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Critieal Points with Lack of Compactness
and Singular Dynamical Systems (*)(**).

ANTONIO AMBROSETTI - VITTORIO CoOTL ZELATI (***)

Suato. - i prora l'faialu:c dii punti critici Ji funzionali che non rerificuns la condiziene (P8).
I rmr.uu astrafti rengone applicali per trorare seluzioni periodicke di vistemi dinamici con
polenziali via limitati sia con singolarita.

0 - Inttﬁduclion,,

This paper has two main purposes: first, to prove tho existence of T-periodic

soluticns of n-dimensional dynamical systems like '

{0.1) - i = grad, Vit, 3, - -

with ?qmntial_ V whick (is I_'-p_eriodic in ¢ and) haa singularitica; second, to ltllli!’
the critical points of functionals whose Euler equations are (0.1), Jore precisely,
t.’he kind of functionals we are interested in are thot ones of the form

(0.2) 1(w) = (4%, ) + g(w),

where 4 is o linenr selfndjoint operator acting on b Hilbert space B, (-,') denotes
the scalur product in E and g is o noulinesr €' map. '
The main specific fentures of f ure:

(a) A4 haa & kernel X with » m dim T < oo and, roughly, both g{x) and
grad g(z) — 0 a8 r€ X and jz{, —» oo; : .

{t} g (and benee f) are possibly deflned on an open subset A of E. -

E:) Entrata in Redazione il 0 novembro 1986.
Ch'-( ) Thin work haa heen done during a visit at the Moth. Dept. of the University of
ua-q-c:. The Authors whisk to thank for the kind hoapitality.
{ ) i 'Sllppor!e-l by Ministero Pubblica lstruzione, 404, Gruppo. Nusionsle « Caleolo delle.
Variazioni»,
Indirizzo degli A.\.: A. AMBROSETTI: Srucia Normals Superiore. Piasza dei Cavaliori 7.

61K Pixa; V. Cott Zevati: lowmational 3vbool for Advancod Studics, Strads Costiers L1,
34014 Miramare, Trioute,
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As » consequence of (), f dovs not sutinfy the compaetiess condition inteodlneed
by DPaluis and Smale (see § 1) Actually here we ahow that ¢ = 0 is the unly level
where P3 tails to hold.

The ides to overcome such u Lwk of compasetnesa ia the Tolluwing: under some
mild sssumptions involving, roughly, the behavionr of g g ot inilnity, we are uble
tu prove that the lovel set {f<e} is topolugically equivalent to a-dimensional

_sphere, This cnables us to find critienl puints for { on .1, viz Morss type sruments.
If .1 is o proper subset ol E. a control on the behaviour of § on @ is needoed: on the
othe hand, our wpproach permits to take undvantage ol the possibly rich copolegical
structure of A: for example, it A hus infinitely many noen triviel homoloygy groups,
then we show that / hes infinitely many criticul points on A.

The abatract setting iv contained in Part I, consisting of sectivns i, 2 and 3:

i § 1 we list the prvliminariﬂ,'wllilc § 2 and § 3 contnin the theorems on the

existence of critical puints of / under two diffcrent kinds of sssumptions ut infinity
for gic. .
The results of Part I are applied in Pact 1T to find periodic solutions of (0.1).

‘ .: More precisely, we assume ¥: Rx 0 — R (2 open subset of R*) is T-periodie in ¢

and is such that:

N +

(0.3) Vit,y) +~0 and * grad, V(i ) 0 » ly| oo,

“*and lovk for T-periodic solutions of (0.1) 44 criticul puints of

r r
* (0.4) fo) = §fwpe s —fruman
[ ] L )

on A = {ue HS, R): wi) € 2). The functional f in (0.4) is of the form (0.2)
and exhibits {a) and (5). x0 that the abatnwt results apply. After dealing in § 5
with bounded potentinls (L.e. @ = R* and /A = H'¥), we ennshiler in § 8, T.the situa- |
we ure mainly interested in: when £ haa o compact boundary <82 and Vit ¥) —
—~— oo s y— 782 In such o case A law o richer topologicnl structure aod the
stronger critical points theotems of Part § an be employed providwl » further condi-
tion on the behaviour of V7 near 2 is assumed: namely that prad, Vit, 9} is »
o strong force s In the sense of Gurbox [16]. The kind of rexults We ciil Drove ane
fllusteated by the following examphe: if Q= R0} (w22, omd VU, 9) beliaven
bike — ‘B~ with 22 near 2 = 0 and like tey with >0 v o] — o9 then (0.1)
has intinitely many T-periodie solutiona,

Avrording to the Abstrwt Setting, we point vut that in the
unly wsymptotic comditions on 1 oare required.

Iu the last seetion (3 1) we xhortly discuss
systems, i, to the vase when Vois does not depend on .

Papers somewbat related to ours are |65 95 103 Bs 13: 165 175 18 L)

applisions o (".1)
extensions to cover autonemous

We refer
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to Remarks 36, 3.0 wul 6.3 (ur connisrison with those priquers, Here we woulil lko
to apeml few woreds 1o indiente the differeneen with [12] and [16]

The idea to overcome the Lk of M ovaluating direetly the topobiggy of {j-.:g}
haws been first wsed in (120, even [Lin » particalue s, Actually, Part | here furn-
jalien 3 renversl abstret tool whith ennn be used to stidy the speelfle prabiem of {121

In 1], the detinition of «xtrong foree s his been dbest intesduced. The msin
dierence with the prisent paper is that Gomloy asmmes 72 ia complicated
stiongh, in sueh a way that the correspondingr 1 splits in compunents where the
functional § iz coercive, In particulsr no lack of P8 arises in [16]. For example, in
the rvase listed before (i, Q@ = R™(|0}}, Gordon's rexult applics only il » =3
{xee also (9. 10, 18]}

Some results and the mnin idess of this paper have boen presented at the meeting
« Rocent . develupements in Humiltonian systems s, held at L'Aquils, Italy, June
1086 [2]. At that meeting we learned thut Greco [19] hud meuntime proved the

existence of one periodic solution for (0.1) with singular potentinls of the type we
study in Theorems 6.3 nod 3.1,

Parr I: ABSTRACT SETTING
1. - Notations and preliminaries.

