

(4.7) ¥(z) < ®lup) ~ € di(z,u,).
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On the other hand, we observe that z belongs also 10 Sa-- So it is one of
the points which entered in the competition when we picked u,. So

(4.8) B(un) < ®(z) + 2‘—"
From (4.7) and (4.8) we get
dy(z,u,) <27  VI€ES,

which gives diamS, < 2°"*!. Now we claim that the unique point in the
intersection of the S, 's satisfies conditions (4.4} - {4.5) - (4.6). Let then
N8 = {u}. Since up € 55, {4.4) is clear. Now let u # uy. We cannot
have u < u), because otherwise u would belong to the intersection of the
S, 's. So u £ uy, which means that

®(u) > @(ur} - € dalu, 1)
thus proving (4.6). Finally to prove (4.5) we write

n-1 n-1
dr(G,un) € Y daluj,uj41) € PI% A
j=1 ==l

and take limitsasn —+co. [

Remark. The sbove results and further theorems in this chapter are due
to Ekeland. See [37], [38], and his survey paper [39].

-

Connections With Fixed Point Theory. Now we show that Ekeland’s
Principle implies a Fixed Point Theorem due to Caristi {22} See also (23]
As a matter of fact, the two results are equivalent in the sense that Ekeland’s
Principle can also be proved from Caristi’s theorem.

Theorem 4.3. (Caristi Fixed Point Theorem). Let X be a complete metric
space, and @ : X — RU {+oo} ¢ lower semicontinuous Junctional which is
bounded below. Let T : X — 2% be a multivalued mapping such that

(4.9) ®(y) < ®(z) - d(z,y), vzeX, VyeTsz
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Then there exists 7o € X such that 29 € Txg.
Proof. Using Theorem 4.1 with ¢ = } we find o € X such that

(4.10) ¥(20) < =) + d(z,z0} VI # o

Now we claim that g € T'zg. Otherwise 2ll y € T'xg are such that y ¥ zo.
So we have from (4.9) and (4.10} that

®(y) < ¥(z0) - d(zo,y) and  ®(zo) < B(y) + d(z0,¥)

which cannot hold simultanecusly. O

Proof of Theorem 4.1 from Theorem 4.3. Let us use the notation
dy = ¢ d, which is an equivalent distance in X. Suppose by contradiction
that there is no u, satisfying (4.2). So for each z € X the set {y € X :
®(z) > ®(y) + di(z,y); y # z) is not empty. Lét us denote thia set by T'z.
In this way we have produced a multivalued mapping T in (X,d) which
satisfies condition {4.9). By Theorem 4.3 it should exist 2o € X such that
25 € Tzg. But this is impossible: from the very definition of 7'z, we have
thatzgTz. DO

Remark. If T is a contraction in a complete metric space, that is. if there

== exists a constant k, 0 < k < §, such that

d(Tz!TV) < kd(’)”)r Vr,y € X,

then T satisfies condition (4.9) with &(z) = 3l d{z,Tz). So that part
of the Contraction Mapping Principle which says about the existence of a
fixed point can be obtained from Theorem 4.3. Of course the Contraction
Mapping Principle is much more than this. Its well known proof uses an
iteration procedure (the method of successive approximations) which gives
an effective computation of the fixed point, with an error estimate, etc - -

Application of Theorem 4.1 to Functionals Defined in Banach
Spaces. Now we put more struture on the space X where the function-
als are defined. In fact we suppose that X is a Banach space.. This will
allow us to use a Differential Calculus, and then we could appreciate better
the meaning of the relation (4.2). Loosely speaking (4.2) has to do with
some Newton quocient being small.

Theorem 4.4. Let X be ¢ Banach space and & : X —. R a lower semi-
continuous functional wnich is bounded below. Jn addition, suppose that &
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iz Gateauz differentiable ot every point 2 € X. Then for eack ¢ > 0 there
erssts u, € X such that
(4.11) : Pu) < Infxd+ ¢

(4.12) HD®(u)|jx- < €

Proof. It follows from Theorem 4.1 that there exists u, € X such that
(4.11) holds and

{4.13) Dlu) < Plu)+ ¢|lu-u]] VYuelX.
Let v€ X and t > O be arbitrary. Putting u = u, + v in (4.13) we obtain
177 [@{u) = ®{u, + tv)) < €|v]|-

Passing to the limit as t — 0 we get ~({D®(u),v) < ¢||v|| for each given
v € X. Since this inequality is true for v and —v we obtain |{D®(u), v)| <
ellv]], for all v € X. But then

(IDR{u)lx- = sup 22LY o
vev w0 |vl|

Remark 1. The fact that & is Gateaux differentiable does not implv.that ... _

® is lower semicontinuous. One has simple examples, even for X = If?,

Remark 2. In terms of functional equations Thecrem 4.4 means the fol-
lowing. Suppose that T : X — X" is an operator which is a gradient, i.e.,
there exists a functional & : X — R such that T = D&, The functional ® is
called the potential of T'. If ¥ satisfies the conditions of Theorem 4.4, then
that theorem says that the equation Tz = z* has a solution z for some z*
in a ball of radius ¢ around 0 in X*. And this for all ¢ > 0. As a matter of
fact one could say more if additicnal conditions are set on . Namely

Theorem 4.5. In addition o the hypotheses of Theorem {.{ sssume that
there gre constants k > 0 and C such that

@(u) 2 &ljul| - C.

Let B* denate the unit ball about the origin in X*. Then D®(X) is dense
in kB".

Proof. We should prove that given ¢ > 0 and u* € kB" there exists
ue € X such that ||[D®(u;) - u’|lx- < . So consider the functional
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¥(u) = ${u) - {u*,u). It is easy to see that ¥ is lower semicontinuous and
Gateaux differentiable. Boundedness below follows from (4.14). So by Theo-
rem 4.4 we obtain u, such that |{D¥(u,}||x+ < €. Since D¥(x} = D@(u)-u",
the result follows. s}

Corollary 4.6. In addition to the hypotheses of Theorem 4.4 assume that
there exists a continuous function o : [0,00) — R such that p(t)/t — 400
08 t — +00 and $(u) 2 p(|[u]]) for allu € X. Then D®({X) i dense in X~.
Proof, Let k > 0. Choose ig > 0 such that e(t)/t 2 kfort > 1. So
@(u) > kflul] if ||u]] > to. If ||u]} < ts, ®(u) > C where C = min{(t) :
0 <t < to}. Applying Theorem 4.5 we see that D@(X) is dense in k5",
Since k is arbitrary the result follows. 0O

For the next result one needs a very useful concept, a sort of compaciness
condition for a functional . We say that a C? functional satisfies the
Palais-Smale condition [or (PS) conditien, for short] if every sequence {u,,)
in X which satisfies

[®(un)| < const. and  P(u,) =0 in X
possesses a convergent (in the norm) subsequence.

Theorem 4.7. Let X be o Banach space and & : X — R a C functional
which satisfies the (PS) condition. Suppose in addition thet  is bounded
below. Then the infimum of ® is ackicved al o point up € X and up 15 a
critical point of B, i.e., ' (uy) = 0.

Proof. Using Theorem 4.4 we see that for each positive integer n there is
tp € X such that

Sl

(4.15) Blun) S Infx@+ = (@' (un)l| S

Using (PS) we have a subsequence (un,) and an element vo € X such that
Un; — up. Finally from the continuity of both @ and @' we get (4.15).

(4.18) Plug) = Infx® @'(w)=0 D

Remarks. 1) As a matter of fact the result is true without the continuity
of @'. The mere existence of the Fréchet differential at each point suffices.
Indeed, we have only to show that the first statement in {4.16) implies the
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second. This is a standard fact in the Calculus of Variations. Here it goes
its simple proof: take v € X, [jv}| =1, arbitrary and t > 0. So

&(uo) < D(uo+ tv) = B(uo) + 1(¢'(ug), v} + o{t)

from which follows that ||®'(ug){lx> = supjuy=1(®'{uo).v) < 9%'-1 for all
t > 0. Making t — 0 we get the result.

2) The boundedness below of & it could be obtained by a condition like the
one in Corollary 4.6. Observe that s condition like $(u) — oo as l|uf] =+ o0
(usually called coerciveness) [or even the stronger one ®(u)/||ull ~ +oo as
{|u] =+ +00] does not guarantee that & is bounded below. See Chapter 1.

3) Theorem 4.7 appears in Chang [24] with a different proof and restricted
to Hilbert spaces. Possibly that proof could be extended to the case of
general Banach using a the flow given by subgradient, like in [68], instead
of the gradient flow.
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Chapter 5

Variational Theorems of
Min-Max Type

Introduction. In this chapter we use Ekeland Variational Principle to
obtain a general variational principle of the min-max type. We follow closely
Brezis [13], see also Aubin-Ekeland |6]. From this result we show how to
derive the Mountain Pass Theorem of Ambrosetti and Rabinowitz {4], as
well as the Saddle Point. and the Generalized Mountain Pass Theorems of
Rabinowitz, |66] and [67] respectively.

Let X be a Banach space and @ : X — R a C! functional. Let K be a
compact metrie space and Ky C K a closed subset. Let fo: Ko — X be s
given (fixed) continuous mapping. We introduce the family

(5.1) r={feC(K,X}: f=fo on Kg}

where C'(K, X) denotes the set of all continuous mappings from K into X.
Now we define

(5.2) ¢ = Inf erMaxiex 8(/(t)), -

where we observe that without further hypotheses ¢ could be —co.
Theorem 5.1. Besides the foregoing notalions sssume that

(5.3) Maxex (/(t)) > Maxeex, 2(f(t)), V/€T.
Then given ¢ > O there ezists u, € X such that

¢ € Pu)Sc+e
%' (ue)llx- < €
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Remark. Otserve that the functional ¢ is not supposed to satisfy the
{PS) condition, see Chapter 1. The theorem above says that under the
hypotheses there exists a Palois—Smale sequence, that is, (u,) in X such
that ®(u,) — c and 9'(un) — G. Consequently, if one assumes in addition
that ¢ satisfies the (PS) condition, then there exists a critical point at level
¢: ®'(uo) = 0 and ¥'(ug) = c.

The proof uses some facts from Convex Analysis which we now expound
in a generality slight greater than actually needed here.

The Subdifferential of a Convex Function. Let X be a Banach space
and ¢ : X — RU{+co} a convex lower semicontinuous functional, with
®(z) # +oo. Let us denote the domain of ® by dom® = {z € X : ¥(z) <
oo}. We define the subdifferentiolof ¢, 3% : X — 2X°, by

(54) OP(z)={ue X" :O(y) 2 P(z)+ (p,y-2), Vye X}.

We observe that 3®(z) could be the empty set for some z € X. Clearly this is
the case if z & dom®. However the following property has a straightforward
proof, .

{(5.5) O%(z) is a convex w'—closed set.

In general 3%(z) is not bounded. |To get a good understanding with pic-
tures (1) consider simple examples. (i) ¢ : R ~+ R U {+oo} defined by
®(z) = 0if |z] < 1 and ®(z) = +oo otherwise. (i) & : R ~ R U {+co)}
defined by ®(z) = 1/2if 0 < z < 1 and ®(z) = +oo otherwise. (iii)
®: R — RU{+oo} defined by $(z) = |tan z|if |z| < x/2 and ®(z) = +00
otherwise].

However the following result is true.

Proposition 5.2. Let @ : X — R U {+c0)} be o convez lower semicontin-
uous functional, with ®(z) # +oo. Let =5 € domd and suppose that & 1
continuous at zg. Then 3P(xp) is bounded and non-empty.

Proof. Given ¢ > 0 there exists § > 0 such that

{(5.6) [®(z) -~ ®(z0)] <€ if |x—=zo| < 8.

Let v € X with ||v|| = 1 be arbitrary and take a {fixed) o, with 0 < t; < §.
For each pu € BQ(:’] taking in (5.4} y= x5 + tov we obtain

®(z0 + tov) 2 $(za) + (u, tov),
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where (, } denotes the duality pairing between X* and X. And using (5.6)
we get (4, v) < ¢/lg, which implies Hp]f,!-) < €/ty. It remains 1o prove that
99(z0) # 0. This will be accomplished by using the Hahn-Banach theorem
applied to sets in the cartesian product X x R. Let

A={(z,a)€ X x R:z€ By(zg), a> P(z)})

where Bg(zo) denotes the open ball of radius § around To. It is easy to check
that A is open and convex. Also, the point {zg, ®(zp)) & A. So there exists
a non-zero functional (v,r) € X* x R such that

(5.7) (.70} + rP(20) < (v,2) +ra, VY(r,0)€ A

By taking = = z; in (5.7} we conclude conclude that r > 0. So calling
M = v/r we obtain

'(J—f(ﬂ,:tn) + ®(zq) 5;-'_(;1,:) +a V(z,a)e A.

By the continuity of & we can replace a in the above inequality by ®(z},
and so we get

(5.8) ®(z) 2 (o) + (u,z - x0) Vre Bs{zp).

To extend inequality (5.8) to all z € X and so finishing the proof we proceed
as follows. Given y & B;(zq), there exist z € Bs{xo) and 0 < t < 1 such
that £ = ty + (1 - t)zo. By convexity ®(z) < t®(y) + (1 — t}®(zo). This
together with {5.8) completes the proof. 0O

Remark. If follows from Proposition 5.2 and {5.5) that 3®(z) is a non-
empty convex w‘-compact set at the points z of continuity of & where
®(z) < +oo.

Corollary 5.3. If®: X — R is convez ond continuous with dom® = X,
then d®(z) is ¢ non-empty convez w'-compact subsel of X* for aliz € X.

The One-Sided Directional Derivative. Let & : X/R be convex con-
tinuous function. It follows from convexity that the function: t € (0, 00) —
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171|@(x + ty) - ${z)] is increasing as ¢ increases for every z, y € X fixed.
Now let p € 3®(zr). One has

-9
(5.9) e W)= ¥e)y gy wi>o
It follows then that the limit as ¢ — O of the left side. of (5.9) exists and it
is > Max{(,y) : u € 8%(z)}. Actually one has equality, as proved next.

