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1. INTRODUCTION

In these lectures we present various techniques proven useful in the
study of the existence of non-negative solutions to the elliptic boundary
value problems

-4u = Af(u) in Q, .

(1.1)
ue«go on aa,

where 4 is the Laplacean. A > 0, f:[0,») - R is a locally Lipschitzian
nondecreaning function, & is a emooth bounded region in l“. and £{0) < 0O
{non-poaitone).

The problem (1.1) under the assumption £(0) 2 0 hea been extenaively
studied. The reader is refered to ['F], EG]’ Cc-R] for information. Among
the methods used in this case we have mopotone jteration technlgues, ordered
maps in cones, continuation argumeats, and supper-sub solutions. in all these
aethods plays an important role the fact that £{0) 2 0 implies that u = 0 is a

subsolutlon. This 1 not the case Iin this study.

Here we present the so called “quadrature sethod” to study the
ons-dimenslonal case (n = 1), phase-plane analyais combined with Pohozaev
34¢nh§3 in order to study the radially symmetric case {2 a ball), and

mountein pass type of argumgnts in order to study the general cese.
(*) Lf.c*urgs ?rgufd"gd T, ﬂ'\e Co“cﬁr. on Vﬁnmhonq_\ M'_M

al the 1n*¢rl\qhanuj an\'rg ior- Thlﬁrei‘wq_\ Phb'vl'ﬁ%) E‘I'Gsi"'.
(1*«.\5) J.u.nuarS 1988.

Before  we stablish  our  ennblence resclis, ket us ]M-ﬂ\' ot

fhat (oY has  ne non-ﬂeaq_hve._ sclohen  (f 5 grows foo

wrayin-23
g(.u.\ = |l - ‘,

gast- For enam e, f wnwy

and

L2 e unit ball Rﬂ cenYered ol e origin Voen

b:, ’Pohc.zqev’s idun“ihj {see LPY) we have

'S u.[(nf z)/a] dx = g\qu.\\"dx

o 20,

which s ni-nfassi\-\a for w30 (w40,

2. QUADRATURE AND THE ONE-DIMENSIONAL CASE
For n = 1 we can sssume, without loss of generality, thut @ = 10,1).

That is we conslderlthe equation

{(2.1) -utfx) = Af(u(x)) xe (0,1),

{(2.2) u(0) = ufl) = 0.

Remark 2.1, First we cbserve that the solution to {2.1) are syametric about
its critical points. Indeed, It 1s easlly seen that If u'(a) = 0 then
v(x} = u(2a - x} is also a solution. Thus by the uniqueness of the
solution to the Initial value problem (2.1), u{e) = u{a), u'{a} = ¢
{only uses that f is locally Lipetchitzian) we have y # uyor ufa + x)
= u{a - x).

Remark 2.2. From the above remark it follows that 1f u ie a solution to

f2.1)-(2.2) then u'(1/2) = 0.

“From Remark 2.1 it fullows that in order to obtailn & solution to- (2.1)-(2.2)

positive in (0,1) .1t fe sufficient to find & selutlion to (2.1) such that

{2.3) uf(0) =09, w'(1/2) =0, u' >0 on (0,1/2).



Multipiying (2.1} by u' we ses that (2.1) is equivalent to -(u')z = AF{u) + C

r
whers F(r) = ff(a)ds. Thus if §n addition u satisfies (2.3) we have
o

C = -2aF(u(1/2)). Hence
1/2
(2.4)  u'(x) = (2[Fip) - Fu(x})]) x & [0,1/2].

whers p = u{l1/2}. Integrating {2.4) we have now
ulx)

@2.5) I (#(p) - ptun?Pau - ()% x ¢ [0,1/2].
+]

From (2.3) and (2.3) we see that

p
2o Y2 =22 Ee) - pun e - o,
1]

where p &« {#,#). and & is the positive zero of F.

‘/@

Thus, from (2.8) we see that (2.1)-(2.2) has & positive wolution ife

T

between £ and G.

2 is in the range of 6. The following pictures express the relatlonahip

(A

(8)

(c)

() >0 fer 530, ond bum (532 /8) = co.

L Tv

'e) ¢ O for 5 20, fim f0 =M 0MEN,

Y40

fim () - s¥e)) > O , and  (5(01/8) < §'(O)

Saca

i

‘:“Ls" <0 ‘or S e Y_O, 50‘ ond Sg 7 9‘, E“(s) > 0

for 535, §(0 > (50} 8). Then exihs >8
with  Floy - (a6corfzy » O,
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3. PHASE-PLANE ANALYSIS AND RADIALLY SYMMETRIC SOLUTIONS.