In this section we will state some basio tools nnd results in eritical point snd
Morse theory. Such resulta ure essentislly known cven it not in the specific way
we sholl need in the following. :

Let E be » Hilbert space with scalur product (+,-) snd norm |-]. We will deal
in the following with funetionsls | wich ure possibly defined on an open subsust A
of E. We depote by &l the (possibly empty) beundary of A, We also set
B,={ueE: w <R}. .

It fe C.1: Ry, we set ['{) == grad fla), ZIf) = wed:fin)= 0}, wnd, for ¢ € R,
ZAf = ne2(f): flur = ¢}, Y < ¢} = (wed: flwy<e), {<c} = [ned: fluice), (o<
<fzb} = {ue.d: ngfin)cd), ete. We will also abbrevinte = {f<e).

If 8 is o subset of .5, we say that [ aatisfien the IS {Palain-Smale) condition on 8

i fur vvery sequence [u,} in 3 such that f{wn) is bounded andd f'(ns) — 0 there exists a
runverging subsequence W, — v € A ’

Weo will olten refer 10 the sieepest deseent flure xsovisted to o functionsl f. This
in, essentisily, the dow defineted by the diferentia eguation £’ = —['(x) We will
not enter bere in the details of the construction of such @ flow: we anly recall ita
properties which we will nesd in the paper.

PropustTiox 1.1, - Let .1 be an open subaet of o Hilbert spoace E, and lot
fe .1 R be bounded from below o 1ol sueh that fle) — 4 oo as u =Tl

1‘\::1-0.“0 AMBRORETTT - VITToRE CoTt ZELAT Critieal puinta wiih, rie.

Thum hers eXists 3 € IR <. 1: .|i {the ateepuest desernt Qow) saeh thist the fnnction

[yl uh) is not inereasing.

Proor. - See {21 .

We will sy that » aiihset ¥ of w Hilbert space £ in powiticcly inrariant under
the ateepest deseent How or, simply, positively invirisat iyt ne ¥, Yye Y, Yi>0,

PaupostTIoN 1.2, = Let .1 be an open subset of » Hilhert spw E, and let fe
€ C'(.1; &) be bouwlwl from below on .1 wul aneh that fi) — + oo as @ —-ad.
Let T be o closed subset of .1 such that Y in pamitively invarisnt sod 'S holds for f
jn ¥. Then it exists we Y puch that f(w) = min {fw): e € Y}

ProoP. — The prool is the usual ot {see [21], [20]). Wo ouly point out that the

deformation arguments con be carried over in our setting beesnse: (i) Y is positively -
invariant: {ii) since ¥ is closed and P8 ‘holds in T, then Va, be R, with Z(jin

Nlesi<bin T == 0, 35 > 0 such that Wiwi»d, Yue [a<icb)nn Y. .

Essentially using the same argumefts, one cun prove:

ProposiTios 1.3. - Let A be an open subset of a Hilbert spuee E, and let
J& CA: R) be such that fi#) — + oo ws % — iA. If 'S holds in (a<f<b) (where
— oo < ach< + o)y and Z(HN fa< )< b} == 0, then I' is n deformation retract-of-
P Moreover, if Tisa closed and positively invariant stibeet of A snch that P8 holds
in YN {e<f<b} and Z(iN [ocf<d)NT =0 then A Y isa detormnt.ion.retmt

of pO Y.

r

Proop. — See [20, Lemma 3.3. - a), b)} ond the proof of Propesition 1.2. ..

With H,(4),.[H.l4, B), 42 B) we will indicate the Bingulwr Homology groups
of the topologieal spnee A (of the couple of topulogical spaces (4, B)\. From propusi-

tiou 1.3. it follows thut, il IS holls in los fb} (where — o0 < a<b+ ook Mld_

ZN N lacfcb) =y, then

-

Lt oM = B},

Moreovery:

PropustTiox 1.4, = Lot fe Ctl: R) be such that f{x) — 1 oo us I'-"EA =“‘}l
Wt 1" be i clomak, pusitively invarisat sulmet sl 1. Sappose: at) !_Nﬂ-lﬂﬁl‘! I in
lawf b L with — oo < a b >0 By 2NN - N Y i compiet it

b -2 -+ oo this folluws [rom )i o) ZiHnillad

Wnlny=u d} [ is Fredbolm ol

’
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flex 0 in ZINA s f BN T, Then g e N sweh that
{1.2) Hifn N =H('AY), Yyoq.

Proor. - Sinen I'*i holda in a3 f < b}n ¥, sl ZUHiry {a .] b} Y in compat
we can wae [26, thm, 2.2 o deduee the existeaer of g for which: (i) a), b) amd_ o) hold;
(ii) ¢ i close to f in thu C* norm sl dilfers from f only i a small neighborhool of
the critical points: (iii) g lus only o lnite number of nondegenerate eriticsl points
in {a<g<b}n ¥. From (ii) it fotlows that I is pusitively invarisat _tor g, too
From this taset. and well Known results of Morse theoey (see, for example [7, thm. B))
it follows (tuking inte account alio the proof of Proposition 1,2) that (£.3) holds
for g. Bince from (i) one deduces that FOY =AY and A Y =g ¥, the
Proposition follows. .-,

From this Proposition we deduce

ProPosiTION 1.5. - Let A bo an open'set of & Hilbert apnoe E, and let fe O E; R)
be Fredholm of index 0 and auch that f(w) — + co as ® — 34. Moreover sapposs f
satisfles PS in the set {f>¢), Ye > 0.