Proposition 5.4. Let ® : X — R bt conves and continuous. Then for each
z, y € X one has

. ®(z+ty) - $(z)
m B ————

{5.10) li

= Max,eae(s) (1, ¥)-
10 t

Proof. Let z and y in X be fixed and let us denote the left side of (5.10) by
@', (z;y). In view of the discussion preceeding the stat.emer:t of the present
proposition, it suffices to exhibit a 4 € 3®(z) such that ¢, (z;y) < (&, ¥).
To do that we consider the following two subsets of X x R:

A={(z,a)e X x R:2> ®(:)}

B ={(z+1ty,0(x) +1&,(zy)): 1 2 0},

which are the interior of the epigraph of & and a half-line respectively. It
ie easy to see that they are convex and A is open. '

So by the Hahn-Banach theorem they can be separated: there exists a
non-zero functional (v,r) € X* x IR such that

{5.11) (v,2)+ra 2 (v, 2+ ty) + r{@(z) + t¥, (z;9)}

for all (z,a) € A &nd sll t > 0. Making z = z and ¢ = 0 in (5.11) we
conclude that r > 0. So calling 4 = —/r and replacing a by ®{z) [here use
the continuity of $} we obtain

(5.12) ~ (u,8) + B(2) 2 ~ {1,z + ty) + B(z) + 19, (5 9)

which holds for al! € X and all ¢ > 0. Making ¢ = 0 in (5.12) we co'nclude
that g € 3®(z). Next taking z = z we get &, (z; ¥} < (u,y), completing the
proof. O

The Subdifferential of a Special Functional. Let K be a co'mpact
metric space and C(K, )() be the Banach space of all real valued continuous
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functions z : K — R, endowed with the norm |'z]i = max{Jz()] : t €
K}. To simplify our notation let us dencte £ = C(K,R). By the Riesz
representation theorem, see Dunford-Schwartz, |35; p. 234 the dual E*
of £ is isometric isomorphic to the Banach space M(K, ) of all regular
countably additive real-valued set functions u {for short: Radon measures)
defined in the o-field of all Borel sets in X, endowed with the norm given
by the total variation:

k &
lull = sup{3_In(E)|: |JE:c B, EinE;j =9, Vk=1,2,..)

i=] i=1

Next we recall some definitions. We say that a Redon measure @ is positive,
and denote u > 0 if (u,z) > O for all 2 € E such that z(t) > 0 for all
t € K. We say that a Hadon measure p has mass one if {u, 1) = 1, where
1 € E is the function defined by X{t} = 1 for all t € K. We say that a
Radon measure pi vanishes in an open set U C K if {n,z) =0forallze E
such that the support of z is a compact set Kp contained in U, Using par-
tition of unit, one can prove that if p vanishes in a collection of open sets
Ua, then p also vanishes in the union UU,. So there exists a largest open
set U where u vanishes. The support of the measure u, denoted by suppy,
is defined by suppu = K\U. For these notions in the more general set-up
of distributions, see Schwartz [72]. We shall need the following simple result.

Lemma 5.5. Let z € E be a function such thet z(t) = 0 for all t € suppp.
Then ¥ {u, 1) = 0.

Proof. For each subset A ¢ X let us denote by A, = {t € K : dist{t, A) <
¢}, where € > 0. By Urysohn’s Theorem there exists for each n = 1,2,...,a

function v, € E such that p,{t) = O for t € (supppt)ijn and wa(t) = 1

for ¢ f (suppu)ajn. Then the sequence pnz converges to z in E and
{u, g:..::) — (u,z). Since the support of each Pn is 8 compact set contained
in U = K\suppp, we have {4, ppz) = 0,@ndthenfheresultfollows) 0O

T —

Proposition 5.8. Using the above notation consider the Junetional ©
E — R defined by

6(z) = Max{z(t) : t € X).

Then O s continuous and conver. Moreover, for each z € E,

(.13 e B(z) & >0, {u,1)=1, supppc {te K :z(t) = 8(z}}.
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Proof. The convexity of 8 is straightforward. To prove the continuity, let
7, y€ E. Then

6(z) - 6(y} = z{t) — Maxxy < z(t) - ¥{i),

where { € K is a point where the maximum of z is achieved. From the above
inequality one obtains

[8(z) ~ 8(y)| < Iz - vl
ii) Let us prove {5.13) <=. We claim that
(5.14) 6(y) > 8(z) + {u,y-z) VyeE

The function z = £ — ©(z)R is in E and z{t) = 0 for t € suppu. Using
Lemma 5.5 we have that {i, ) = 0 which implies (s, £) = B(z). So {5.14)
becomes &(y) > {p,y). But this follows readily from the fact that u > 0
and the function u = 8(y)1 - y ia 2 0.

iii) Let us prove (5.13) =>. Now we have that {5.14) holds by hypothesis.
Let z € E, z > 0, be arbitrary and put y = 2 — & in (5.14); we obtain

Maxg(z ~ 1) - Maxg(z) > ~(u, ).

Since the left side of the above inequality is > O we get {u, 2} > 0. Next et
€ € B be arbitrary and put y = 2+ C1 in (5.14); we obtain

Maxy (z + C1) - Maxg(z) > {u,Clh = C{u, 1).

Since the left side of the above inequality is C we obtain Cip,1) £ C,
which implies {4, 1) = 1. Finally, in order to prove that the support of
is contained in the closed set S = {t € K : z{t) = 8(z)} it suffices to show
that u vanishes in any open set U C K\S. Let z € E be & function with
compact support Ky contained in U. Let

= 8(z) - Maxg,(z) > 0,
and choose ¢ > 0 such that *ez{t) < ¢, for all ¢ € K. Thus z(t) + ez(t) <

8(z), and O(x £ ez) = O(z). So using (5.14) with y = z + ¢z we obtain
+e{p, z) < 0 which shows that {u,2}=0. 0O
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Now we are ready to prove Theorem 5.1.
Proof of Theorem 5.1. (i) Viewing the use of Ekeland Variational Prin-
ciple we observe that T is a complete metric space with the distance defined
by
d(/,9) = Max{||/(¢) - g(1)Il : t € K}, VS, g€l

Next define the functional ¥ : ' — R by
Y(f) = Maxeex [/ (1))

1t follows from (5.3) that ¥ is bounded below. Indeed W(f} > blorall f € T,
where
b= Maxie , ®(fo(1)).

Next we check the continuity of ¥ at f) € I". Given ¢ > 0, choose § > Osuch
that |{$(z) - ®(y)| < eforally € f1(K) and all z € X such that ||[z—y|] < 6.
Now for each f € I such that d(/, fi) < § we have

V(f) - ¥(H) = ®(/(1) - Maxsex ®(£1(t)) < 2(4(1)) - ®(A (1))

where f € K is the point where the maximum of &(f{t)) is achieved. Since
/@) = ADI < d(f, fi) < 6 we conclude that ¥(f) - ¥(/;) S <. And
reverting the roles of f and f; we obtain that |[¥(f) - ¥(/1)| < ¢, showing
that ¥ is continuous. Thus by Ekeland Variational Principle, given ¢ > 0
there exists a f, € T such that

(5.15) e ¥(f)<c+e

(5.16) W(f) < W) +ed(f, 1), Vel

(ii) Now we denote I'y = {k € C(K,X) : k{t) = 0, Vi€ Ky}. For any
k € I'y and any r > 0, we have

S(fe(t) + rk(1)) = S(Lc()} + r(®'(S(1)), k(1)) + o(rk(1)).
So
Maxsex ®(fe(t) + rk(2)) < Maxeex {®(/e(t)) + r{®' (f(t)), k(1)) } + o(7||K]])

where || k|| = maxek ||k(t){|- Using this in (5.16) with f = f, +rk we obtain

L

(5.17) Maxiex®(/.(2)) < Mnf('b(f;(t)) +r(®(£(1)), K(t))} + erill]

\
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Now we are in the framework of Proposition 5.6: the functions z(t) =
(/1)) and y(t) = (P'(£.(1)),k(t)) are in E = C{K,R). So (5.17) can
be rewritten as

e(x + ry) - 9(2) > "‘”k“
-, 2

Taking limits as r | 0 and using Proposition 5.4 we get

(5.18) Max, esa(z) (s, ¥} > —<||k|

Observe that in (5.18) y depends on k. Replacing k by —k we obtain from
{5.18}):
(5.19) Min,caaiz) (1, ¥) < ellkl|

where 39(z) is the set of all Radon measures p in K such that y >
0, (u1) = 1 and suppp C K, where K, = {t € K : ®(/.(t)) =
Maxie x ®(£.(t))}). Dividing (5.19) through by ||k|| and taking Sup we get

(5.20) Sﬂl?ﬁvle"rs.-I Min,eae(s) (s, (B'(fc(-)), k(-))) < ¢

Using Von Neumann min-max Theorem |7] we can interchange the Sup and
Min in the above expression. Now we claim

(5:21) Sup sery G (@'(1 () KDY = Sup e xr (o, (P(A(1), kI

Indeed, since Ko and K, are disjoint compact subsets of K one can find a
continuous function v : K — R such that {t) = 1 for t € K,, p(t)=0
fort € Koand 0 < pft) < 1forallt € K. Given any k & C(K,X) with
[{k]] < 1 we see that k() = (- )k(-} € To, [Jkajl <1 and

CNCLPAR IR OV ERTHL IVACI RO

because suppu ¢ K. So (5.21) is proved. Since p > 0 the right side of
(5.21) is less or equal to

(F- Sup lelﬁltlrst.lxl (Q'Uc ())- k(‘)))

But the Sup in the above expression is equal to ||®'(/.{-))||. Se coming back
to (5.20) interchanged we get

MianUG{:) {, 119'(S (DY <e

a8

Let 7 € 3€(x) the measure that realizes the above minimum:

ENP'UNN < e

Since i has mass one and it is supported in K, it follows that, there exists
{ € Ky such that ||®'(f{1)}|| < e. Let u, = f(t). Since i € K; it follows that

®lu,) = Maxiex B[/ (1)) = ¥(/.).
So from (5.15) we have ¢ < $(u,) < ¢+ e, completing the prool. O

Remark 1. In the above proof, Von Neumann min-max theorem was ap-
plied to the function G : M{K, R)x C{K,X) — R, |M{K, R) endowed with
the w*-topology; defined by

Gl k) = (u, (¥ (£ () k(D).

Observe that ( is continuous and linear in each variable separately and that
the sets B(z) and {k € C(K, X) : |k]{ < 1} are convex, the former one being
w’-compact.
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Remark 2. Let (g,) be an arbitrary family of functions in C(KX, ), which
are uniformly bounded. Then g = sup, g, € C(K,R). Since go < g we
have that for 4 € M(K, iR}, 2 > 0, one has (s, 9,) < {u,9). This given

Sup, (K, 9a) < {1, Supga)-

Now we turn to showing that Theorem 5.1 contains as special cases all
three min-max theorems cited in the Introduction to this Chapter.

Theorem 5.7. (Mountain Pass Theorem [4]). Let X be a Banach space and
©: X — R aC! functional which satisfies the (PS) condition. Let S be a
closed subsel of X which disconnets X. Let 2y and ) be points of X which
are in distinct connected components of X \ S. Suppose that & is bounded
below in §, and in fact the follounng condition is verified

(5.22) Infs®>b and  Max{®(zo), ®(z:)} < b.
Let
T={fec(o,1X]): £(0) =20, /(1) = 7}
Then
¢ = Inf yerMaxeelo 19 (/ (1))

18 > —oo and it ig e critical value. That ia there exzists g € X such that
®(x0) = ¢ and ¥ (x0) = 0.

Remark. The connectedness referred above is argwise connectedness. So
X\ S is a union of open ercwise connected components, see Dugundji [34, p.
1186]. Thus zo and z;, being in distinct components implies that any arc in
X connecting zy and ), intersept S. For instance S could be a hyperplane
in X or the boundary of an open set, |in particular, the boundary of & ball].

Proof of Theorem 5.7 It is an immediate consequence of Theorem 5.1.
In view of the above remark, (5.22) implies (5.3). O

Theorem 5.8. (Saddle Point Theorem |66]). Let X be a Banach space and
®: X — R a C! functional which satisfies the (PS) condition. LetV c X
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X=

-

b¢ a finite dimenstonal subspace and W a complement of V :\V @W. Suppose
thaot there are real numbers r > 0 and @ < b such that

(5.23) " Infw®2b MeaxagpP<a

where D=V N B, (0), B(0)={z€ X :|lz]|]<r} enddD={zeV:
llzl| = r}. Let

I'={/€C(D.X): f{z) = 2 Y& 3D},
and

c= lnfjersup’€3¢(f(1))

Then ¢ > —co and il 18 a critical value.
Proof. It suffices ta show that (5.23) implies (5.3) and the result follows
fromm Theorem 5.1. The sets K and K of said theorem are D and 8D
respectively. Let f € K. Since the right side of (5.3) in view of (5.23) is
< a, it suffices to prove that there is z € D such that f{z) € W and then use
(5.23) again. Let P : X — X be the linear projection over V along W. So

J(z) € W is equivalent to Pf(z) = 0. Thus the question reduces in showing
that the continuous mapping

Pf: DV

has a zero. Since V' is finite dimensional and Pf = identity on 3D the result
follows readily from Brouwer fixed point theorem. 0O

Remark. The last step in the previous proof is standard. It can be proved
in few lines using the Brouwer theory of topological degree. Consider the
homotopy H(t,e) = tPf+(1—-¢)id: D — V. Since Pf{z) =z forz € 3D it
follows that the homotopy is admissible and deg(H (L, ), D,0) =const. Thus
deg(PJ,D,0) = deg(id, D,0) = 1 and consequently Pf has a zero. Another
proof using Brouwer fixed pointﬂnstead uses the mapping RoPf: D — D
where R is the radial retraction over D : R(v) = v if ||v|| < r and R(v) =
rv/||v]] elsewhere.

Theorem 5.9. (Generalized Mountain Pass Theorem [67)). Let X be o
Banach space and @ : X — R o C' functional which satisfies the (PS)
condition. Asin the previous theorem let X =V @ W, V finite dimensional.
Let wo € W be fized and let p < R be given poaitive real numbers. Let
Q@ ={v+rw:veV,||v|]< R 0<r < R} Suppose that

(5.24) Infwnap,® 2 b, Maxag® <a, a<b,
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where By, is the boundary of the ball B,(0}.Let
Fr={fec(Q,X): {(z}=22€dQ)},

and
c = lnf,erSup,eqq’(f(z))

Then ¢ > —o0o and it is ¢ critical value.

Proof. We apply Theorem 5.1 with K = @ and Ky = 8Q. lt. suffices the‘n
to show that (5.24) implies (5.3). First we see that the right side of {5.3) is
< a in view of (5.24). So by (5.24) again it is enough to show that for each
given f € T there exists z € Q such that

(5.25) flz) eWnaB,.