- . oR
Por justificatlion of the ebove dlagrams we refer the reader to [C-5,2] Fr

n
In this section we conslder the case in which 2 is a ball tn ®R", Without loss
e have:
{2.6) and the above diagrams w

n
of gensrality we mey nssume that @ = B is the unit ball in & ceatered at (he

EN 2.1 2* fuch that If 4 « (O.A'] 1hen origin.

THEOR .1. 1f (A} bolda then thare exiats

(2.1)-(2.2) has a unigue pesitive solution. . Ha auch that #, < 2’ Acquments  bosed on the ideas of [fe-N-n1 Show  trat o
% .

THEOREN 2.2. 1f (B) hglda then theru exists A . My, and Ma '3

Bag (2.1)-(2.2) has a) no positive solutjon for A < 4,

o tve sdubions to L)
. nze) =8 H ali \'\wmtsa
b) at leagt two poaitive asglutlops far H,< A § A

Ore a.c*ua,“j *Pomhvt- and md'.““_') summdn‘c. That s U.4)
A D>y, i
¢) nunlgue pesitive sglution for ) ¢ dar coor dmm\-”)
© Ay < 3" ¢ A, such that (2.1)-(2.2) S quivelent to Quse peer

THEOREM 2.3. If (C) holds thep there exist

A <A, and no positive solution If A > A,. (€N} TV R _'3;_' = AMfueey e o, 1)
has a upique poaltive golutlon Af =

» hetweep A, and At in which (2.1)-(2.2} haa
Fucsheragre,. there s i range for '

Alsg 4f A7 < A, fhen (2.1)-(2.2) has at (3,2)

at leagt three poaltive solutiops.

Wwio) s 0, w ) =o>
A& [A',A,).
Jleast two pesitlve aelutions for

where m = n - |, The main difference between (3.1) and (2.1) fa, of course,

the singular term w/r. A2 pointed out in the intreduction, in general the

btaln nonnegative solutlions to (2.1)-{2.2) with interlor zeroes probles (3.1)-(3.2) has no pasitive solution,
In order to obtain

Reatrictions on the growth of r
are necessary.
we observe that when p = @ (see (2.4)) we have u'(0) = 0. Thus if, in

addition, in {(2.3) 1/2 is replaced by 1/2{(n + 1} (n = 2,3,,..} then we see

hen % ° First of all we extend £ to (<=} by defining £(x) = £(0) for x < 0, wnd we
lution with n interlor zeroes w
that {2.1)-(2.2} has a nonnegative so

tonalder (3.1) subject to the initial condition
lG(C))a-(n + 1]2. That is we have

(3.3) u(0) = d e R, u'(0) = 0.

Because we are assuming f to be locally Lipschitzian ft follows that the
obl 3.1),(3.3) h uni luti *.d,A) which depends continuos}
THEOREM 2.y, 12 sach of '\_h!_ ases (AY, (B)’ or () of problem (3.1).(3.3) hae a unique solution ug ) W pends con sly

! Above ¢ on the parameter (d,A). That 1w, ir ((dn'*n)} ~ (d.A) then (“("d“'*n’}
“\c above the mms. H# Ll _ " neaa ive

;_______i w o r: LR o e - s converges uniforaly on [0,1] to uf{+,d,A),

Selotion __‘_H\ mi‘criar Zeroes ([ 2 a ey’
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. a n ’ o
In this section we will assume . (4.1) Ty = S(qu = A2Fwdx we \'\‘(ﬂ.)',: H)

(3.4) e (f(d)/d} = e, and where H 1s the usual Sobolev space of squars integrabie functlons In @ having

e
(3.5) There exists k & {(0,1) such that square integrable first order partial derivatives ln f and vanishing on a8
Ald) i= (a/20d) )V 3R (kd) -{(n - 2)/20]dI(d)} ~®, am d o (see [4].)

X Because g s (1,(n+2)/{n-2)) 1t follows that the functional J satisifies the
where F(x) = { f{y}dy. We observe that condition (3.5) is a growth condition.
0

palais-Smale condition. By the Sobolev imbedding theorem there exists a

q
. - . d
Indeed, If f{u) has the fora u ¢ the (3.5) ie eatisfied If and only If constant m > 0 auch for all u ¢ K

4<(n+2)/(n-2) {R3) I |u1q”dx s alf !“lzdx)(qﬂ)/z.
B "

Let H(r,d,A) = rl(u'(r.d.n)a/zl + ArP(u{r,d,A) + (n - 2)u{r.d,A)u'{r.d,A)/2.