(i} it Je: H(f°) = Hy(A), then 2NN {50} 0;
{ii) i

{(4) H A)# 0 for iafinitely many ge NN,

while 32> 0, Iq,€ N such thut H () = 0, Yg ¢, Yz € )0, £*], then f has infinitely

mony critical points.

Proor. - (i) Suppose Z(f)n {f>+*} = 6. Then from (1.1) it tollows H.(A)
s H,(*"), ¥ge N, u contradiction.

{ii) Suppose, by contmmliction, that Z(f) ia ﬁmte and take c¢€ )0, ] such
thut Z(f) = 0. From the assumptions and msing Proposition 1.4 with & = ¢ and
b = + oo ene finds 4, > 0:

HD =801, Yy>9.,

s contrsdiction. .-,

REMARK 1.6, - Actudly o stronger result can be altained: suppose the mnmfr-
tivns of IPropusition 1.5 - {ii) holil. Further, suppose Z L) =0 Jur sume ¢ € i“ g8
Then f has infinitely many eritieal points s, such that f{w,} — -+ oo, )

[u faol il sup {f(u): ne Z(f)} a0 < + oo, then, applyving Proposition 1.3 with
b=a— 1 aul g =g we reach o contesdiction as before.

6% AxToxe AMmRroseTTy . VITToRn Cott ZEiAT: Crigicyl Pints

wilk, rte,

2. - Existence of critical points: & lirnt case,
=, The IS condition.

We will deal here with functionils f& L1 B of the form

Him) = YiLu, 0 + giny,

where 4: £ — F and g: .1 — R satisfy the assumptions listed below., Firt of all;

Al A is o lineur bounded selladjoint operator in E with Hni-te dimensiona) kernely

X =Rerd, dim.Y=n<aa,

Yz e T, the norm &} will be simply denoted (pccordin

& to the notation of Part ),
by ;¥l. Denoted by W the orthogonal complement ¢

0 I, vue hos
E=XpW,
It P indicates the orthogonal projection onto X, we will set

Iy = Pu, W, =%—2z,,
. .

if no contusion arises, the subseript » will be omitted. We will also suppose;

42, Ja > 0: (4w, w)>aiwi®, Ywe W,

On g we will assume:
1. 7€ C(A; R) and Imn0: giu)m— m, Yue.l;

a. %.€.1, u. converges weakly to % e & implica giw,) = 4 oos
a3. let e* = (2fz)(m + 1),

Corresponding to e* there exists r* > U and g, g,
€ C(R*, R) such thut:

{2.1) g2y >0, YreR i=1,2, psre;

{2.2) ale) =0 an o —~oo, i 1.2

sl

(2.3) Py gl gtPny,  Yue.l  with Lrinetand st

REMARK 2.1, « Wp explicitely note tud (rom (g1} sl (g3) it (ollows that {8 =
=Ple —w ek: Pu =% o, Jettndld =1
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First of all we derive from the preceding asumptions some consequences,

Lpia 2.2 = () [ wef, 0 <e<], then e, o (ii) There exists £ > 0 auch
that if wefr, 0 < e e®, then Puowr®,

ProoF. - {i) Let se ', with 6 <ag). Using {.12) aud (gl) it lollows:
Yawri— w0 4 gin) = fin) e,

Hence

Yot (2alm + )<t

(i} By contradiction, let k€4 be auch that f(v,) < 1/n and {Px,; = r®. Letting .

w, = ¥, , trom (the preceding) (i) one Lus jw,] <c*. Then {2.3) of (g3) implies:

glu.) > g Pu.) .

Therefors it follows:

(2.4) flud) = Fldiwen, w0.) + gln.) > gin.) > g Pr.) . o

Since |Pu.| = r*, then g (Pu.)> d-- min {g,(x): |#| = r*}. By (2.1) 4> 0 and hence
wo deduce from (2.4):

-

I("-}> a>0,
» contradiction which proves (ii). ..

COROLLARY 2.3. — For oll e<z® one has

-

f=Rul
where
= {uef: |Puj<r}, *
= {unep: |Pu)>r].

In particular It = 0. Morvover the sets I, I}, are positively invaciant under
the steepest deseent flow of £,

I‘nnm’?. - The first statement is o direct consequenee of Lemma 2.2 The positive
invarisnee of I7 (7 = 1.2) follows from the fact that g, wl €/, Y50, Yue f¢ and
by cuntinuity, from (ii) of Lemmus 2.2,

s= AXTONI0 AMBROSETTT - VITTORI0 COTU ZELATL: Oritinal points with, ete.

REMARKS 2.4 « (i) IY conld pomnibly be empty, while Na0itor e>0, In fact
the set {re.¥: 'z >} in contained in £y proviled r > 0 iy larze enongh, because
gle) =0 a4 re X, & — oo (inunedisle consequencs of (2 32) and (2.3)).

(i) fiw) >0, Yue [}, This lollows trum (gd) and Lemma 2. (i),

Lessy 2.5, — Let u,€ .1 be such that f(u,)< /s und [Pu, > r*, Then, setting
w0, = w, , one has

(i e} =0
{li) |Pua| = oa.

ProoP. - From Lemmo 2.2 - (i} one has |w,! <o*. Binoe |Pu,| > r* by sasump.
tion, we can uss (g¢3) to infer that g(u.}>g.(1’u.} >0, Henee. using also (A2),

faiw.*< HAw,, w,) + gin,) = I(-.)<Iln

snd (i) followa,

As for (ii}, we remark that (2.4) still holds here, If |Pu.|<eom|t., it would follow
that Pu, — re X, for a subsequence, :md f{Pn,) — g(z). Since g(x) >0 by { d),
(2.4) impliea f{x,)> 3 > 0 for » large, »_ontradiction. .-, .

We are now in position to investigate the PS condition. An assumption on ¢’
is in order:

- gd. {i) w.e A, w, converges weakly to xcA implies ¢'(n,) —g'(x) and

(1) g'(x,} =0 for oll w,= w,+4 z, suck that Jw,] <const. and |r.) — co.