To prove that we use degree theory again. Let us define a mapping ¢ : Q@ —
V & Ruwyg, as follows

g(v + rwo) = (Pf(v + rwg), |I(7 = P}f(v + rup}i])

Clearly g is continuous and g{v+ rwp) = v+ rwp if v+ ruwg E. aq. 'I‘l_'ne point
(0, £} is in the interior of @ relative to V @ Rwp. So there exists v+ Fug € Q
such that ¢(¥ + Fwy) = (0, p). This proves (5.25). D

A useful and popular forrn of the Mountain Pasa Theorem. The
following result follows from Theorem 5.7 and Theorem 5.10 below. & is C?,
satisfies (PS5} end it is unbounded below. Suppose thal ug is a strict local
minimum of ®. Then ® possesses e critical point u; # ug. The definition of
strict minimum is: there exists ¢ > 0 such that

$(uo) < P(u). Y0 < [ju-ugfl <e

Theorem 5.10. (On the nature of Jocal minima). Letd € C‘(JE', .R) aali'afy
the Palais-Smale condition. Suppose that uo € X is o local minimum, i.e.
there exista ¢ > O such that

v} S ¥{u) for [lu-wll S <.

Then given any 0 < ¢g < ¢ the following alternative halds: cither (i) there
existe 0 < o < $ such that

Inf{®(u) : ||u - uol| = a} > ®(uo)
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or (i} for each a , with 0 < o < ¢5, ® has a local minimum af a poinl u,
with [lua — upl| = @ end B{u,) = d(uy).

Remark. The above result shows that at a strict local minimum, alternative
(i) holds. The proof next is part of the proof of Theorem 5.11 below given
in de Figueiredo-Solimini {43).

Proof. Let ¢ with 0 < ¢; < € be given, and suppose that (i} does not hold.
So for any given fixed a, with 0 < a < ¢, one has

(5.26) Inf{®(u) : |Ju - || = o} = B{ug)

Let § > 0besuchthat0<a-6<a+6 < €. Consider & restricted to the
ring R={u€ X :a~6<|lu-u| < a+8}. Westart with u, such that

Hun ~ uoll=a and ®(u,)} < S{ug) + %,

where the existence of such u,, is given by (5.26). Now we apply the Ekeland
variational principle and obtain v, € R such that

(5.27) ®(vn) < B(un),  lttn = va]| < ;l." and

(5.28) ®(vn) < B(u) + illu ~ vl VueR.

From the second assertion in (5.27) it follows that v, is in the interior of R
for large n. We then take in (5.28) u = v, + tw, where w € X with norm 1
is arbitrary and ¢ > 0 is sufficiently smali. Then using Taylor’s formula and
letting ¢t — O we get [|9'(va )|} < L. This together with the first assertion in
(5.27) and (PS) gives the existence of & subsequence of v, (cali it v, again)
such that v, ~ va. So ®(va) = B{ug}, ¥'(va) = 0 and ||va — wll=e O

A weaker form of the Mountain Pass Theorem. The following weaker
form of the result presented in the last section appears inRabinowitz [68].
He uses a sort of dual version of the Mountain Pass Theorem. The proof
presented here is due to de Figueiredo-Solimini [43).

Proposition 5.11. Let ® € C'(X, R) satisfy (PS) condition. Suppose that
{5.29) Inf{®(x) : {|u]l = r} > Max{®(0), ®(e)}

where 0 < r < [le||. Then & has a critical point ug # 0. :
Proof. The case when there is strict inequality in (5.29) is contained in
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Theorem 5.7. Therefore let us assume equality in (5.29). If ¢ is local min-
imum we are through. So we may assume that there exists a point ¢ near
¢ where ®(¢') < P(e). Therefore replacing ¢ by ¢' two things may occur:
either (i) we gain inequality in {5.29) and again Theorem 5.7 applies and we
finish, or (it) equality persists and we have

(5.30) Inf{®(u) : ||uf} = r} = 2(0) > ¥(e).
So we assume that (5.30) holds. Alsc we may assume that
(5.31) ‘Inf{d‘(u) lul] € r) = @(0)

because otherwise Theorem 5.7 would apply again and we would finish. But
{5.31) says that 0 is a local minimum. So we can apply Theorem 5.1C and
conclude. O

Corollary 5.12 Let @ € C'(X, R) satisfy (PS) condition. Suppose that ®

has two local minima. Then @ has ot least one more eriticel point.
Proof. Use Theorems 5.10 and 5.7.
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Chapter 6

Semilinear Elliptic
Equations II

Introduction. In this chapter we continue the study of the Dirichlet prob-
lem:
(6.1) - Au= f(z,u) in fl, u=0 on an

where 11 i5 a bounded smooth domain in BR¥, N > 2 and 31 denotes
its boundary. In order to minimize technicalities, we assume all alang this
chapter the following minimal assumption on the nonlinearity:

[:OxR- R is a continuous function of both variables.

As in Chapter 3 we search the critical points of the functional

(6.2) P(u) = %quI’ ——jF(::,u).

If not stated on the contrary all integrals are taken aver the whole of f1. We
assume the following additional condition of f:

(6:3) 17(z,8)] < elslP~" + b(z)

where ¢ > 0 is & constant, b(z) € L'(1) with (1/p) + (1/') = 1, and
1<p<ooif N=2,0r1<p<2N/(N-2)if N> 3. As we proved in
Chapter 3, under this hypothesis the functional @ : H} — R defined in (6.3)
is continuously Fréchet differentiable. In Chapter 3 a further condition was
required on F (see (3.6} there} which was sufficient to guarantee that & is
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bounded below. Here we are interested in the cases when & is not bounded
below any longer. We assume the following condition

(6.4) lim inf £Z22)

=00 L

> Ay uniformlyin 0
where 1, is the first eigenvalue of (-#, H}).

Lemma 6.1, Under (6.4) the functional $ is unbounded below.

Proof. It follows from (6.4) that there are constants u > Ay and ¢ such
that f(z,8) 2 ps ~ ¢, for all 8 > 0. Therefore we can find constants u' and
¢ with > ¢ > A such that F(z,s) > } y's? - ¢, for all £ > 0. Thus for
t > 0 we have

1 1
®(ten) < 5 .\lt’jcp}-— 5 u’t’frp} +dn. o

Viewing the future applications of the variational theorems of Chapter 5
we now state conditions which insure the {PS) condition for .

Lemma 6.2, Assume condition (6.3) withl < p < 2N/(N-2)§fN > 3 and
1< p<ooif N=2 Thd® satisfies the (PS) condilion if cvery sequence
(un) in H, such that

(6.5) |®{tn)| < const, | P'(up) =0

is bounded.

Proof. All we have to prove is that (u,) contains a subsequence which
converges in the norm of HJ. Since (u,) is bounded, there is  subsequence
(ny) converging weakly in H} to some up and strongly in any L” to the
sanfe up, with 1 < p< 2N/(N-2)fN23and1 < p<oocifl N=2. On
the other hand the second assertion in (6.5) means that

©6) 1l [ VunVo~ [ Sz, unloll < callllin, Vo€ B

where ¢, ~ 0. Put v = u,, — up, and taking limits over the subsequence we
obtain that )

/Vu,.,.V(u,., ~ug) — 0.

|Here we have used the continuity properties of the Nemytskii mappings,
see Chapter 2]. So flunllg1 = ||tolzs. This together with the fact that
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un, — ug {weakly) in H{, gives that us — up (strongly) in H}. O.

Palais-Smale Condition for Asymptotically Linear Problems. As-
sume that the limits below exit§ as L* functions

{6.7) Jim ﬂ%!i! =afz) snd lim —f(%’s)= Alz).

It follows then that there are positive constants ¢; and ¢z such that
(6.8) If{z.8)| < cr|s| + e, V¥Yae R, Vrefl

Lemma 6.3, Assume (6.7) above. In addition suppose that the problem
below has only the solution v = 0:

69) ~Av=pf(z)v*-eofz)v” in 0 and v=0 on 3N

Then the functional & satisfies (PS) condition. Here v* = max(v,0) end

v =uvt - :
Remark 1. It suffices to consider (6.9) in the H} sense. That is
fVuan = /[ﬂ(z)vg - a(z)yglv, WveH;

and vy € H}. We will use without further mentionning a result of Stampac-
chia |1): if v € H{ then vJ, vg and in general G(v), where G: R — Risa
Lipschitz continuous function, are all H} functions.

Remark 2. If o and  are constants, then the pairs (&, §) such that problem
(6.9) has non-trivial solutions constitute the so-called singular set 3. In the
case of N = 1 this set has been completely characterized by Futik [44]. 1t
is not known a similar result for N > 2. However some information about
¥ has been obtained, see Dancer |29], Gallouet-Kavian [45] and Magalhaes
[59).

Proof fo Lemma 6.3. We use Lemma 6.2. Suppose by contradiction that
there is a sequence (u,) in HJ such that

(6.10) [®{un)| = |-:'; f [Vua|® - ]F(z,u..)] < Const
(€11)| @' (o), )| = | [ VunP0 = [ £(z,unel < enllolln, Yo € B}

47



(6.12) llunllgr = o0, ¢ —0.

Let vy = un/|lup|igs, and (passing Lo a subsequence if nec.:essary) assume
that a ug € H} can be found such that v, — vy (weakly) in Hﬁ, Vn —
(strongly} in L?, va — v n.e. and |va| < h for some L3-function A. Now
we claim that

(613)  lluallg! f(z, un(2)) = Blz)eg ~ ala)o; in L%

We prove that using the argument in Costa~de Figueiredo-Gongalves {27].
Let us denote a, = ||up|| and £(z) = B(z}vd ~ a(z)vg . It suffices 1o show
that every subsequence of fo{z) = a!f(z,anvn(z)} possesses u further
subsequence which converges to £(z} in L. Using (6.8)

(6.14) [fal2)] € a7 [cranivalz)] + €3] < e1b(z) + ap'ea

In the set A = {r : vo(z) # 0}, fa[z} — &{z) ae.. So by the Lebesgue
Dominated Convergence theorem fpnx4 — £in L. In the set B = {z. :
wo(z) = 0} it follo\ssrzé.ld) that fo(z) — O a.e. So similarly f,xp — 0 in
L*. So the claim in {B.13) is proved. Now dividing (11) by ||us||s: snd

passing to the limit we obtain
fVrov - /Iﬂ(:)u&" -a(z)yg|lv=0 Vve H;.

In view of {6.9) it follows that vy = 0. Next use (6.11) again with v = vy,
divide it through by ||us||51 to obtain

!(:’ uﬂ) in Y, 1.
][ Iv”n” = ”u"””l "’I'II < Il“n“H' " l'l”h'

In the sbove inequality the first term is equal to 1 and the other two con-
verge to zero, impossiblel

Palals-Sroale Condition for Superlinear Problems. Assume that

{6.15) ' lllrln inf
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that is, the problem is superlinear at both +co and —oco. In this case the
foliowing lemma provides sufficient conditions for (PS).

Lemma 6.4. @ satisfies (PS) condition if one sssumes: (i) condstion (6.3)
with1 < p < 2N/(N—-2) in the case N > 3 and ] < p < oo in the
case N = 2, and (ii) the following condition introduced by Ambrosetti and
Rabinowitz [7]: there ia a 8 > 2 and a9 > 0 such that

(6.16) 0<8F(x,8) <ef(z,8) VzefNl VY| > 5.

Proof. Let (un) be a sequence in H{} satisfying conditions (6.10) and (6.11)
above. Replace v by u, in {6.11). Multiply (6.10) by # and subtract (6.13)
from the expression obtained:

(; - 1)/|vu,,|’ < /[M‘(z, un) ~ un f(2, un}] + enlfunllys + C

Using (6.16) we obtain that ||un||g < €. The proof is completed using
Lemma 62. QO

Remark. Condition (6.16) implies that F is superquadratic. Indeed, from
(6.16): #/s < f(z,8)/F(z,4). Integrating from &g to & : 8]¢n|s| — tng) <
nF(z,s) - tnF(z,80), which implies F(z,s) > F(z, s0)s;°|s|", for |8} 2 8.
Using (6.16) again we obtain f(z,s) > 0F(z, s0)s;5”|s|*~}. Observe that this
inequality is stronger than the requirement put in (8.15). So there is some
room between (6.15) and (6.16). Thus, how about Palais-Smale in the case
when [ satisfies (6.15) but not (6.16)? There is a partial answer to this
question in [42). ‘

Palais-Smale Condition for Problems of the Ambrosetti-Prod}
Typel Now we assume

(6.17) Yim sup ﬂ’-:ﬁ <A and  limintL ("") > Xy

PRSP ~++00

where the conditions above are to hold uniformly for 2 € {1. The first limit
could be —co and the second could be +oo.

Lemma 8.5. Assume (6.3) and the first asaertion in (6.17). Let (un) be a
sequence in H}H) such that

{6.18) |/Vu,.Vu-fI(:,u,.)o] S ellv]llgn  VYve H)
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where ¢, — 0. [We may visualize the u,’s as “almost” critical points of @,
or as “approximate” solutions of (6.1), vaguely speaking!] Then there ezists
a conatant M > 0 such that {|u, iy € M.

Proof. I follows from the assumption that there exists 0 < u < Ay and a
constant ¢ such that

(6.19) J(z,8) > ps—¢ for 850

Replacing v by u; in (6.18} we can estimate
[1vuzlt < - [ 10z wa)ui + calluziine.
Using (6.19) we obtain

[196p < [ +e [z + ealizlln.

Finally using Poincaré snd Schwarz inequalities we complete the
prool. O

Lemma 6.8. Assume (6.17) and that [ has linear growth, i.e.
(6.20) \f(z,8)| < crlsl +e2 VzeD, Vse R

where ¢y, cq are given positive constants. Then the functional O satisfies
{PS) kondition.