Hypothesis {3.4) and {3.5) together with the ldentity {Pohozaev's ldentity)

t A‘SQ) kf.r.n.u.s: a‘ Yhe definition & q) we e bt h"‘

[ n L]
(3.8) tH(t,d.A) = s H(s,d, A} + AfA(r)r dr

s exists a Cons'ﬁm\' D Mach nal -‘w ol xe W
show that there exists A, > ¢ and 7 > 0 such that if A ¢ (0,A;) and d > ¥

then LN (u')2 >0 on [0,1]. Thus in order to ahou.that {(3.1)-(3.2) has a A.+) F(xy = (\x\q” +D)/(‘}-H‘l.

golution it 1s sufficlent to show that, for a glven A & {0,A3), there exists

Becauag 951 ‘H-."'_ exiss C > 0 such '“‘“‘"L s‘"-

d, > 7 such that u(-,d,,A) > 0 on [0,1] and d; > d, such that u(t.d,,A) < O,

The existence of such d's Is based on hypothesia (3.4). Thus we have }4 >0 sma,\\ enous\\
THEOREN 3.1 There exiats A, > 0 auch that for 4 « (0,4,) ihe probles '

Qe ety ia -t pa) >0
(3.1)-(3.2) has a poattive sglutlon. (8.5) 2¢, 1= ((ctrzy — ™y - X )

For details smee [C-5,3].

Unlike the onedimenaional case, when @ = B the problem {1.1) has no Nou o S\:mY\q. Ca.‘cula.‘“on shows M i& v u\\“‘.'—

nonnegative solutions with interior zeroes. Indeed, it is easily seen that it
2 (S e LAy &) I
we define E = {u') + 2AF{uf-))} that then E ls strictly decreasing, which W“") = C|> = Q e
S
makes 1t impossible for a noanegative solution to {3.1)-(3.2) to have Wore '

than one mere in (0,7, —2/¢q-"Y

®.0) Sy 3 C.X

&. THE MOUNTAIN PASS LEMMA AND GENERAL REGIONS N
W “‘?m 2e ol Cy s \‘\Algmd«\‘\' os ?\) Qor‘ A0 S'ﬂ.ﬂl.l
In order to minimize technicalities we will assume in this section

q vas\'\.
f{u) = u¥ - 1, with g+« {1,(®2+2)/(n-2)). The more general case can be found

in [C-U]. We oxtend f to (-=,#) by f(x) = f(0) for x < 0. As is well

A Sh‘“‘s\’* forward calculation shows that

documented (sce [A-R]) the sclutions to (1.1} are the critical points of

o -3~
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4.9) > (A
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L

?fmu.n that Thare wiske

Cg‘>0

Buch  fhat gof A 0O smoll GMu:sh
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I
Also b3 (4.8) and Hu Gn.d ok W, b a enbiced ?nm\' of
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NON-NEGATIVE SOLUTIONS FOR A CLASS OF RADIALLY
SYNMETRIC MON-POSITONE PROBLEMS
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ABSTRACT

We consider the exiatence of radially symmetric non-negative
solutians for the boundary value problea

~dufx} = At(u(x)} ; #xw 1, x e 8™ (N3 2)
u(x) = 0 HELE UL |

where A > 0, f{(0) < 0 (non-positone), £* > 0 and ¢ is superlinear,
We establish exjetence of non-negative aolutions for A amall which
extends some work of our previous paper on non-pusitone probleas,
where we considered the case N = 1. Our work also proves a recent
conjecture by Joel Smoller & Arthur Wasserman.

*
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1. TINTRODUCTIOR
fiere we consider the exlstence of radially syametric non-negative
solutions for the boundary valua probles
~dutx) = Af(u(x)) ; UxH <1, xRV, N2 2 (1.1)

u({x) = 0  HXN = 1 (3.2)

where A > 0 and £:[0,®) + R is auch that £* 2 0. As le well documented, the

study of (1.1) - (1.2) 1» equivalent to the probles

-u" - (n/r) wt = Af{u} ; r € {0,1} {1.3)
u'(0) =0 {1.4)
(1) = 0, (1.8)

where n = N-1, #e will assume that

1im {f(n))/u = +», 1.8, f 18 uupurlfhenr. (1.6)

Lip 09
£(0) < 0 (non-positone), 11.7)
and for some k ¢ [0,1).