Let us point ont that (g4) implies that
(2.53) {’ is Fredholm of index 4,

In fact f'{u) = Auw -+ g'(u) = Au + Px— Pu + g'(n) and Aw+ Pw is » linesr
homeomorphism, while ¢'(u) — Pu is compact.

Under the above asanmptions, the P3 condition fails to hold at the level ¢ = 0.
In fact. if r.e X and r,, - oo then (€.€.L 3oe Remark 2.1, and) fle,) = glz.) =0,
while. ws # consequence of (g4), one has g'tr,) ~» 0. The following Lemmiy says
that the preceding vne is essentinlly the ooly situstion in which PS fails to hold.

Lesowa 2.6, = (i) For all £ > ¢ P3 holds in the set {5 ¢); (i) PS holds in every
st where [Py const.
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m‘l ANTONID AMBROSETTY - VITTORIO 0Tl ZELATT: Critical pointa witk, et
Proor, - (i) Let « €.] b such that i .
{ . with Iy I = 0, The purpuse of this subavetion in to study the topolugy of 1%, Lot

@+ N < P | : -
(2.6) e<flug) = Yihe,, ) + Yu)<e,  (w, w, ) 14t w) = two, + P
12.7) Flug) = dw, + g (u) ~u,

. Lesow 2.5, For'all_ 0'< ge* there vxists ¢ < anel that
From the righ-hand silde of {£.8) aml {#1) wo dedvee that "w,T <o, sl hence w0,

converges weakly, up to o subsequrnce, te e, We clvioy thut |Pw,i<e,. In face, - Mmnwerl, Yig[1), Yuel .
otherwine, from (g4} we huve that

’ Proop, - Finst .we romark thut fP(H(!, )i = [Puv > 9% Vig [0, 1], Yue f‘,' Then,
(2.8) g'lw) —0. ’ arguing by coutraliction, we let t.€ [0, 1], u.e Iy be such that
Multflplying ('.‘..7) by L it lnllolru: ‘ ) (2-10} 0<s < ’;II“-' w, 4 ‘-)) = i':‘d“l' w,) + '“u"- + &)

(0, 100} = (), 1) ~ (5'(w), s} _ _
and hence 7 o - LS . N -
el ] <if (walie.] + lgwalle.] . o fu)<ifs  and e > e

with 5. = Py, a6d 0, = u.— z,. From the definition of I we have

- ' L]

Since both f'(x.) and g'(s,) tend to 0 (see {2.5) und {2.8)), then w, —0. We can ’ . . Usiog Lemmsa 2.5 we get
now wse the right-hand of (2.3) to find . (2.11) w.~0 and |z + ca,
2.9 Hud< (i, w00) + gl Puc) . Bince 1,€[0, 1) snd P(t w0, + #.) = z,, then (2.11) permits to use (#3) to eatimate
Bines w, - 0 and |}:u..| -+ oo, we have from (2.2) SR Pihaio, 4 2,) < golza).

Hodw., ) + gulPu) 4. : Since from (2.11) it follows that (4., w,) 0 as well a2 gy(z.) ~ O, this gives o

. . "~ - . . P .

From (2.9} it finally follows that f(x.} -+, In consradiction with the loft hand side B contradiction with (2.10). .. :
of (2.6), éo thut the claim ia proved. )

Bet 8vle {re X: s = 1}. We can now state:
Now, if 1Pu,!<c,, one hau that Pu,~& (upton subsaquence) snd then w, = », +

+ Pu, converges weakly to o'+ § = w Binoo gin.)<a,, then by (g2} wo infer that Lesea 2.8, - I Zﬂ)r\ =0, 0.<ece, then 8¢ s o deformation retroct
we.l. Then from (gd} it follows that ¢'(w,) — ¢'(w}, nod ‘ - of I3, .
dieg= i) — g'ina) —g'(x) . ) Froor. - Since Z(f ;=0 and by the pusitive invariance of I under the
b steepest descent flow 1 {aee Corollary 2.3), one hus (me § 1, Proposition 1.3) that,
"Then e, — w and u, ~» % This completes the proof of {i). Ye' e, It ia a deformation retmaet of T;. From the faet thut g{Pu} — 0 s |Pul —
— + oo we infer thut 37 > 0 such thut Y — B, is u wubset of 7. Let £'ge be
(i) s in the peoof of (i), fima} <oy implies “ara) <. I,iin wildition, [Pu,|<

such that Lemma 2.7 bolds. By Lemma 2.5 - (ii) it is possible to take £ < ¢ in anch o

<eomt, the PS follows abuve wi¥ that (Lemma 2.7 continues to hold snd)

2.b. The topolugy of f'. Pu>r, VYsell,
\:-.- Will wlwars assume (11, 2) gl (gl. 2, 3, 4). "W nvall that, by Coerellary 2.8 Lastly, #5 937 in such & way that I8 0 X andifet 0 be the radial projention
wne hiw N . k 2 ) v

F=Nul, Meze 0(!.:)-19:-1_ TU=0r, ceX,e=0,0e01],
l.l'
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By the preceding remarka it is readily veritlod that 0tt, Puye I, Vee [0, 1], Yu e IY,
Henee 28,0 X turns out te be a deformation retrwet of [ throngh the homotopy
obtained combining g, /7 and 8, and the lemma follows. .

4.

From the pn-cl-lling. lemma we infer:
CoroLLARY 2.3. — Under the hypothesis of Lemma 2.3 one hae
{2.12) BT = H (8,

2.¢. Ezxistence resulls.

 Our first result is an immediate consequence of Lomma 2.8 and will be appllod
when, essentially, A = E.

THEOREX 2.10. - Suppose (41,2), (g1, 2, 3 4) and
(213) ’ H,(A) s H (8,

Then f has at least a criticol point in A.

Proor. - Since PS holds in {f>e},-V¢>0 (Lemma 2.6 - (1)), then, If Z()) =&,

we can use the steepest descent flaw to obtain (soe § 1, Propoesition 1.3)
H,(A) = B (f, V-l >0, .