Proof. Assume by contradiction that there exists a sequence (u,) in H]
satisfying conditions (6.10), {6.11) and (6.12) above. As in Lemma 6.3, let
Un = tn/f||tin]lgys and assume that v, — vp in _H&, vy, — vg in L? and a.e.
(£2), and that thete is an L3-function k such that |v,(z)] < h(z). It follows
from Lemma 6.5 that v — 0 in H{}, and we may assume that v; — O a.e.
(). So w 2 0in 1. First we claim that the sequence

= !(:luﬂ)_' . A
9n = Xn S 0 in L

where x, is the characteristic function of the set {z : u,(z) < 0}. Indeed
this follows easily from the Lebesgue Dominated Convergence Theorem,
observing that (6.20) implies

c2
e n -0 ae
Hunflas ~ Hunllg

(6.21) Ionl €
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and |gnj < €1h + e3/jlunlizi. On the other hand, the sequence [or passing
to & subsequence of it):

Om =B

where  is some L? function and « > 0. Indeed using (6.20) we have that
hﬂl < C|h+¢!:/”u,.”"| <ch+le L2

The positiveness of 4 comes from the following consideration. From the
second assertion in (6.17) there exists r > O such that f{z,8) > 0 for s > r.

.Let £, be characteristic function of the set {z € 11 : u,{z) > r}. Clearly

Entn — 7 in L?. And the assertion that 7 > 0 follows from the fact that
£ntn is in the cone of non-negative functions of L?, which is closed and
convex. Now go back to (6.11), divide it through by ||ua||z: and pass to
the limit using (6.21) and (6.22). We obtain

(6.23) fVrou - f-yu =0 YveH].

Tt follows from the second assertion in (6.17) that there are constants g > X,
and ¢ > 0 sufh that f(z,8) > pa ~cforz € 1 and & > 0. So 4, >
uv} — c||un|[51. Passing to the limit we obtain 4 > uvg. Using (6.23) with
v = i), where py > 0in {2is a first eigenfunction of (- A, H}(f1)), we obtain

A:fuosou=/VvoV¢:=f1¢: zufvom-

Since u > Ay we conclude that vp = 0. So from (6.23) v = 0. Finally use
(6.11) again, divided through by |jua)ly and with v = v,:

[ Voult - [ LE20) ) < ol = e
[fuali
The first term is equal to 1 and the other two go to sero, impossible! O

Lemma 8.7. Assume (6.3) and (6.17) and suppose that there are constanls
@ > 2 and oy > 0 such that

(6.24) O0<0F(z,8) < 8f(z,8), Yz€fl, Vs> a.
Then @ satisfice (PS) condition. )
Proof. Let (u,) be a sequence in H] for which (6.10) and (6.11) holds. By
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Lemma 6.2 we should show that liunllygs < const. We know from Lemma
6.5 that lluz ||y <const. Using the first assertion in (6.17) we see that there
are constants 0 < u < Ay and ¢ > 0 such that Fz,5) < & 82 - ¢s,forz e
and ¢ < Q,

fF(:,—u;) < ‘2—‘ /(u;)’ - .c/u; < const.

So from (6.10) we obtain

{6.25) % f]Vu:lz -/F(z,u:) < const.
Using (6.11) with v = u} we obtain
(6:26) 19620 - [ ftesui )t s eall .

Multiplying (6.25) by 8 and subtracting (6.26) from it we get

(g - I)IIVu:I’ < /[H‘(z, Un+} = f{z,ua Jug] + callu} || y1 + const.

Using {6.24) we conclude that llugligs < const.

Remark. If f(z, 8)>0forzeNand e £ 0, then the eventual solutions of
(6.1) are > 0. Indeed, let u & H{ be a solution of (6.1), that is:

= f ) Y )
/ﬂ VuVe nf(l ujv Yve H]
Let v = u~, Then

"j|v“_|z=/f(z,u)u' 20:#/|Vu“]?=0.

Sou™ =0, proving the claim. Observe that under this hypothesis on f,
the firat assertion in (8.17) holds. So Lemmas 6.6 and 6.7 provide sufficient
conditions for {PS) on a class of semilinear elliptic equations with positive
solutions. For example: (i) f = |uf* for any 1 < PLooif N =2or
1<p<(N+2)/(N-2)ifN >3 (ii) 1 = (u*)? with the same restrictions
on p.

Existence results for (1)- To illustrate the use of the theorems proved in
Chapter 5 we now consider some examples,
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Example 1. Consider the following Dirichlet problem
{6.27) -Au=f(u)+h(z) Imn 0 w=0 on N

where h € C(0) |a weaker condition would suffice] and f: R — R is a
continuous function such that

(6.28) lim f_&ﬂ =a and lim -'%’—) =4

s —00 —too
Let 0 < Ay < Ay € Ay < +++ be the eigenvalues of (- A, HA(M)).
Theorem 8.8. (Dolph [33]). If Ay < a, 8 < Ay, then problem (6.27) has

a solution for every h. ' \
Proof. We look for critical points of the functional & ; Hj — IR defined by

ou)=; f|vu|’-jp(u)-jhu

where F(s) = [5 7. It is ensy to see that (a, #) does not belong to the
singular set 3. So by Lemma 6.3, ¢ satisfies (PS). Let V be the ﬁmll,e
dimensional subspace generated by the first & eigenfunciions of (-4, H),
and W = V1, Let u and Ji be such that Ay < p < &, 8 <7 < Agyy. It
follows from (6.28) that there exists sp > 0 such that p < l.'l fl&) < @ for
|s| > s0. A straightforward computation shows that there exist constants C
and C such that

1 1_ =
(6.29) 3 us® - C < Fla) < 2 s’ +C, Ve
Now if v € V we estimate
o) <3 [19- 4 [+ cinl+ Illualiolzs

. Vd
and using the inequality f|Vv|? < Ay fo?, for v € V, and the Poincaré
inequality we obtain

o(0) < 501 £) [ 961" + 010 + X9l

So @{v) — —co as {}v|| — co with v € V. On the other hand if w € W we
estimate

o(w)2 7 [1Vul - £ [w? - Sia| - hilsliwles
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and using the inequality [ |[Vw? > Ay fw? forw e W, we obtain
o(w) 2 13- 5=) [ 19wl - Tl - oA 9wl
2 Apst

So ®(w) — +oo as ||w|| —+ oo with w € W. Therefore the result follows
from the Saddle Point Theorem, Theorem 5.8. D

Remark. Condition (6.29) suffices to having the functional with the “shape”
of the Saddle Point Theorem. However we do not knfow if it will give (PS).
Observe that (PS) was obtained above with hypothesis on the derivative of
F with respect to s, namely f. Of course we are willing to assume growth
conditions on f to assure the differentiability of ¢, see Chapter 2. But even
80, it is not known if (PS) holds.

As 2 second example we consider problem (1) sgain and prove

Theorem 6.9. {Ambrosetti-Rabinowitz [4]). Supposse that [ satisfics the
condilions of Lemma 6.4. In addition, assume

(6.30) lim s~ f(z,8) < Ay

Then problem (1) has ¢ nontrivial solution. )
Proof. It follows from (6.30) that f(z,0) = 0, and therefore y = O 15 &
solution of (6.1). Observe that condition {6.16) implies (see Remark after

the proof of Lemma 6.4) that (6.15) holds. So Lemma 6.1 implies that @ -

is not bounded below. Also (PS) holds, by Lemma 6.4. We plan to apply
the Mountagn Pass Theorem, Theorem 5.7. For that matpter we study the
functional ® near u = 0. Given 0 < u < Ay, it follows from (6.30) that there
exists § > 0 such that |f(z, )| < uls| for |s| < §. Therefore

|F(z,a)l < 5 lsf" Vil < 8.
On the other hand using (6.3) we can find a constant k > 0 such that
|F(z,8)| < k|afP  V]e|> 6.

Here without loss of generality we may suppose p > 2. Therefore adding the
two previous inequalities:

|F(z,8)| < % |s|* + k|s|® Ve € R.
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Thus ¥ can be estimated as follows

®(u) > %'[|Vu|2 —"2—' fuz - kf|u|"

and using Poincare inequality and Sobolev imbedding we obtain
1
o) 2 301 - £) [ 19l - K[ |oulty.

Since p > 7 we see that there exists r > 0 such that if ||ul{y: = r then
®(u) > a for some constant a > 0. So the result follows immediately from
Theorem 5.7. D '

A Problem of the Ambrosetti-Prodi Type. As a third example we
consider the Dirichlet problem

(6.31) - Au=f{z,u)+tey+h in (I, u=0 on 40,

where ¢ is a real parameter, @) > 0 is s first eigenfunction of (-4, H}) and
h € C*(11), with [ hpy = 0, is fixed. Assume that [ is locally lipschitzian
in 11 x R. Then we prove.

Theorem 6.10. Assume {6.17) and (6.20) |or (6.3), {6.17), (6.24)]. Then
it follows that there exista ty € B such that for all t < tg, problem (31) has
at least two solutions in CH*({7). :

Remark. There is an extensive literature on problems of the Ambrosetti-
Prodi type, starting with work of Ambrosetti-Prodi [3]. We mention
Kazdan-Warner [52), Amann-Hess [1], Berger-Podolak |11], H. Berestycki
[9], McKenna |57], Ruf {T1] Solimini [76], + -+ There has been several recent
papers by Lazer-McKenna which we don’t survey them here. The result
above and the proof next are due o de Figueiredo-Solimini [43]. See a sim-
ilar result by K. C. Chang [25). :

Proof. 1t follows from either Lemma 6.6 jor Lemma 6.7] that the functional
below satisfies (PS):

(6.32) 2(u) = ; f (Tuf? - f F(z,u) - f (to1 + B)u.
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Also the second assertion in {6.17) implies by Lemma 6.1 that & is not
bounded below. In the previous example we alse proved the existence of
two solutions; however there we had the first solution (u = 0) Lo start. Here
we have first to obtain a solution of (6.31) which is a local minimum, and
then apply the Mountain Pass Theorem. We break some steps of the proof
in a series of lemmas.

Remark. For the next lemma we recall some definitions. We present them
in the particular framework of the problem considered here. We refer to
Gilbarg-Trudinger [46] for more general definitions.

{3} A function w € H} is said to be a weak subsolution of the Dirichlet
problem

(*) . —Au+Mu=g(z) in Qu=0 on 80} where g € L? and M is a real
constant, if

jvwv¢+Mfu¢5/g¢, veeH), v20.

(i1} A function w € C**(f1) is & classical subsolution of (*} if

-Aw+Mwsg in 0 w=0 on 8.
{(ili} Weak supersolution and ¢lassical supersolution are defined likewise by
reverting the inequalities in the equations above.

(iv) Every classical subsolution [supersolution] is also weak subsolution
|supersolution].

Lemma 6.11. Assume (8.17}. Then there exist constants 0 < p < Ay < 3
and C > 0 such that

(6.33) f{(z,8) > po-C and [(z,8)>ps-C

JorallzeNand alla € R.

Proof. The firet assertion in (6.17) gives 0 < u < A; and €y > O such that
f{z,8) > ps — ¢, for all z € 1 and & < 0. The second assertion in {6.17)
gives A < i and Cz > O such that f(z,8) > fis—C; forallze€ 1and s 2 0.
Let C = max{C,,C,} and {6.33) follows. O
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Lemma 6.12. Assume (6.17}). Then for eack t € IR problem (6.31) hes a
classicol subsolulion wy. Moreover given any classical supersolution W, of
(6.31) |or in particular any solution of (6.31)) one has wy{z) < W,(z), Vz €
1, and

a“"( )> “:'(:), Veean.

Proof. Let M; = Supg|te;(z) + h{z)|. The Dirichlet problem
—Au=pgu~C~M in 1 u=0 eon 48N

with g and C as in (6.33) above, has a unique solution w; € C*2(f}), which
is < 0in (2 and 42 < 0in 312, see Lemma 6.13 below. It follows from the
inequality in (6. 33) that w, is a classical subsolution. To prove the second
statement, use (6.33) again

AWy —w) 2 fz, W)+t + b — pay — C ~ My > (W — w)
and apply Lemma 6.13. O

Lemuna 6.13. Let afz) be an L™ function such that Supgpa(z) < Ay. Let
u € H} be such that

{(6.34) -Auza(z)u in H} - sense.
Then u 2 0. Moreover, ifu € C""(ﬁ) then u > 0 in{] and ﬂ < @ on 311,
Proof. Expression (6.34) means
[vuv.p > fa(z)mp, Voe H), v>0.
Take ¢ = u™ and use Poincaré's inequality
- [y 2 ve P 2 - [atae) > -n )
which implies 4~ = 0. So u = «*. If u &€ C*2({1) then we use the classical

maximum principle to
~Au+a“u 2 atu,

where the right side is > 0 by the first part of this lemma. D
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Lemma 6.14. Assume (6.17). Then there crists a ty € R such that for all
t <l (6.31) has a classical supersolution Wy.

Proof. Let k = [ f(x,0)y and fi{z) = f(z,0) ~ kp;. So the equation in
{6.31) may be rewritten as

{6.35) —Au= fle,u)- fz,0)+ (k+t)er + B+ [y,
Now let W, be the solution of the Dirichlet problem
-Au=h+f;y in 0 u=0 on a1l
We see Lthat W, is a supersolution of (6.31) provided { is such that
J{x,Wi) - f(z,0)+ (k+t)pr1 <0

” £z, W) - 1(z,0)

1 '
So it remains to prove that the sbove Sup is < +oo. It suffices then to
show that the function g(z) = [f(z, W(z)) ~ f(z,0)]/p1(z) is bounded in &
neighborhood of 371. Boundedness in any compact subset of 11 follows from
wi1(z) > O there. If x4 is 8 point on 31}, we use the Lipschitz condition on
f to estimate

t < —k - Supy

(o)l < K 12450

where K is a local lipschitz constant in & neighborhood N of z5. The func-
tion Wy(z)/i1(z) is bounded in N: at the points 2 € Nnafl, Wi(z)/pi(z) =
[VW(z)i/IVie1(z)| by LHospital rule. O

-
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Remark. The above proof is taken from Kannan and Criega [51]. Another
proof of existence of a supersolution for this ciass of problems can be seen
in Kazdan and Warner [52].

Proof of Theorem 6.10 Continued. From now on we fix t < { deter-
mined by Lemma 6.14, So by Lemma 6.12, w, < W,, and in fact w; < W,
in 0. Let

(6.36) C={ue H}:w cusw}.

which is closed convex subset of H]. Plan of action: (i) restrict ® to C and
show that it has a minimum ug in C which is a critical point of ®: (ii} show
that ug is indeed a local minimum of ® in H}; (iii) obtain a 2" solution of
(6.31) using the Mountain Pass Theorem, Proposition 5.11. To accompflish
the first step we need the following result.

Proposition 6.15. Let ®: X — R be a C* functional defined in a Hilbert
space X, Let C be a closed convey subset of X. Suppose that (i) K = I - &
maps C into C, (i) @ 1s bounded below in C and (iii) @ satisfies {PS) in C.
Then there exists ug € C such that ¥'(up) = 0 and Infc & = ${ug).