4 = 1im (a/10d)) V3 (P(kd)-[ (N-2)/{20) JAL(d)) = v (1.8)
[

where PF(x)} = I;flr)dr.

It £{(0) > 0 {positone} and A > O smgll, it Is known that (1.1)-(1.2} has
two solutlons: one near gero, the other bifurcating from infinity. However,
the popular method of sub-super sclutions used in positone probless aeems
rether difficult to apply when f£(0) < 0, since v ¥ 0 is no longer a
sub-solution. In fact, it §s a super solutlon. This ie why we have been

motivated to undertake this study. Our msain result is given in Theores 1.1,

-1-

THEOREM 1.1. Vader the above assusptlons. Shere sxlsts A, > © such thai if
0 <A <Ay, then (1.1}-(1.2) hnnm;n:muﬁmmum.u‘ auch that uv,> 0
ang degrvasing oo [0.3]) aund v (1) < 0.

Cautro and Shivaji [1987) have made an extensive ntudy of the
one-dimensional problem (N = 1). Our proof of Theorea 1.1 is based on the
shooting method. That is, to prove that (1.3)-(1.5) has a solution, we
congider the problem {1.3)-(1.4) subject to u{0) = 4, By snalyzing this
problem dependiang on the parameter d, we show that for an adequate value of d,
u satisfies also (1.5}. To prove Lemma 3.2 we use an jdentity of Pohozaev
type (see Sectlon 2) used by Cestro and Kurepa [1987a and 1987b] to study
oscillatory solutions of other radially syasetric probless. For other
applicutions and extensions of this type of identity, see Ni aud Serrin
[1986].

Our work also proves & Tecent conjecture by Smoller and Wasserman [1987].
In thelr papsr they proved an existence result applicable to functlons of the
type f(u) = ul - ¢ whera & > 0, 1 < g < N/(N-2) and conjectured thut an
optimsl result would be to extend it to 1 ¢ q < (N+2)/(N-2). Tn fuct, oor
work includes this optimal result since 1if flu) = uq - ¢ where &« > 0, 1 € g <
{N+2)/(N-2) then (1.8) i= satiafied with k chosen larger than

[{ae1) (-2)/ (20y) 2/ (@I,

Note here that if q < {N+2}/{N-2) then
(g+1)(N-2)/(2N) < {(N+2)/(N-2) + 1}{N-2)/(2N) =1.
We will restrict our proofs in this paper to the case N > 2. In fact

when N = 2, the proof ls easler along the same lines as in the case N > 2.



2. PRELIMINARIES AND NOTATIONS.
First of all we extend f to (-w,w} by defining f(x) = £{0) for x < 0. @8y

{1.6) we see thut limF{d) = », Hence (see(1.7}) there exlst positive real
[\ S

numbers g < @ such thut
0= f{f) = P(0). (2.1}
Since (see (1.8)) A = », wa see that there exists v > {#/k) such that

2NWF(kd) - (N-2)df(d} 2 0 for d 2 ¥. (2.2)

Now for each real number d, the initiul value (1.3), (1.4), u(0) = d has

. & unigus solutjon uit,d,A}., This solution d pends continuously on (d,A) in

the oense that if (ldn.an]} =+ (d,A), then {u{ .dn.Aaj} cohverges uniforsly to
ul .d.A) on [0,1]. To see this, we observe that for each (d.A} the map

] t
u{s} = d « ALt R (ulr)) ddr (2.3)
0 0

defines a contraction on C{[0,4).R) for ¢« small unough.

Taxt plven ¢ A R, A € R, we defines

. 2
e(c,d,a) = IAEAAD L apryqe,a0)), (2.4)
Hit.d.a) = tE(e,d,8) + B2 uge,doagu (rada). (2.5)

Multiplylng (1.3) by rNu' end integrating over [t,t], and then aultiplying

{1.3) by t"u and integrating over [t,t], we obtain

- - t
M hietaa) « (g0« [ [NPGu(r.d) -
t
N-2 {2.6)
=y~ T{u(r.d,A))u(r.d,4)])dr.
This identity is a form of "Pohozaev identity.* For more detalls see Castro

and Kurepa [1987a] and Puccl and Serrin [1988].