ﬁu-lng Corollary 2.3 we lnve (aee (15, Propouitim; 4.1.‘.!])

(2.14) . Hid) = BTGB, Yo<scr.

It =10, we can uuVCorollarr 2.9 to And
B (1) = Bo(I}) = B8, .

which contradiets (2.13).

It It 0, a critical point of f on A will be'found ns the minimum of f on Y
Such a minimum exists beeause: (a) § is bounded from below on .1,(hence on [‘),
since, us 2 consequence of {gl):

Jiw) = jldu, w) - glulr—m, Yued;

(8) S holids on I (ses Lemma 2.6 - (ii}); (e} I in positively invariant under the
steepest deseeut ﬂow n (see Corollary 2.3). Then Proposition 1.2 wpplics.

12: ANTONIO MMUROSETTE - VITTORIO (0XT. ZELATL: Critical points with, efe.

Conoreany 2.11. - Buppose (A1,2), (gl, 3. 4} and let .1 = E. Then Zi) =0,
11, in addition, I 0 for sume e<e®, then § Z{f) .2,

Proop. - Z(f) # 0 since for A = E (2 13) holds aod Throrem 2.10 applivs. Let
I # 1 tor some ¢ € |0, £*). According to the proof of Theorem .10, f hus & minimum
s.€ I, A second critical point can be found using & mountain pass type argument
taking puaths connecting the minimum and 3 peint in /Y. Every such a puth s

1
to cross the surfuce |Pul =« r* where f tukes valies % e®, s Lemma 2.2 - (#). Then

the mountain puas level ¢ne® in o eriticsl value since I'S holds in [l>¢},V¢> 0.
We lea\a the det.mll to the reader. .-,

REMaRE 2.12. - In the case in which Corollary 2.11 applies ous can be alightly
more precise. Namely, H fe CYE, R) and ls o Morse fuoctional one can find at
leaat 3 critical points provided a2, In faet the mountain pass critical point has
Morse index =1 [1] and to find a third criticsl point it suffces to argue by con-

.. tradiction, using the Morse inequalities, a8 In Theonm 3.10. We do not mrry over

‘the details, .-,

Our main sxistenoe theorem af thix section is:

| THEOREX 2.13. - Supposs (A1, 2), {g1, 2, 3, 4) and () hold. Buppose, also, that
g€ CA; R). Then { has infinitely many eritical points on A.

‘Proor. - Finst of all, Corollary 2.3 yields
(2.15) Bif) = BAMDDEAY, Yeel, el YgeN.
Next suppose, by oonmdsct'_aon, that Z(f) in Bnite. Then Jee 10, £*] such that
(2.16) _ . zpnI=e
{2.17) . Z(hni=o
(2.18) allows us to use (2.11) to find
(2.18) B = (0}, Ygwo,a-—1,

Next let Y= I, b = ¢ and @ < -~ m. From Lemma 2.6 - (il) and (2.5) assump-
tions a), b) and d) of Propasition L4 hoid. Moreaver M= {f=en I and (2.17)
yield ¢). Then Lrom Proposition 1.4 we dedues the vxlnu-uu.- of q,eN such that

£2.19) H(D) = {0}, Ygoq.

Thus (2.13), {2.18) ond (2.19) imply:

Hij) = {0}, ¥Yg>maxi(q,n).
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We can now apply Propesition 1.3 - (i) il lned 3 rontriliction,

LS

Aveonling 1o remark 1.6 we ean prave here a stronger renuit,

TurowsM 2,14, = Suppose (.11, 3, (b 200, 4) sl () hoht, Suppme, also, that
g% C'.1: R) and that

(2200 AR, >0 auch that ‘Fley, Pu) <0, Ya such that ., w0, \PuisR,
Then [ has infinitely many critical points wee.1 wueh thit fu,) — + oo,

Proor. ~ We first remark that, under the assumption (2.20), Z(NHN T is com-
pact. In fuct let u,e Z(HNTY. Wea know that flua) >0, ¥n, Actunlly we claim
that f(u.)zpu > 0, ¥a. Otherwise, up to u subsequence, flu,) — 0, and we deduoe
from Lemma 2.5 that 3N >0 such that Ya> N, |Pu. > R and lw.]<R. For
such »'s we therefore huve -

{g'tua), Pu) <0, ynuy,
But w.€ Z(f) implies

b= {r("n)p Pu,)
= (-iu'.. Pu,) + (g'(ua), Pu,)
= (g'(ta}, Pun) < 0,

contradiction which proves the claim. Now the precompactness of {w.) follows from

the PS. Set ¢ == inf {J(u): ue Z(f) N T} > 0, and suppuse, by contridiction, thut

there exists b < + oo such thut Z{{) i contaived in f*. Then Z(f) ia compuct nod, we
0 proposition 1.4 we can find g€ C%:1; R) which has only finitely many nondegens
erate critical points in g*=' = f1, Rewsoning s in Proposition 1.4 we deduce the
existence of g,, q,€ ¥ such that

H.1) = Hn”“" 1 Vq ey
= H ("), VqeN
=Ty, Yoy, .

Tin vasy te see (ot Corotlary 2.3 and Lemns 2.6 Lolds (or g w well. Henee

Hig Y = Hlue.l: giurcgs. Pu SPNSHATYY, Yy
= AN, \FTR
= H (8, Yeua,.

l—ll ANTONIO AMBRONETTE - VITTORIO COTE ZELATE: Critieal Pointa icith, ete.
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This is & contradiction which proves the Thewrem.