Proof. Apply the Ekeland variational principle to ® : C — R. So given
€ > 0 there is u, € C such that ®(u,) < Infc® + ¢ and

(6.37) Plu) < Blu) +efju—~ul| YueC

Put in (6.37) u = (1 — t)u, + tKu, with 0 < t < 1 and use Taylork formula
to expand ${u, + t(Ku, — u,)) about u,. We obtain -

H1#' (wll® < et]|'(ucll + oft)
which implies ||®'(u,|| < . We then use (PS} to conclude. [

Back to the Proof of Theorem 6.310. The idea now is to apply Propo-
sition 6.15 to the functional ¢ defined in (6.31) and C defined in (6.36).
However a difficulty appears in the verification of condition (i}. The way we
see to solve this question is to change the norm in M} as follows. We choose
M > 0 such that the function .

(6.38) s g(z,8) = f(z,8) + Ms+tpy(z) + h(z)

is increasing in s € [a,b], for each z € {1 fixed, where a = minw, and
b = max W,;. The norms in H} given by

lullf = [ 1V and i = [ 19uf*+ M f %
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are equivalent. Let us denote by {, ) the inner product in 4] corresponding
to the second norm. Next we rewrite (6.31)

(6.39)_ ~Au+Mu=g{zr,u) in 1 u=0 on 4N

The functional associated to (6.39) is

Vo) = 3w - [Glaw, Gl = [olz 0de,

which is also C, it satisfies (PS) and it has the same critical points as the
original functional ®. Now we show that for such a functional, condition (i)
of Proposition 6.15 holds. Indeed, let u € C and let v = (J - ¥')}u. This
fmeans

(0,1 = (w9} - (u )+ [ olziu)
for all 4 € HJ. Then

=092 [lols.a) - glzwlld, Vo€ Bl w20

- and we obtain v > w using the weak maximmum principle. Similarly
v < W;. Now we apply Proposition 6.15 and get a critical point ug of .
However the proposition insures only that ug is 8 minimum of ® restricted to
C. To apply Proposition 5.11, in order to obtain a second solution, we shdid
now prove that ug is indeed & Jocal minimum. |This ie not trivial since C has
empty interior in H{|. Observe that up € H{ is a solution (6.31). It follows
then from the L regularity theory of elliptic equations that ug € cia(n),
This is proved by a standard bootstrap argument. Suppose now that ug is
not & local minimum of ¢. This means that for every ¢ > 0 there exists
u, € B, = B,(ug) such that ¥(u,) < ¥(uy). Now consider the functional ¢
restricted to B, and use Theorem 3.1: there exists v, € B, and A, < 0 such
that

(6.40) ¥(v) = Infg, ¥ < W(u) < ¥(ug)
(6.41) ¥'(v) = Afv, ~ ug).

Using again a bootstrap argument as above we conclude that v, € cre ().
(6.41) means

©42) (o) - [ ole,000 = Alo - vo ), Ve AL,
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Clearly v, — ug in H] as ¢ — 0. We have seen thal ug and t._he v.'s are C?@
functions. Now we show that v, — ug in the norm of C'*(f?). From (6.42)
we obtain

(643) (1= X)(c -~ vo,9) = [lofz. v - slauolld  vo e H.

Again a bootstrap in the equation (6.43) gives the claimed convergence. On
the other hand, it follows from Lemma 6.12 that w, < wug in {? and %‘ > %‘—‘;‘
in 80). Therefore by the above convergence we have similar inequalities for
v, in place of ug. A similar argument with W,. Thus v, € C and we have a
contradiction!

Final Remark. As said before, problems of the Ambrosetti-Prodi have
been extensively studied in the literature. A direction not touched in thése
notesis the question of obtain mare than two solutions. A remarkable
progress has been made by H. Hofer end S. Solimini through a delicate
analysis of the nature of the critical points.
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Chapter 7

Support Points And
Support Functionals

Introduction. Let X be a Banach space and C a closed convex subset of
X. We clways assume that C # X and C # 8. A point 29 € C i8 said to be
a support point if there exists a bounded linear functional.f € X" such that
/(z0} = Supef. A given functional f € X* is said to be a support func-
tional if there exists zg € C such that f(zo) = Supcf. We always assume
that f # 0. The terminology “support” comes from the geometric fact that
the hyperplane H determined by f, where H = {z € X : f(z) = f{za)},
touches C at xg and leaves C in one of hall spaces determined by H. Two
basic questions will be studied in this chapter.

Problem 1. Given C a closed convex subset of X. Are all points in the
boundary 8C of z support points? If not, how large is the set of support
points?

Problem 2. Given C a closed convex subset of X. Are all functionals
| € X* support functionals? If not, how large is the set of support func-
tionals of a given C?

Six Remarks and Examples. 1) Of course the above questionsmake
sense if f is bounded on C, i.e., there exists M € R such that f(z}) < M
for all z € C. This will be achieved in particular if C is bounded. In many
cases studied here we assume that C is a closed bounded convex subset of X.

2) Given { and C, it is not true in general that f supports C at some
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point. For example:
C={(z,y)c M*:2>0,y>0 and zy>1} and f(z,y4)= -y

However if C is a closed convex bounded subset of R™ (or more generally
of a reflexive Banach space X) then any continuous linear functional f sup-
porta C. This follows readily from Theorem 1.1: C is weakly compact and
— [ is weakly continuous,

3) The previous result is false in general if X is not reflexive. Example:
Let X be the Banach space of all continuous functions z : [0,1] — R with
2(0) = z(1) = 0 and the norm |||l = Maz{|z(t)| : t € [0,1]}. Consider
the continuous linear functional f{z) = .fo’ z(t}dt and let C be unit closed
baliin X : {x € X : ||z]joc € 1}. Clearly f does not support C. However
see Theorem 7.2 below.

4) Let C be a closed bounded convex subset of a Banach space and let
zg € C. It is not true in general that there exists a functional f supporting
C at zp. Example: let

C={tel:g>0, |eIF=3 €<}
=1

We claim first that C = 9C. Indeed, given £ € C and € > 0, let ng be chosen
such that |¢,,| < ¢/2. The point :

E'_— (El""'E"ﬂ'l'_‘/z'emﬁ-h-") g€C

and N .
1€~ &l = [¢na + 51 <<

Next we show that the points £ € C, with E,- > 0 and ”E" < 1, are not
support points. Indeed, fix one such € and suppose that there exists a
functional f such that Supcf = [ (E} Since 0 € C it follows that 0 <
(). Also there exista a ¢ > 1 such that t€ € C. So f(t€) < f(£), which
then implies that ('f') = (. By the Riesz representation theorem let f =
{(m1,n2,...) € £3. So we have

¥ n;€; =0,

J+1
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which implies that there exists a j such that n,, > 0. Since the point
e, = (0,...,0,1,0,..) € C, |here 1 is in the ji* component and 0 in the
remaining ones| and f(e;,) = n,, > 0 contradicting the fact proved above
that Supgf = 0.

5) However if the closed bounded convex set C has an interior, then all
peints on the boundary 8C' are support points. This is an immediate con-
sequence of the Hahn Banach theorem: given any zp € dC there exists a
functional f € X" which separates zg and IntC. As we saw in the example
in 4 above, il the interior of C is empty then there are points in C{= 9C}
which are not support points. However, see Theorem 7.1, which then pro-
vides a satisfactory answer to Problem 1.

8) For Problem 2, the example in 3) above provides a negative answer to
the first question. The second question in answered in Theorem 7.2,

Theorem 7.1, {Bishop-Phelps [12]). Let C be a closed convez subset of a
Banach space. Then the set of support poinls of C are dense in 3C.

Theorem 7.2. (Bishop-Phelps [12]). Let C be a closed bounded convez
subset of a Banach space X. Then the set of continuous linear functionals
which support C is dense in X".

The proof of Theorem 7.1 relies on Theorem 7.4 which will follow from
the result below, whose proof uses the Ekeland Variational Principle.

Theorem 7.3. (The Drop Theorem, Danes [30]). Let S be a closed subset
of a Banach space X. Let y € X\S end R = dist(y,S). Let r and p be
positive real numbers such that Q < r < R < p. Then there ezists zg € §
such that

(7.1 lly~ =20l Sp and Dfy,r;zo)NS = {xo}
where D(y, r; 20) = co(B, (y) U {zo}). | This set is called a “drop”, in view of
its evocalive geomelry).

Remark. By definition dist(y, S) = Inf{|ly- z|| : z € §}. If X is reflexive
this infimum is achieved, but in general this is not s0. The notation “co”
above means the convex hull. And B, (y) = {z e X :|[z-y|| < r}.
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Proof of Theorem 7.3. By u translation we may assume that y = 0. Let
F = B,(0)n S which is a closed subset of X, and consequently a complete
metric space with a distance induced naturally by the norm of X. Define
the following functional @ : F — R by

ptr
R-r

o(z) = li=ll

By Ekeland Variational Principle, given ¢ = 1 Lhere exists g € F such that
(7.2) ®(z0) < ¥(z) + [ - oll.

Such an 2o satisfies the first requirement of (7.1) and now we claim that
{20} = D(0,r; 20} S. Suppose by contradiction that there is another paint
z # zg in this intersection. So

(7.3) €S and z=(1~-1t)xp+1tv

for some v € B,{0) and 0<t< 1.

Clearly 0 < ¢ < 1. From (7.3): {|z|| < (1 = t))}zol| + t|[v]|, which gives
(74) YR - r) < t(||zoll - Nlu}l) < llzal| - l=]|-

If follows from (7.2} and (7.3) that

ptr
R-r

rt

r _ptr
7 lzll + 1z - zoll =

R-r

lizoll < ll=f + tlizo - vl{.

Using (7.4) to estimate ¢ in the above inequality and estimating ||xg - v|| <
p+ r, we obtain [Jzol| < [[=i] + {||sol| - |}zl{), which is impossiblel G

Remark. The above theorem is due to Daneg,.who gave in |30] a proof,
different from the above one, using the following result of Krasnoselskii and

Zabreiko [55]: Let X be a Banach space and let z and y be given points in
X such that 0 < r < p < ||z — y||. Then

dism{D{z, r;y)\ B,(z)] < ’I:':_“:l'l'jr’l iz yll - o)".

The above proof is essentially the one in Bréndsted [17]. Relations between
the Drop Theorem and the Ekeland Variational Principle have been pointed
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out by several people, Brézis and Browder {16}, Daned i31], Penot [61].

Theorem T.4 {Browder [20]) Let § be a closed subset of @ Banach space X.
Lete> 0 and z € 35. Then there exist & > 0, a convez closed cone K with
non-empty interior and 29 € S such that

(7.5) [lzo— z]] < ¢ and Sn{zo+ K)N Bs(zo) = {z0}.

Remark. For the sake of geometric images, the sbove theorem means that:
“a closed set § satisfies a local (exterior) cone condition on a dense set of
as”.

Proof of Theorem 7.4. Choose y & S such that ||z - y|| < ¢/3. Then
R = dist{y,S) < ¢/3. Take p = ¢/2 and choose r < R. By the Drop
Theorem, there exists zg € S such that

(7.6) llza-yll<¢/2 and  D(y,rizo) NS = {70}

Since [lzo — z|| < lizo — ¥l + ||y — z|| < €/2 + ¢/3, the first assertion in {7.5)
follows. For the second one take & < {jzo — || — r. It suffices to prove that
the points

(1.7) z==zo+tlv—20) with t20,veB,(y), |lz-=xl< 8

are in the drop D(y,r;z,). Then we would take the cone K as the set of
halflines with end point at 0 and passing through the points of the ball
B, (y - z0), i.e.

K={veX:u=tlv-15), t20 ve B,(y)}

So K +xp = {zo+ t{v—20) : ¢ 2 0,v € B,(y)} as in (7.7). To prove the
above claim, all we have to do is to show that the ts in (7.7) have to be < 1,
and so the z in (7.7) is indeed a point in the drop D(y,r; zo). We rewrite z

z=zg+ty-zo) +t(v-y)=>tly- ) +tlv-y)=2z-1
Estimating we obtain t|ly — zo|| ~ t|lv - y|| < {lz — =o|| < & or
tlly- zolf~r) <é <|zp-yl|-r=t< 1.0

Proof of Theorem 7.1. Let 2 € 3C and ¢ > 0 be given. By Theorem 7.4
there exists o € 8C, K and § > 0 such that

(7.3) Cﬁ(ﬂ.'o + K) nB;(:to) = {xu] ' ”:o -1l <e
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Now we claim that in fact C (2o + K) = {19}, Otherwise let z # z5 with
r € CN(2zo+ K); then ¥ = x4+ t{z - 29) for small to? > 0is # 0 and belongs
to C' N (x0 + 1) N Bs(x0), contradicting (7.8). Next, based in the assertion
just proved we see that C and U = Int(K + z¢) are disjoint. By the Hahn
Banach theoremn there exists a continuous linear functional f/ € X* such
that Supcf < Jnfuer f{u). So Supcf < f{z0), and indeed there is equality
because 20 € C. D

To prove Theorem 7.2 we will use two lemmas due to Phelps [62].

Lemma 7.6. Let § be a closed subset of a Banach space X. Let f € X~ be
such that ||f]|x- = 1 and Supgf < 0o, and let 0 < k < 1. Then them set K
defined below is o closed convez cone

(1.9) K ={ze X : kx| < f(z)).
Moreover, for all 2 € S there exists 2o € S such that
(7.10) €+ K  SNzg+ K) = {z0}.

Proof. The verification that K is a non-empty closed convex cone is
straightforward. To prove the second assertion let F = (z + K)N § and
consider the functional ¢ : F — IR defined as @ = ~ f . Take ¢ < k and
use Ekeland Variational Principle: there exista zp € F such that

(7.11) - J{zo) < = f(z) + €llzo - 2||, V€ F, z # xo.

Let y € S (zo + K). First we claim that y € F; indeed, since y — 2o € X
and zp — z € K it follows that y — » € K. Next we show that y = zo.
Otherwise, from (7.11)

(1.12) = f(20) < = J(y) + ¢lly = =oll

Since y — zp € K we have k|ly — 2o|| < f{y — xo). This together with {7.12)
gives a contradiction. 0

Lemma 7.7, Let C be o closed convez subset of a Banack space X. Let

F€X', Ifllx-=1and0 < k < 1. Let K be as in (7.9). Suppose that
zp € C 5 such that

(7.13) C N (zo + K) = {x0).
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Then there exists 0 # ¢ € X° such that

(7-14) Supcg = g(z0) lg - flix- < k.