REMARK 2.13. - Caing Lusternik-Sehnirelman ciategory it 8 possible to prove a
redult similur to Theorem 2,14, namely :

Suppuse (AL, 2}, (gL, 2, 3. 4) hold and ot tat,.l = 4 oo, Then f haa infinitely
many critical points in .l Moreover there is u yapuence of critical points fu,} mch
that fu,) -+ 4 oo,

The proof is bused on the fact that under such wsumptions cut , f¢ in Hnite vinoo:
It Is flnite in J7 since 1Y ia positively invariant and I is bounded from below and
satisfies P3 there, while T} is a subset of £ = {s6d: Jin,, <o, [Pyl > r*} and
caty, F'® == 2 imply eat, Iceat | T* Cont,, £% = 2, We romark that cat, A = + oo
implies (A). .- s

3. -~ Existence of critical peints: a second cne:

We deal here with a functional ] € CYA, R) of the form

Hu) = Fidw, u) + g(u)

.

with 4 satisfring (41, 2) and g satistying (g1, 2), (g4) and

5. Yo> 0, Ir > 0 such that for all ue A with |[Puj> r and Jw,] <e one hoa

(3.1 . gw<a
and '
@3.2) : (g(u), u) >0,

A3 in § 2 we start investigating the PS condition.

LExous 3.1, - The PS condition holds in {fs¢}, Ye > 0, and in =, ¥3 > 0,

PROUF. - As in Lemma 2.8, if w,e.l sutistics {2.6) and (2.7} one finds e <o,
(whure i, = w, ). Il Pu, — oa, one tinds mesin that e, — 0, We cu now use
(3.1} of (g3) to get

Hua) = bidug, ) + glud) < Yl 1) .

Hence flu,) — 0, in contrmbiction with {2.6). Thus 'Pu,}| < const, and the conclusion
follows ws in Lemma 2.6. This proves that the PS holds in {f>s}, Ye > 0. The
sume somment works for the secomd stistenent ws well,
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As o consequence of (3.2) one hisa:
LEstta 3.2, = For all e 2> 0, IR >0 such that

(f'tn}, ) > 0, Yuef, 'w>R.

In particnlar fey B, is povitively invarisnt under the steepest deneent fow of [

Proor. - Arguing by contrmliction, snppose thers oxist ¢ > wnil »aoguence w, € [

1 — 4 co npil U.("-}r u. <V, From ».€ r we infer reawlily that jﬂ.: <

uch that [w.] .
l.;:onat-. Then [Pt 1a) — tee,, > iwa] — 0, hence |Pu = + oo. Using {3.2) o(r

{g3) one has _ ;
(r('nlo 'n) = }‘-‘ll’-' w,) + (,'("‘,' ").>(’J‘.')' “‘} >0,

& contradiction. .. )
We are in position to state: -.
TuRoREM 3.3, - Suppose (AL, 2) snd (g1, 2, 4, 5) hold and that g€ cyAd; Ry
‘Then: )
(W) 2= 0

(ii) if (A) holds, then Ju,e A such thiat f(s) =0 and flwy) ~ 4 oo.
Proor, - {i} f is bounded from below ‘on A and
inf f<inffginfg< O
A x I 4
because of (3.1). Since P8 lolds oo f".
minimum on some % e.l: .
JiT) = min [f{u): » ed}.
{ii} Fised e> 0, let us take R> 0 accunding to Lemma 3.2, Bet
I it w R
Sty w) ’l (1 — 0w+ tRufw. i e >R,
We clavim

Lisots 3.4, - ' B, is o deformation retraet of [ through S, .

¥4 > 0 (Lemma 3.1), then f wttains its

18" CANTONIO OMRASETT! - VITTORIO OOt ZELATL: Critical printa with, ote.

Pnovr. - By e dircot ealeubation one has

(3.3 :T’,t(.\'u, u)) ='U'(.\'{r. ®1}, N"'f")l J:ﬁ _’_v:’ ‘Lf) _l__l -

Sinee 13(f, )" > R whenever 'w > R, then, using Toemma 3.2, it follows thae

1%

p .
;——‘I{SII. w)}< U whenever ¥, R and Sit, w)ef.

In particular wef* implies that (didef, S(t, #))!,.,< 0. Thus-8it, w)ef* tor IE{D,-p[
for some g > 0. If the Lemmu is not true, it would exists v > 0 such that S(r, w)e f'
and {d/dt)f(S{t, ¥})',_, = 0. This is clearly » contradiction which proves the Lem-
ma. ..

PROOF OF THEOREM COMPLETED. ~ The proof is similar to that of Theo-
rem 2,14, In fact also here we have that, Yo 4 oo, Z{fin f* is compact. This
follows, easentinlly, from Lemma 3.2. More precisely, let s, Z(f)n . Take »
subsequence u, such that f(u,) ~»e. If 03 0, the precompactness follows trom PS.
It f{w) =0, from Lemmn 3.2 we deducs that fu,;<R and it i easy to find a
converging subseguence. The proof now fullow by contradiction s in theorem 2.14,
the vnly difference being that herv H,(g9%) o H,(g"*N By) 2 {0}, Yg> ¢, (g being, aa

* before, w €' function, having only nondegenerate critical peints, which coincide

with f outside a neighborhood of the critical points). ..

REMARK 3.3. — Also here, as in Remark 2.15, one can show that § 2{f) = + oo
provided eat | 4 = 4 oo, .. . .

REMARE 3.8. - Among papers dealing with luck of PS8, [6] have studied fune-
tionals with strong resonance at infinity. They have used different methods bused
on linking srguments and obtained results which are different from ours in gencrality
sod form. e

Different questions concerning the lack of 'S wre investigated in [4, 23, ...]

Panr [1: API'LICATIONS

4. = Applications; general framework.

We will upply the abstracet results of are T to Hnd T-perimlic solutions of s-li-
mensional seeond order systems, Precisely, et 2 be an open subset of R nue
deven it sume of the results betow will'be troe vven when o= 1 anl ot TR <2 —R
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be auch that

(rn FeCuRxD, Tu+T,n=Vi,y, Vi,neR<2.
Set V'(l,y)=V_Vit,y). We look for T-perilie solutions of

{4.1) ' —§=Vi,y.