Proof. Consider the functional ¢ : X — & defined by
®(2) = kllzl| - f(2)

Clearly @ is continuous and convex. Now apply the Hahn-Banach theorem
to separate the sets:

C={(z.r)eXx R:®(z) <r)

Cy={(z,r)EXxR:z€C -2, r=0}.

C, is the interior of the epigraph, epi®, which is open and convex. C; is
convex and closed. C1NCy; = f; otherwise Lhere exists z € C ~ zp such that
®(z) < 0,ie. € K. Soz+20€ C and 7+ 20 € zp + K. Using (7.13) we
obtain z = 0. But this is impossible since (0,0) & C;. Then by the Hahn
Banach theorem there exists F € (X x [)* such that *

(7.15) Supg, F < Infe, F

Observe that corresponding to F there are {unique) ¢ € X* andt € R __s_uc‘h
that F(z,v) = g(z) + ir for all (z,r) € X x R. Since (0,0) € C; N C, it
follows that the Sup and the Inf in (7.15) are both equal to 0. Since for all
z€ X, {z,8(z)) € Cy we see that

(7.16) g(z)+tP(z) 2 0

This shows that ¢ cannot be equal to 0, [otherwise g = 0 and 20 F = 0]
The point (0,1) € C;. So 0 < F(0,1) = t. Thua t > 0, and without loas of
generality we may assume ¢ = 1. If follows from (7.16) that g(x} + k}|=|| ~
f(z) > 0 for all £ € R, and this gives the second assertion in (7.14). Now
for z € C, it follows that (2 — £p,0) € C; and 80 g(z - zp) < 0 which gives
the first assertion in (7.14). O o

Proof of Theorem 7.2. Given 0 # f € X*and e>0,let f= FH | x-
and K as defined in [7.9) with k = ¢/||f||x-. Choose a z € C. Then by
Lemma 7.6 there exists zg € C such that SN (zp + K) = {zo}. Now by
Lemma 7.7 there exists 0 # g € X* such that |jg - f|lx- < k and g supporta
C. Denote by § = |{f|lx-9. Then |[§ - 7| < ¢ and g supports C. Since the
previous inequality is true for any 0 < ¢ < ||f]|x- the density follows. D
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Chapter 8

Convex Lower
Semicontinuous Functionals

Introduction. In Chapter 5 we introduced the concept of subdifferential
of a convex lower semicontinuous function @, We obseived that domad® C
dom®. Here we prove a result of Brgndsted and Rockafellar [18] which show
that domd$ is dense in dom®. The main ingredients in the proof are the
Ekeland Variational Principle again and a calculus of subdifferentials. The
proof here follows Aubin-Ekeland [6] and differs from the original one and
also from that in Ekeland-Temam [36].

Proposition B.1. Let ®,¥ : X — R U {+00} be two convez lower sems.
continuous functiongls defined in a Banach space X and such that d # +co
ond ¥ # +oo. Then

{8.1) Atd)z)=1a®(z), Vt>0 VreX
(8.2) ' (P + ¥)(z) c 3P(z) + I¥(z) Vze X.

Moreover if there i3 T € dom® Ndom¥ where one of the functionals is con-
tinuous then there 1a equality in (8.2).

Proof. (8.1) and (8.2) are straightforward. The last assertion is proved us-
ing the Hahn Banach thecrem; see the details in Ekeland-Temann 368]. DO

Subdifferential and Differentlabllity. The reader has surely observed

that these two notions are akin. Indeed, subdifferentials were introduced
to go through situations when one does not have a differential. This was
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[
precisely what o'n:urred in Chapter 5. We have the following result

Proposition 8.2, Let®d: X — Ru{~+oo} be a convez lower semiconlinuous
Junetion. Suppose that @ is Caleaur differcntiable of a point 10 € dom®,
i.c., there eziats an element of X*, denoted by D®(zp), such that

(8.3) Pz + tv) = ®(xzp) + t{DP(2z0),v) + 0ft), VYve X.

[The above ezpression 1s to hold for small t; how small is t depends on v].
Then

{8.4) zp € domd® ond D¥(xp) € 3¥(z0).
Moreover
(8.5) 3@(::0) = D@(:n). :

Proof. To prove (8.4) we have to show that
(8.6) (y) 2 B(z0) + (D¥(z0),y ~ %), YWEX.

It &(y) = +oo there is nothing Lo do. Assume that ¥ € dom®. So the whole
segment connecting 2o to ¢ is in dom®, and we have

®(zo + t{y ~ z0)) < (1 - 1)®(20) + t2(y).
Using (8.3) we get, for small ¢:
P(z0) + t{DP(z0), ¥ ~ 7o) + oft) < (1 - )®{20) + t®(y)
which implies (8.4 readily. Next, let us suppose that & € 3%(zo):
(8.7) . ®y) 2 ®(zo) + iy - 20) yEX

Now giver v € X we know by assumption {8.3) that zo + tv, for small ¢, is
in dom®. So from (8.7)

D(zo + tv) — B(z0) 2 t{z, v).

Assuming ¢ > 0, dividing through by ¢ and passing to the limit we obtain
{D®(z0),v) 2 (i, v} for all v € X, which implies i = D®(2). D

Theorem 8.3. (Brgndsted-Rockafeilar [18]). Let X be a Banach space
and & : X — RU{+oo} a conver lower semicontinuoua function, such
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that & 2 +00. Then domd? is dense in dom®. More precisely. for any
T € dom®, there exisis a sequence (1,) in X such that

(8.4) | lox - ) < /6
(8.9) O(z) — (7)
(8.10) (5, ) #0  forall k.

Proof. The set
E={(r,e)e X x R:®(z) < a)
[called the epigraph of ®)] is closed and convex. (Prove!) Since £ # X we

can take (z9,a0) ¢ E and use Hahn Banach theorem: there exists peEX
and a € R such that

(8.11) Y(r)=®(z)- (u,z)-a>0 forall z€ X,

[there is a small step to get (8.1 1) from Hahn-Banach; see a similar situation
in the proof of Proposition 5.4]. Now let us apply Theorem 4.2 to ¥ with
(/2 =}f(i') - Infxf. Soforeach A=1/k, ke N, we obgf'n £; such that
(8.8) holds, and moreover .

(8.12) ¥(z) < ¥(3)

(8.13) V(xs) < ¥(z) + ck|lzy - 2]] Vz# 2.
Next consider the functional © : X — R U {+00} defined by

6(z) = ¥(z) + ekllz - z),

which is convex and lower semicontinuous. From (8.13) it follows that z,
is the {unique) global minimum of ©. So 0 € 38(z,). Let T : X — R be
the convex lower semicontinuous functiona) defined by I'(z) = |}z — z4]]. By
Proposition 8.1 it foliows that there are 2°* € 3¥(z:) and w* € OT[z;) such
that 0 = £* + ekw*. Using Proposition B.1 once more and Proposition 8.2
we sce that there exists z° € 8%(z;) such that 2° = z* — proving (8.10).
To prove (8.9) we rewrite (8.12) in terms of &:

(8.14) P(xy) < () + (g, 74— 3).

Using (8.4) and (8.14) we have limaup ®(z;) < ®(%). On the other hand,
since ¥ is weakly lower semicontinuous we obtain ®(z) < liminf ®(z;).
There two last inequalities prove (8.12). D)
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The Duality Mapping. Let X be a Banach space. In the theory of
monotone operators T : X — 2X° a very important role is played by the
so-called duality mapping. It essentially does in Banach space the job d?ne
by the identity in Hilbert spaces. The duality mapping J : X — 2% is
defined for each z € X by JO= 0 and

(818) Jz={ueX*: (uz) =l lull = lzll}, for z#0,

where we use the same notation for norms in both X and X, Expression
{8.15) is equivalent to.

Jr={pe X :(uaz)2 |l=lit, lull < ll=li}-

We can show directly from the definition, using Hahn-Banach, that Jz is
a non-empty w'-closed convex subset of X°, for each z € X. However, we
will prove that and much more using the results on subdifferentials proved
in Chapter 5, after we prove the following proposition.

Proposition 8.4. Let X be a Banach space, and ® : X — R the functional
defined by @(z} = }|iz||2. Then

(8.16) 8% = J.

Remark. A study of generalized duality mappings can be found in Browder
|23].

Proof. Let u € 3®(z). It suffices to consider z # 0, since d%(0) = 0 and
JO= 0. Then

(8.17) 1

2
Let t > 0 and v €°X be arbitrary, and replace in (8.17) y by z + tv:

1
Iyl 2 s 1=l + (s,y - ) Vy€EX.

1 1 1
0,0} £ 3lle+ eoll? = Zliell® < sllal oll + oI
Dividing through by ¢ and pissing to the limit
(o) < llzll lloll Vo€ X.

This implies ||u|| < {jz]|- On the other hand, let y = tz in (8.17):

(8.18) %(t’ —)llzIP 2 (¢~ 1){u,2).
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For 0 < t < 1 we obtain from (8.18) (t + 1)||z]|* < {u,z). Letting t — 1
we have {u,z) > [|zI|*, completing the proof that u € Jr. The other way
around, assume now that y € Jz, and we claim that (8.17) holds. Let us
estimate the right side of (8.17) using the properties of u:

1 1
aw) = s x) + =l < lall ol = Mlail? + Sl
and clearly the right side of the above inequality is < g lvl2. O

Remark 1. If 4 € J(zo) it follows from the above that u supports the
bail of radius ||z)| around O at the point zo. Indeed if |{yj| < ||:rJ|, then

(1, 9) < (a3 Le. Sup{{u,y) < VIl < [lzoll} = {w, 20).
Conversely, if a functiona] p supports the unit ball at a point z4, then

# € J(||pl|20). Indeed, from

{1, z0) = Supyyc1{s, ¥)

we obtain {u, zp} = |||, which proves the claim.

Remark 2. Let us call R(J) =u{Jz: 1€ X}. If X is a reflexive Banach
space, the above remark says that R(J) = X*. If X is not reflexive there is
s result of R, C. James [49) which says that there are functionals which do
not support the unit ball. So for non refiexive Banach spaces R(J} # X*.
However the Bishop Phelps theorem proved in Chapter 7 says that R{J) is
dense in X*, for all Banach spaces,

Giteaux Differentiability of the Norm. As in the previous section let
®(z) = 1/z||*. Since ® : X — R is continuous and convex we have by
Proposition 5.4 that

. Plztty)-@
(8.19) ltnm ﬁ-—-——vt)—-ﬁ = Max,ese{p, ), t>0.

It follows from (8.19) that

. Plzt+ty)-& .
(8.20) l‘l{g LM = Mmue.’:(l‘)y)l t<O.
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The functional ® is Gateaux differentiable if and only if the two limits in
{8.19) and (8.20) are equal and in fact there is a continuous linear functional,
noted by D®(z) and called the Giteaux derivative at z, such there limits
are equal to (Dd(z),y). So the existence of the Gateaux derivative of & at
a certain point z implies that

Maxyesz{ps,y) = Minygse(p,y) forall yev.

Clearly this implies that Jz is a singleton, and Jz = D®{x). The converse
is clearly true: if Jz is singleton then (8.19) and (8.20) imply that & is
Gateaux differentiable at z and D&(z} = Jz. So we have proved.

Proposition 8.5 Let X be a Banach space. ®(z) = 1 ||z||? is Géteaur differ-
entiable at a point z if and only if Jx is a singleton. Moreover Jz = D®(z).
In particular, the duality mapping ds singlevalued, J : X — X*, if and only
if ®(z) = 1 |Iz]]? is Géteauz differentiable at oll points z € X.

Remark 1. Which geometric properties of the Banach space X give a
singievalued duality mapping? For the definitions below let B, = {r € X :
llzll < 1} and 8B = {z € X : ||z}| = 1}. In the terminology introduced
in Chapter 7, we see from the Hahn Banach theorem that all points of 3B,
are gupport points, i.e. given £ € 3B there exists a functiona) y € X* such
that
Supg,p = {u,1).

In geometric terms we say that the ball B, has a hyperplane of support at
each of its boundary points. A Banach space X is said to be strictly conver
if given 7,23 € 3B, with 2y # z,, then ||tz; + (2 - t)zai| < 1 for all
0 < t < 1. Another way of saying that it is: each hyperplane of support
touches 3 B; at a.unique point. (Or still B, contains no line segments). A
Banach space X is said to be smooth if each point z € 8B, possesses only
one hyperplane of support, Exsmples in JR? with different norms: (1) the
Euclidean norm ||z]{* = £} + 23 is both strictly convex and smooth; (ii) the
sup norm ||z]| = Sup{|z)|,|za|} is neither strictly convex non smooth; (iii)
the norm whose unit ball is {{x,,2;): -1 < z; < 1, }-1<2;<1~28)
is strictly convex but not smooth: (iv) the norm whose unit ball is the union
of the three sets next is smooth but not strictly convex:

{{zi22) i -1 <2y, 29 <1}, {{z1,20) 212 1, (5 - 1) + 23 < 1)

and
{(zr,22) 12y S -1, (z + 1)+ 23 < 1),
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Remark 2. With the terminology of the previous remark, Proposition 8.5
states: “ ®(x) = 1 |z(!® is Giteaus differentiable if and if X 1ia smooth”.
No condition on reflexivity is asked from X.
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Remark 3. If X" is strictly convex then J is singlevalued. Indeed, for each
2o € X, Jzg is a convex subset of the set {1 € X~ : i|ul| = |izq||}, which
is a singleton in the case when X" is strictly convex. So X~ strictly convex
implies that X is smooth, in view of Praposition 8.5 and Remark 2 above.

Remark 4. There is a duality between strict convexity and smoothness in
finite dimensional Banach spaces: X is strictly convex [resp. smooth] if and
only if X* is smooth [resp. strictly convex]. Such a result does not extend
to all Banach spaces, see Beauzamy |B: p. 186] for an example. However
this is true for reflexive Banach spaces. This was first proved by Smulian
|75], and it follows readily from Remark 3 above and Remark 5 below.

Remark 5. X* smooth implies X strictly convex. Indeed suppose that X
is not strictly. Then there are 2,7, € @B, such that Z = }(z; + 13) €
8By, JT € 3By where 3B] = {u€ X" : ||p|| = 1}. We now claim that z,
and 12 viewed as elements of X" are two support functionals of B; at Jz,
contradicting the smoothness of X*. In fact

(8.21) 1= (J£3) = %(JE,:;) + %(J'i,::,).

implies (JT,2,) = 1 and {J2,z;) = 1, proving the claim.

Fréchet Differentiability. We know that a functional ¢ : X — R which
is Gateaux differeintiable is not in general Fréchet differentiable. However

Proposition 8.6. Let X be a Banach space, A functional & : X — IR is
continuously Fréchet differentiable (i.c. C?) if and only if it is continuoualy
Giéteauz differentiable. )

Proof. One of the implications is obvious. Let us assume.that & is Gateaux
differentiable in a neighborhood V of point up € X and that the mapping
z €V ~ D®(z) € X* is continuous. We claim that D®{wp) is the Fréchet
derivative at wy, and, indeed:

(8.22) ®{uo + v) - Huc) - (DB(uc), v) = ofv).
The real-valued function t € [0, 1] — ®(ug + tv) is differentiable for small v.
So by the mean value theorem $(ug +v) — ®(uo) = (D®(ug + rv}, v), which
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holds for small v and some r € [0,1]. So we could estimate the left side of
(8.21) by | D& (g + rv) — DP(ug)|, and using the continuity of the Gateaux
derivative we finish. D .

1t is clear that a functional ¥ : X — IR could be Fréchet differentiable
without being C'. However this is not the case if ®(z) = 1]iz||%.

Proposition 8.7. Let X be a Banach space. If $(z) = 1{[z||? is Fréchet
differentieble fwhick implies Giteaur differentiable and 0% = J, where J is
singlevglued] then J : X — X° is a continuous mapping.

Remark. Without additional assumptions on the Banach space, a single-
valued duality mapping J : X — X" is continuous from the strong topology -
of X 1o the w™-topology of X~. For simplicity let us sketch the proof us-
ing sequences. Since the w*-topology needs not to be metrizable, filters
should be used, sce Beauzamy |24 ; p. 177]. Let z, — z in X. Since
|/ za||lx+ < const, there is u € X* such that

Jz, “ M.

We claim that u = Jz. First, from {Jz,,2,) = }|z,]|* we conclude (g, z) =
[|z]|*. Next given ¢ > O there exists u € X with ||u|] = 1 such that
|l € (u,u) + c/S {Jan,u) + € < ||zn]| + € for large n. Passing to the
limit, and since ¢ > 0 is arbitrary ||g]| < ||z||. D

Proof of Proposition 8.7. Suppose by contradiction that there is a se-
quence z, — z and r > 0 such that |{Jz, — Jz|| > 2r, for all n. So for each
n there exists y, € X, |jya|| = 1 such that

(8.23) (Jzy = Jz,yn} > 2r.

Using the Fréchet differentiability of & we can find & > 0 such +hak
(8.24) [®(z+ ) - 2(z) ~ (Jr, ) < rliyll for [lylf < 6.

On the other hand we have

(8.25) ®(z + byn) ~ B(zn) 2 (V2,2 + byn — z0).

Now using (8.24) we estimate

(Jzn~ Jz,6yn) € P(z+ byn) — P(zn) + {JTn,Tn - I) — (J:Sy..)
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which is equal to
.. (8.26)®(z + 8yn) - P(z) - (Jz,6yn} + B(7) - ) + (JTn,zn — 7).

The first three terms in (8.26) we estimate using (8.2). So starting with
(8.22) we get

2ré < ré + ®{x) — B(z,) + ||znl] [|l2e — 2|

which implies that ®(z,) does not converge to ®{z). This contradicts the
continuity of . DO

As a consequence of the previous propositions we have the following char-
acterization of Fréchet differentiability of the norm:

Proposition 8.8. Let X be o Barach space. ®(z) = 1 ||z||® is Fréchet dif-
Jerentiable if and only if the dualily mappings is singlevalued and continuous.

Remark. Which geometric properties of the Banach space X give a contin-
uous singlevalued duality mepping? We start with a condition introduced
by Smulian [75]. X* satisfies condition (5) if for each z € 3B; we have

(8.27) }irr(l)diamA,(J) =0,
where A;(6) = {pe X*: {p,z) >1-8}n B;.

Proposition 8.9, Let X be a Banach space. The dualiiy mapping is singl-
evalued and continuous if and only if X satisfies (S).

Proof. (i) First assume ($). Suppose that there exists = € 8B; such
that Jz contains pu; # pp. Clearly py, ps € A (F), for all § > 0, and
lur — p2|| > O negates (8.2§). To show the continuity of J, it suffices to
prove that il z,, — z, with i|z,]| = 1, then Jz, — Jz. We know that

Jzn LN Jz,

g0 it is enough to show lhlt(f:n) is & Cauchy sequence. Given ¢ > (, choose
§ > 0 such that diamA,(6) < e. We know that (Jz,,z} — {(Jz,z) = 1. So
there exists np such that Jz, € A,(§) for all n > ny. Using condition {S)
we conclude that ||[Jz, - Jzm|| < € for all n, m 2 no.

(1) Conversely, assume by contradiction that {S) does not hold, for some
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z € dB,. So there exists ¢g > 0 such that for every n € IN we can find
Hn, pl in Bj with the properties

1 1 ,
{tn, 2} 21 - o {up,z) > 1 - o Hin — ppli 2 €o.

We have seen, Remark 2 after Proposition 8.4, that R(J) is dense in X*. So
we can find z,,y, in X such that

(28) Wzat)21-2, Usne)21-2, [Vza-Juall2 2,

1 1
(8.29) Waall S14 = IVwall S 14+,

Observe that the sequences (J1,,), (Jyn) are bounded in X*. By the Banach
Alaoglu Theorem, there exists p and ' in X* such that

- -

Jrzn = p,  Jy. =4
(As usual take subsequences if necessary). Passing to the limit in (8.23) we
obtain {u,z) > 1, {#',1) > 1. From (8.2§) it follows that in fact we have
{, 2} = {g',2) = 1, which implies g = y' = Jz. On the other hand, from
the last assertion in (8.28) we can find £ € B, such that

¢
(J2pn = Jyn, 2} 2 —49
Passing to thre limit in this inequality we come to a contradiction. 0O '

Remark. Now we give & geometric condition which is sufficient to having
the continuity and singlevaluedness of J. Some definitions. A Banach space
X is said to be uniformly conver (Clarkson |26)) if given € > O there exists
6 = §(¢) > Osuch thatif z, y € 8B, and |1 (z+y)|| B 1-5 then [jz-y[| £ .
A Banach space X is said to be locally uniformly convez (Lovaglia [58]} if
given ¢ > 0 and zg € 3 B; there exists § = &(¢, 7o) such that if x € By and
I11(z + z)|| 3 1 - 6 then ||z ~ zo|| & ¢. The previous two definitions can
be given in terms of sequences as follows. X is uniformly convez if given
any two sequences (zn) and (ya} in B, such that |[}{(za + ya}]| — 1 then
{|Za = ynl| — 0. X is locally uniformly convex if given any point zg € 85,
end any sequence (z,) in B; such that ||}{zg + z.)|| — 1 then z, — zo. A
Banach space X is said to satisfy Property H (Fan-Glifcksberg [40]) if X is
strictly tongex and

(8.30) zn =30, Ilzall = [l20l] = zn = 20.
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Hilbert spaces are uniformly convex. A uniformly convex Banach space is
locally uniformly convex. A locally uniformly convex Banach space satisfies
Property (H). The first assertion is easily verified using the fact that 2 + y
is orthogonal to z -y, for z, y € 8B;. The second is trivial. And the third is
proved as follows. 1t is clear that & locally uniformly convex Banach space is
strictly convex. To prove (8.20) we may assume that|z,|| < 1 and ||zof} = 1.
We claim that 2, — z and ||zp]| — ||2o|| implies that ||1(z, + zo}|} — 1.
Once this is done, the fact that X us supposed locally uniformly convex
implies that £, — z. Suppose by contradiction that a subsequence of (z,},
denoted by (z,) again, is such that || (z, + zo)}| S t < 1, for all n. Let
p € Jzg. Then

{1, %(Io + Zn)} S (. t20)

which implies § + }{u,z,) < t. Passing o the limit we come Lo a contra-
diction,

Proposition B.10. Let X be o Banach space and suppose that X* is locally
uniformly convez. Then the duality mapping s singlevalued and continuous.

Proof, Singlevaluedness is clear. Now let 1, — zg in X. Asin Proposition

8.9 we may suppose ||z,]] = 1. We know that
Jzy LR Jaxg.

Suppose by contradiction (passing to a subsequence) that 1l|Jz, + Jxzo|| <
t < 1. Then
(Jzn + J30,2n + 20) < 4L.

On the other hand the left side of the above inequality is equal to
(JzasZn) + (I 20, Zn) + (JZn, 2o) + (I 20,20} = 2+ (J 20, Za) + (S Z4, Z0)

which converges to 4. Impossible! O

Proposition 8.11. Let X be a reflexive Banach space. Then J is single-
valued and continuous if and only if X* satisfies Property H.

Proof. It can easily be seen that, in the case of reflexive spaces, Property
H on X* implies the naid properties on J. To prove the converse, we use
Propostion 8.9 and show that Property S implies Property H on X*; of
course reflexivity is used again. Suppose by contradiction that there exists
a sequence

#n = poy  |lenli = Heoll, & 7 bo.
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We may suppose without loss of generality that lip,)i < 1 and |ju]] = 1. So
there exist ¢y > O and sequences (j,) and (k) going to oo such that

(8.31) lletsn = aall 2 €0

Since J is singlevalued continuous and onto, we can find 2y in X with
[|lzo|l = I such that uy = Jzp. Consider the set A, () defined in (8.2§)
and choose § > 0 such that diamA, (8} < ¢ /2. Cleatly u, € A, (6) for
large n. But this contradicls (8.3¢). DO

Uniform Fréchet Differentjability of the Norm. In this section we
limit ourselves 1o Proposition .12 below, We refer to the books of Beauzamy
(8] and Diestel |32] for more on this sybject. A concept of uniform smothness
can be introduced and be shown to enjoy a duality with uniform convexity,
Just like smoothness and strict convexity do.

Proposition 8.12, The duality mappt'ngo{ s singlevalued and uniformly
continuous on bounded subsets of X if andpf X* ia uniformly convez.
Proof. (i) We first prove that X" uniformly convex implies the said prop-
erties on J. From Propostion 8.10 it follows that J is singlevalued and
continuous. To prove uniform continuity we preceed by contradiction. As-
surne that the exists ¢p > O and sequences (z,), (ya) in some fixed bounded
subset of X such that

1
llZa = ya|| < - and  |[|Jzn - Jyall 2 €.

We may assume that ||z,|| = {|ya|| = 1. Now we claim that }||Jz,+ Jyn|| —
1 as n — oo, arriving then at a contradiction through the use of the uniform
convexity of X*. To prove the claim just ook at the identity

{Jzn+ Jyn, 20} = (JEn,2Zn) + (JUn, ¥n) + (¥, Zn — ¥n)
and estimate to obtain
22 (un + Jyn, zn) 22~ 2”’-1 - y,.II.

Now we assume that J is singlevalued and uniformly continuous on bounded
sets, By the fact that R(J) is dense in X* it suffices to show that given ¢ > 0
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there exists a § > O such that

(8.32) W= Jslf2 e ZllTz+ Jyll < 1~ 6

for z,y € 8B,. First we write an identity for u,v € B,

(8.33) (Jr+Jyu)=~(Jz-Jy,v)+ {Jr,utv)+ (Jy,u~-v).

Observe that the sup of the left side with respect to u € 3B, is the norm
of Jz + Jy, and the sup of the first term in the right side with respect to
v € 8B, gives the norm of Jx — Jy. Nextlet 0 < ¢ < ¢ and choose T € 88,

such that

(8.34) (Jz - Jy, %) > (.

Now choose 0 < £ < €. Dy the uniform continuity of J there is n > 0 such
that

{8.35) Hdzy ~Jeal| < & i |jzy — 23| € 4.

Now take v = 7 in (8.79) and let us estimate separately the three terms in
the right side of (8.38). The first is trivially estimated by —¢'n. The other
two are estimated as follows:

{(Jz,ut o)+ (Jy,u=v) < [lut |+ ]lu-ol.
Let s = {(u+ v)/||u+ v|| and d = (u - v}/|lu - v||, and write the identity
{8.36) lut ol + |lu—-vfi= (Je,u) + {Jd,u) + (Ja - Jd,v).
Then estimate (8.38) using (8.38) and get
Hut ol +Jlu - vl < 2+ Ellvl € 2+ &n.
Finally {8.33) is estimated by —¢'n + 2+ £n, for all u € 3By. So

1 ¢-¢
2 P P
- 2||.J’::-|- Jyll <1 7"

and (8.31) is proved. D

Remark. The functional @ is said to be uniformly Fréchet differentiable if

it is Fréchet differentiable and if given ¢ > O there exists § > 0 such that
[@(z + u) - ®(z) - (®'(z), )| < €|ul|

for all z € By and all ||u|| £ 5. It is easy ta see that the uniform differentia-
bility of ® is equivalent to J being singlevalued and uniformly continuous
on bounded sets. So the norm of a Banach space is uniformfly Fréchet
differentiable iff X* is uniformly convex.
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Chapter 9

Normal Solvability

Introduction. Let X and ¥ be Banach spaces. Let f: X — Y be a given
function. This section is devoted to questions relative to the solvability of
the equation f(z) = y, when y € Y is given. The function f is supposed
to be Gateaux differentiable and we would like to have sufficient conditions
for the solvability of the above equation stated in terms of the properties
of the Gateaux derivative Df,. Parallelling the Fredholm theory for com-
pact operators these conditions will naturally involve Df. For the sake of
lnter referencing we start by recalling some resulta from the theory of lineat
operators, Then we go to the so—called normal solvability results of F. E.
Browder and S. 1. Poholaev. Some resulis of W. O. Ray and 1. Ekeland are
also discussed. We close the section with & comparative study of the results
here with the classical inverse mapping theorem.

What Is Normal) Solvability Let L : X — Y be a bounded linear operator
from a Banach space X to a Banach space Y. The equation Lz = y is said
to be normally solvable (in the sense of Hausdorff) if

(9.1) ye N(L')* = ye R(L).