Bet E = HW{8', R*) where $!'== R{[8, T], with sealar product

- (g 1 = [, 7> i+ [w, 03 dt
. * . .
and norm : I ) ) y
ol = i1+ 1wt .

Here and below ¢+,+) a‘nd 1+| denote the Eueclidean scalar product and norm in R",
Let 4: E —+ E be defined by

(du, o} = [<#, &) .
(41) trivially holds with X = Ker 4 = R". Remork that here
Pu= (T J' "

and W= {uckE: I w0 = 0). The Peincaré inoquality implics that also (42) holds.
Let

A={sweE:utie 2, VicR},

and define .

glu) = —_[VU. wn} -
The T-periodic solutions of {4.1) are the critienl points of the functional
flu) = Y{du, ) +giu).

Remurk that { is C' (C*) provided V is C*in y (reap. C* in ).

r
() From aow on. wo will write [ for fdt.
L ]
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3. = Bounded potentials.

In thix seation we will take £2 = R und 1 mstisfying (31} s
ra Vit,9) =+ a4 y ~» 1 oo wniformly in ¢ wul 3r, > 0y Fiby) < ¥ gl
(V3) F'(t, 9) =0 a% 'y — 4 oo uniformly in ¢,

We check the uunu.mptions'ul theorem 2,10 and Corolkay .11 by showing

LEaD 5.1, - (i) If (T7) holds, then (g1) and (g3) wre true, (ii) If (1’3)hholds, .
then (g4) is true.

Proor. - (i) (gl) is trivial. As Ion;. (g3), recal that Ywe W one hoas
(0l <o, .

Let »* be such that r*—~ ¢,¢*> r, nad set

00 = T min -V, 0: 1€ R, iyl — e < i<yl + o),

flo) = (117 max {~ [T, 5 1€ R, 1 — et <lEl <yl + ver)
Properties (2.1) and (2.2) of g.- are immediate consequence of (13). Moreover; Irom

= 1Pui 4 o e < I < o m + [P
it lfollows that Yx .1 with ] e
' WPu: ~ £,0* < luil)l < [Py + 0,683

from which (g3) immediately follows. .
i) It is woll known that g’ is compuet, Let w, = mw, + 2, be such that
T olwg<comit, e, — 4 oo,
From this andl
Hall) > 2 — ()3 el = e, e,

e

it follows that w,(f) — - oo uniformly. Then from (1°3) one dedoces:
(gis), r) = -—J.f,I"(t, Ka)y 02 — 0., Yee k£,

und the lemm: foliows,



ANTOSID AMBRONETTT - VITTORID Comt ZELATE: Oritienl pointa with, .-rr ]t'l

TuEoREX 3.2 = Suppose 3 = B aml ¥ oatiatien (171, 2,3), Then (4.1} his
at least one T-periodic solution.

Proor. = We remark that in the present ease (2 = R, {(g2) ean be neglected.
The result follows, taking into wecount the discwssion in § 4 and Lemni 3.0, frum
Theorem 2.10.

The tollowing is an ezample in which Corvllary 2.11 appliea:
TrHEOREM 5.3. Suppose 0 = R and ¥V satisties (11, 2, 3, 4). [n addition suppose
£5.1) HeR: fl'(t. £>0.

.Then (4.1) has at lenst 2 P-periodic solutions. .
Proor. - It sufficus to note that f(¢) = —II’(!, 5 <0. Hence, by Remark 2.4 -
() EelT, Ye>0. .- .

REMARK 5.4. — According to Remaork 2.12 one could improve the preceding .result
by showing that (4.1) has o third solation, provided V is C*iny, #52 and (4.1) hua
-only pon-degenerate solutions. ..

ReMARK 3.3, — Periodic solutions for dynamical aystems with bounded potent.ish v

have beeen studied in the following papers: [8, 11, 12, 22, 23, ]

Papers [8, 11, 23] deal with even or periodic, potential; they both use linking
argument to prove existence of one (or more) solutions.

Papers (13, 22] denl with potential which are of the kind we hnve atudied
" here, bug they obtain results different from ours. In particulur, [22] proves existonce
_of only the solution corresponding to the minimum umder the hypothesis of Theo-
wem 5.3, while (12], using o method similar to the one used here, proves snalogous
results but under diffecent assumptions. .

..%. — Strong forces.
Now we ddeal with with potentinls 17 with singwlaritios. Let
=Rk
with K compiwt. On the belaviour of 17 near K we will suppose:
(SF)  there exist e > 0 and U e C2: R) such that, setting U= gradd Uy ane has
RURY Uiy) «—oc0 s y—jek, yell;
(6.2 Fit.g)<— (g1, YieR.Yye K, =iyeD: distly, K)<e}.
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Condition (BF) (= ftrong Forced has been st intrmluesd by Gonpox-[16] Tt
K = {0}, (3F) implies that V() w— 9" with 252 ax y —= b,

LExyA 6.1, = If (SF) holls, then (g2} in true,

Pmn;w. - [16], [18]. .~ . .

In order to use Theorems 2,13, 2.14 wnd 1.3, we prove

LEMMy 8.2, = If 2 = RN K, with K rompact, then (1) holds.

Proor. = The result is possibly well known, but we do not knuw a precise ref-
erence und thus we report here a sketeh of the prout for completoness,
Let pe K and B> 0 be such that X is contuined in B,. Bet 0, = R™\B,,
= R™{p} and A, = (e E:ui)e 2, Yie R}, Ay = [ue E: u(t)e Q,,¥ie R). Clearly
A.:A:A., and since A, is o deformation mtmt. of Ay, A, is & retract of A.
Then ([15, psg. 37)) . '

" (6.3) ' Hid)  BLA) DHA,A).

Bince it Is ‘well known (7, {3.10)] that (A} holds for .1, then {6.3) implies that (A)
holds for A as well

We can now prove

TuEOREX 8.3. — Buppose 0 = R™ X snd let Ve CYRx Q;R) satisty (F1,2, 3).
snd (8F). Then (4.1) hos Infinitely many T—pegiodiu solutions.