Here L' : Y* — X" is the adjoint operator defined as follows for each
peY' L'yue X*is given by (L'u,x) = {u,Lz) for all z € X. The
other notations in (9.1) are: (i) N(T) to denote the kernel of an operator
T:X—=Y,ie. NT)={ze€ X:Tz=0}; [ii) the range of T, R(T) =
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{ye€¥ :3z€ X st Tz =y}, and the (right) polar of a subspace B C
X*, Bt ={z€ X :{uz)=0, VYuec B} Later on we also use the {left)
polar of a subspace A C X defined as

At={ueX :{upz)=0 vze A}

The well-known Fredholm alternative for compact linear operators T : X -~
X in a Banach space X gives that the operator L = [T is normally sclvable.
For a general bounded linear operator L : X — Y, one can prove that

(9.2) N(L)t = R(L).

So all operators L with a closed range are normally solvable.

Some Results From The Linear Theory. We now recall some theorems
from the theory of bounded linear operators in Banach spaces. The reader
can find the proofs in many standard texts in Functional Analysis, see for
instance Yosida |79], Brézis |15].

Theorem 9.1. (Closed range Theorem). Let L : X — Y be o bounded
lincar operator, X andY Banach spaces. The following properties are cquiv-
alent: (i) R(L) is closed, (ii} R(L*) is closed, (iii} R(L) = N(L*)*, (iv)
R(L7) = N(L)*.

Theorem 9.2. (Surjectivity Theorem). Let L : X — Y be a bounded
linear operator. The following conditions are equivalent (i) R(L) = Y, (ii)
N(L") = {0} and R(L") is closed, (iii) there exists a constant C > 0 such
that [ly*|| < C||L*y*]|.

Theorem 9.3. (Surjectivity Theorem for the adjoint). Let L : X = Y
be a bounded linear operator. The following conditions are equivalent: (i)
R(L*) = X*, (ii) N(L) = {0} and R(L) is closed, (iii) there ezists a constant

¢ K > 0 ouch that ||z|| < C|Lz||.

Normal Solvability of Nonlinear Operators. Now we describe a non-

B4

linear analogue of Theorem 9.2. This result was proved by Poholaev |63}
{see also [64]. [65]) for reflexive Banach spaces and f(X) weakly closed,
and by Browder [20], [21], for general Banach spaces. The Browder papers
mentionned above contain much more material on normal solvability besides
the simple resulis presented here.

Theorem 9.4 Let f : X — Y be o Gitcauzr differentiable funciion be-
tween Banack spaces X and Y. Assume that f(X) is closed. Let us use
the notation Df, for the Gdteauz derivative al a point x € X. Assume that
N(DJf;} = {0} for all £ € X. Then [ is surjective.

The above result follows from a more general one, {namely Theorem 9.5)
due zlso 1o Browder. The proof below {ollows the same spirit of Browders
original proofl. However it uses a more direct approach |directness is a func-
tion of the arrangement one sets in one's presentation!] through the Drop
Theorem (Theorem 7.3), proved in Chapter 7 via the Ekeland Variational
Principle.

Theorem 9.5. Let X and Y be Banach spaces, and f : X — Y @ Gateauz
differentiable function. Assume that f(X) is closed. Let y € Y be given and
suppose ihot there are real numbers p > 0 and 0 < p < 1 such that

(9.3) (B # 0

(9.4) Inf{|ly - f(z) - 2]l : 2. € R(DS:)} < plly - S (=),
for allz € £71(B,(y)). Thenye€ f(X).

. Remark. If (9.3) and (9.4) holds simultaneously for each y € Y, then f is

surjective. Observe that s large p gives (9.3), but then (9.4) is harder to be
attained.

Remark 2. Proof of Theorem 9.4. N{Df}) = {0} implies, by (8.2), that
{0.4) is attained with p = O and arbitrary p. So, for each given y, take p
such that dist(y, f(X}) < p, and take p = 0. Therefore Theorem 9.5 implies
Theorem 9.4.

Remark 3. The thesis of Theorem 9.4 still holds if in the hypotheses we

replace N{D/J:) = {0} by R{D/,) dense in Y. Theorem 9.4 contains a re-
sult of Kafurovskii [35). who considered continuously Fréchet differentiable
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mappings f and assumed that R{Df,) = Y for all z € X. The proof uses a
Newton-Kantorovich method of successive approximations, See Remark 1
after Theorem 9.8,

Remark 4. A Giteaux differentiable mapping f : X — Y is said to be a
Fredholm mapping if Df; : X — Y is a Fredholm (linear) operator for each
r € X. We recall that a bounded linear operator L : X — V¥ is Fredholm
if N(L) is finire dimensional and R{L} is closed and has finite codimension.
The index (L) is defined as i(L) == dim N{L)-codimR{L). We observe that
i(Df.) for a Fredholm mapping [ is locally constant. Since X is connected
we can then define

{f)=1(Df,) forsome zeX

since the right side is independent of z. Now il in Theorem 9.4 we assume
that [ is a Fredholm mapping of index 0, then condition N{Df:} = {0} can
be replaced by N(D/,) = {0}.

Proof of Theorem 9.5. Let § = f({X). Suppose by contradiction that
y€ 5. Let R = dist{y,S) and choose r,p > 0 such that r < R < p and
pp < r. Observe that if (9.3) and (9.4) hold for some pp then it also holds
for any other p, with R < p € pp. Then use the Drop Theorem: there exists
uweSs

(95) luo—wll <p 2and 50 Dy;r;up) = {uo}.

Now let zg € X be such that f(zp) = ug, whesssxistonee-dedles-lsom-a
{Sedjuandubharfirpirpesopiion in-{B+6}. Then (9.4) implies

Inf{lly - f(2o}- #H| : Z € R(Dfs,)} < plly - f{zo)l| < v
So there exists z € X such that

(96) ”y" f(zO) - D!l«(:)” <r

and approximating the Gateaux derivative by the Newton quocient one has
for emall t > O:

To + iz} — fix
ol = Iy = f(zc) - L2222 Sy
Thus the vector y — wy € D(y,r; up), and the same is true for (1 — t)up +
t(y ~ w) with 0 < t < 1 and t small. But this last statement simply says
that
(2.1 J{zo+1tz) € D(y,r;u0), Vi >0 small
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The second assertion in (9.5) and (9.7) imply that
Hzo+tz}=up ¥ >0 small

which gives Df; (z) = 0. Going back to (9.6) we get lly— f{z0}|] < r, which
is imposgible. D

Some Surjectivity Results. Both theorems 9.4 and 9.5 have as hypoth-
esis the statement that f(X) is a closed set. This is & global assumption
whose verification may cause difficulties when applying those theorems. It
would be preferable to having local assumptions instead. That it is the con-
tents of the next result which is due to Ekeland, see Bates-Ekeland [7]; see
also Ray-Rosenholtz [69] for a slightly more general result. Observe that the
function [ is assumed Lo be continuous in the next theorem. This implies
that the graph of f closed, but asserts nothing like that about f{X).

Theorem 9.8. Let X andY be Banach apacesand f : X — Y o continuous
mapping, which is Gdieauz differentiable. Assume:

(9.8) R(DL)=Y, VieX

(9.9) Jk>0st VzEX, YyeY, Iz€(Df:) y)

with the properity:

llz}| < k|lyll.
Then [ i surjective.
Proof. If suffices Lo prove that 0 € f(X). Define the functional ® : X — R
by &(z) = ||f(z}||. Clearly ® satisfiss the conditions for the applicability of
the Ekeland Variational Principle. So given ¢ > O there exists z, € X such
that

(9.10) I1f{z )il < Infx||f(=)]| + ¢
(9.11) W < £ (=Ml + ellz — z]| ¥z # =,

Take in (8.11) z = z,+1tv, where ¢ > Oand v € X are arbitrary. Let o ¥V*
such that

(9.12) el =1, 0f(ze + to)ll = (u, Sz + to)};
see Remnark 1 after the proof of Proposition B.4: p; € J(f(z, + tv)/I|f(z, +
te||). We observe that ||f(:§)|| > (uy, f('.z)). Altogether, we can write (9.11)

:;_13) {ue, f(2e + ‘")t) (m.f(I«))

=elle[l.
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By the Banach-Alaoglu theorem (i.e., the w'-compactness of the unit ball
inY") and the fact that

':'U(’-'t +tv) = f(z)] = Dfp(v) (strongly)in Y
we can pass 1o the limit as £ — 0 in {9.12) and (9.13) and obtain

(9-14) lwoll =1, NSzl = (o, f(ze))

(9.15) {po, Dfs. (v)} 2 ~¢|jv]| forall ve X.

Now using hypothesis (9.8) and (9.9) we can select a v € X such that
DSy {v) = —f(z.) and |lv)| < k)| f(z.)]]. Al this gives

{po, f(zc)) < ekilf(z .

So if we start with an ¢ such that ek < 1, the last inequality contradicts
(9.14), unless f(z,})=0. DO

Remark 1. The passage to the limit in the above proof requires a word of
caution. If X is separable then the w"-topology of the unit ball in X" is
metrizable. So in this case we can use sequences in the limiting questions.
Otherwise we should use filters. See Dunford-Schwartz [35, p. 426].

Remark 2. Let L: X — ¥ be a bounded linear operator with closed range.
Then there exists a constant k > 0 such that for each y € R(T) there is an
r € X with properties that y = Lz and ||z]| < k|ly||. This is a classical
result of Banach and it can be proved from the Open Mapping Theorem
in a straightforward way: consider the operator T : X/N(T) — R(T).
In this set-up it is contsined in Theorem 9.3 above. Now let us see which
implications this has to Theorem 9.6 above. Condition (9.8) implies that the
inequality in (9.9) holds with a k depending on z. Viewing a generalization
of Theorem 9.6 let us define a functional k : X — R as follows. Assume
that f : X — Y has a Gateaux derivative with the property that R(Df:)is
the whole of Y. For each z € X, k(z) is defined as a constant that has the
property

(9.18) [l € k(z)|ly]] Vy€Y and some z€ (D).

We remark that for each z € X, the smaliest value possible for k(z) is the
norm of the T~! where T': X/N(Df,) - Y.

Theoremn 9.7. Let X and ¥ be Banach spacesand f : X — Y a continuous
mapping whick t8 Gdteaur differentichble. Assume

(8.17) R(Df.)=Y, ¥relX

(9.18) YR>0 3c=c(R) at. k(z)<e, Vz)|<R.
(9.19) [I7(x)}l = 00 as [|z}j = oo0.

Then [ ts surjective.

Proof. It suffices Lo prove that 0 € f(X). Define & : X — R by ¥(z) =
WS (x)]]. Let p = {|£(0}]]. Iv follows from (9.19) that there exists & > 0 such
that

(9.20) 5@z 30 i ell2 R

Choose an ¢ > 0 such that ec(R) < 1 and ¢ < p/2. By the Ekeland Varia-
tional Principle there exists z, € X such

(9.21) Bz < Infx®+e< p+e<3p/2

(6.22) I < N2 + iz = z]l,  Vz#z

It follows from (9.20) and (9.21) that ||z,|| € R. Now we preceed as in the
proof of Theorem 9.6 and conclude that f{x,)=0. 0O

Remark 1. f X = Y and f = identity + compact 15 a continuously
Fréchet differentiable operator, the surjectivity of f has been established by
Ka¥urovskii [50) under hypothesis (9.18) and N(Df,}) = {0} forall z € X,
Since D/, is also of the form identity + compact, such a condition is equiv-
alent to (9.17); this is & special case of the situation described in Remark
4 after the statement of Theorem 9.5. So Katurovskii result would be con-
tained in Theorem 9.7 provided one could prove that in his case condition’
{(9.18) holds. Is it possible to do that? In the hypotheses of Katurovskii
theorem, Krasnoselskii [54] observed that f is also injective.

Remark 2. Local versions of Theorem 8.7 have been studied by Cramer
and Ray [28], Ray and Walker [69].

Comparison with the Inverse Mapping Theorem. The classical in-
verse mapping theorem states: “Let X and ¥ be Banach spaces, U/ an open
neighborhood of z5 in X, and f : U — Y a C! function. Assume that
Df,, : X = Y is an isomorphism (i.e., a linear bounded injective operator
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from X onto Y, and then necessarily with a bounded inverse). Then there
exists an open neighborhood V of 1y /V < U, such that fly : V — f(V)
is a diffeormorphism”. The injectivity hypothesis can be withdrawn from
the theorem just stated provided the Lhesis is replaced by f being an open
mapping in a neighborhood of z5. More precisely we have the following
result due Lo Graves [48]. If you have the Jock by Lang [56], the result is
proved there.

Theorem 9.8. Let X and Y be Banach spaces, U an open neighborhood
of zoin X, and [ : U — Y o C! function. Assume that Df, : X = Y
i surjective. Then there exists a neighborhood V of 25, V C U, with the
property that for every open ball B(z} € V', centered at 2, f(V) contains
an open neighborhood of f(z).

Remark 1. N the mapping f : X — Y is defined in the whole of X, and
it is C! with R(Df,) = ¥ for all £ € X, Graves theorem says that J{x)
is open in Y. )f we have as an additional hypothesis that f{X) is closed,
it follows then that f(X) = Y, in view of the connectedness of Y. Now go
back and read the statement of Theorem 9.4. What we have just proved also
follows from Theoremn 9.4, using relation (9.2). Observe that R{Df,) =Y is
much stronger a condition that N{Df;) = {0}. The latter will be satisfied
if R(Df,} is just dense in Y. We remark that the proof of Graves theorem
via an iteration scheme uses the fact that R(D/,) is the whole of Y. We do
not know if a similar proof can go through just with hypothesis that £(Df.)
is dense in Y.

Remark 2. Graves theorem, Theorem 9.8 above, can be proved using Eke-
land Variational Principle. Since few seconds are left to close the set, we
leave it to the interested reader.

The following global version of the inverse mapping theorem is due to
Hadamard in the finite dimensional case. See a proof in M. S. Berger [10] or
in J. T. Schwartz NY U Lecture Notes [73). More general results in Browder
f1g].

Theorem 9.9. Let X and Y be Banach spaces and f : X — ¥ a C!
function. Suppose that Df; : X — R is an isomorphism. For each R > 0,
let

§(R) = Sup{||(Df:)"| : l|=l| < R}
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Assume that
/’ © dr
— = 00.
s(r)
[In particular this is case if there exists, constantk > 0 such that WD) <
k for allz € X|. Then [ is a diffeomorphism of X onto Y.

Remark. Go back and read the statement of Theorem 9.6. The ontoness
of the above theorem, at least in the particular case, is contained there.
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