PRooF. - Sincs ¥V is bounded from above, {g1) holds. Moreover (g3, 4) continue
to hold as in Lemms 5.1. Then the result follows from Lemmas 4.1, 6.2 and Theo-
rem 2.13. .-

We con also prove

THEOREM 6.4. - Let the ussumptions of Theorem 0.3 bo satisfied. 1f, morcover,
IR, 4 > 0 such that &> R, ‘gi<d imply (V'L § + g, & >0, then thers exists
soquence u, of T-periodic solutions of (4.1) such that f(w} — 4 oo.

Pruor. - It is cusy to show, using arruments alremdy used sovernl times, that
€2.20) holds and the result then (oblews from Theorem 2140

As o luat application, we consider V' satisfying (¥1), (V3} and

Fri) Vi, y) ~0 aa 'y = 4 oo, uniformly in 1, and I, >0: (it ). 9> <0,
ny;;r., vi.
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Wo sliow:
LEsya 8.3, = If 1 satisties (V'4), then (g5) holds.

PruoF. = From (174) it [ollows reudily that Vi, ¥} > 0, ¥y oy, ¥, This togother
with arpuments already wsod in Lemma 3.1, yields (g3).

TueoReM 6.6. ~ It 2 = R"™\ K and 17" e CR < £2: R} ntistien (171, 3, 4} and (8F),
then (4.1) bas infinitely many T-poriodie dolution: moreover there ¢xisty o sequenco
u, of such aolutions such thut f{u,) — - oo,

Proo¥, —~ Apply Theorvm 3.3, tuking into aceount Lemmas 6.1, 6.2 and 8.5,

REMARK 8.7. - I

={yel: V', ) =0, Yie R}
" is not empty, each ye D is & (constant) solution of (1.1). If D is compact the ar-
guments of Theorems 6.3, 6.4 and 6.6 con be carried over to show that (1.1) has
sctunlly infinitely many non-constant solutions. We remark that D is compact it
{V4) hoids. .-

REMARK 6.8. — Besides [18], nlmn.dy discussed in the mt.roductlon. papers [3 5,
9, 10, 13, 14, 18] deal with siogular potentiala.

[3, 5] consider potentials defined in & bounded well 2, with ¥ — 4 co as y — 30

[18] studies cases when ¥ can hoave singularities both with ¥ — 4 oo and
¥V —+ — oo. The existence of one I'-pericdic soilution (s proved, assuming further
condition at y = 0.

9, 10] are close to [16] and either n =2 or geometrlc:sl conditions are assumed
which permit to avoid the lack of PS.

[13] studies potentinis roughly of the type |y|-*— |y|-', cnse which is different
from ours because the corresponding functional is not bounded [rom below.

In all these papers, (SF) is nesumed. The only work where (SF) ia violated is (14},
but 2 is » bounded well und 17— — oo a8 £ — 2. For » diseussion of the prob-
lems arising when (8F) doea not hold, see [15].

We esplicitely remark that, in analogy with whist seen in § 5, an existence result
can be atated for bounded potentisls verifying (174) insted of (172), namely:

THEUREM 6.5 — I V" sutisties (171, 3, 4) and 2 = R°, then (4.1) has at feast one
T-periodic solution.

Prour. - Ap]ﬂ_\' Theorem 3.3 - (i), Notire that in this cuse, however, [ attaina
oegative values aod bus o global (negative) minimum.
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7. = Autonomous systems.

If ¥ does not depend on t, our problem becames to And non-constand periodie
loiptium ol & given period T of the equation
(7.1) R Y A S P
. As befors, the T-perlodic ioluzion of (1.1) are the critical points of the fanetional

o = i f m\l- it — j Viw at.

o Au f.he setﬂng md. the mult.l ot l’.he preeeding uctionl spply to the present'

3

" caas, too But now: -

(i) the eritical pomt.l of r on a 'i.e the y€ 0 wuch that v'(,) =o) are also .
cﬂtim polntl of f,on A oorrupondjng to oomtanf. solution -of (1.1) (hanoo penod.m

~of any gwen penod T), B IS ..
e L) 4 w e Z(), then alio Siw = (u{l +0),0€5) i contained in Z(f,). In
) particular Z(f,) is infinite whenever it containg & non-costant- mlut.mn. R

' Thus additionnl argumenta are required to dednoa from t.ha nbstmnt result.l
ol §2,3 informations on the solutions of (7.1) S . . ;- rel .

.To ovemome (i), one mually makas mumpt.wua on- the :ol: of t.ho mmesl plontl
of V. _In particular, the guestion arises if O = R - case in which the exiatencs of
-.one or two solutions for (7.I) has been proved (Theorems 8.2, 5.3, 8.9). This kind
of arg'nmunt.a bave been diacnned in [13 Bmp 4], where we relar to lor statements
and details.” 7

It ¥ hos llngularltlea, we m take ndvnnta.ge of the fact that now, tor all glven T,

- fy hus inﬂmtely many u-iticsl point.l Bnppou that

(7.2) : Lz T compact .

“Then, using the same arguments of theorems 2.14 sod 3.3, we can show that,
for uny fixed T >0, /, has at least one {actusily infinitely many) critical points
'*Z(V) As polution of (7.1) % hpa minimal period v = Tk for some interger
j>1. Take T"= 7/2. As above, f,. has a atitical point v which is o solution of (7.1)
with poriod 7" = /2 hence also a T-periodic solution of (7.1). Moreover {o{(f)},, =
# {u(l)},(, since v was the minimal period of 4. Repeatug this argument, one obtains:

Tueomky 7.1. - Suppose Ve C'((2;R) satisfies (SF), {7.2) and either (Vi,

2,3) of (I, 3, 4). Then YT >0 (7.1) hus infinitely wany, no-constant, distinct
T-periodic solutions,
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