Further, for d » v let to: - tD(d.A) be such that d u(to.d.ai : kd for
all t & [0.t)) and u(t;.d.A) = kd. Multiplying by r™ (1.3)-(1.4) aad u(0) = 4
gives u'[t,d,A) = -At'"J;r“r|u(r.d.A))dr. Hence -Atf(kd) 3 Nu'(t,d,A) )

-Atf(d}, and lutegrating on [0.t,] we have

Cy(d/ (AT (kD) 2 £y 2 € (d/(Ar(a) 1y /3 (2.7)

where €, = {(1 - k)2N) % > 0. Also chousing § = 0, ¢t = to: (2.8) gives
tO
tgu(to.d.a) = A e (NF(u(r.d.0)) - {(N-2)/2)C(u(r.d,A))u(r.d,a))dr

%o n

2 AL E(NR(KA) - [(N-2)/2)f(d)}d}dr

2 MNP(kd) - [(N-2)/2)t(a)dye,/u

N N2
2 MNF(ka) - [(N-2)/2]t(2)a)- (¢, "/H)- (as at(a)))

= e ANV p k) - [-2)zizmariany-(e@nVE (28

N
where ca (cll >0,

3. MAIN LEMMAS AND PROOF OF THEOREN 1.1.

LEMNA 3.1, I[ A & (0, Ayt = N(Y-p)/C(7)), thep uit,¥,A) 2 P for wll ¢ €
[0,1].

PROOF: Let tl: = sup{t £ 1; u(r,v.4) } A,for all re(D,1)). Since u'(t,v,A} =
-At'“I;n"r(u(l.v.A))ds. U le decreasing on [0,t,]. Also if A « (0.4,), t e

[0.t1]. we have

_‘-



Jut(t,v,a)] § Atf(r)/N <7 - 2.
Hence u(tl.1.al > - (1-ﬁltl. In particular, if tl < 1 thie gives ultl.T.Ai

> p contradicting the definition of 1, Thus - 1 and the lemms j¥ proven,

LEMMA 3.2. Thers exists A, > O guch that if 2 ¢ {O.Azl. ihen (u(t.d.M)z +
(u'(t.d.n}z >0for ¢t e [0,1], de [y, ),

PROOF: MNow for tQ t, (2.6) and (2.8) gives
tuie) 2 cp V¥ pka) - [ (N-2)/(2N) JdE ()} (47 () ™2 {3.1)
+ II: r"(NF(u{r.d.A)I -[{N-2)/2]t (u(r,d,A))u(r,d,A)}dr.
1]

Now by (1.8), our definition of f(x) for x < O and the fact that {0} < @,
there exists a constant B < 0 such that G(s) = NF{s) =" [(N-2)/2]f(s)s 2 B for

all s. Further using {1.8), we may assume without loss of generality that ¥

is large snough so that {F(kd) - [(N-2)/(2N)]df(d)} (d/fld))le 21ford? 7.

Hence by (3.1) we have, for t & [to.l].
t"HiL) 2 czal"“/z'(r(kd: - [e-2)7 (20 Jaf any - (/e (ay V2

(3.2)
vanget - ey

2 cpUMD L am

e ae ™2 o am). (3.3)

That is, there exists A, such that fur A & (O.Az}, H(t} (and hence

2
[u(t.l.dl]2 + [u'(t.l.d)]zl is positive for every L € [0.1] and every d €

[7.,+=) and the lemma is proven.

LEMMA 3.3. Glvep any A > 0, there exists d > v such that u(t.d.») < 0 for

sope t ¢ [0,1].

PROOP: Let p > 0 and w be such thet w" + (n/7)e’ + pw = 0, w(0) = 1, w*{0D) =
0 and the first zero of @ Is 1/4. By (1.8), there sxiste dD(A} ¢ #/k such
that if x 2 do then

{f(x)/x) 2 (p/A). (3.4)

Suppose low that for every d-> v, u(t,d,A) 2 0 for all t « [0,1}. Pirst we

show thul there existls dlthl b} do(Al such that for d > d,(‘) and tl « {0,1]
it u'ltl.d.A) « 0 then u'ltl.d.hl <0, - (3.5)

In fuct, let dllhl > do(ai be such that if d > dll*l then tnﬂ(ll > 0 for .13

te [t;.1] (see (3.2).) Suppose there exists t, & [0.1] with u'(t,.d.A) = D,

u"(€,,d,A) 2 0. By (1.3) we have u(t,.d.A) § #. Since ka > A we have

t

>t Thus t?u(tl) = t:AF(u{t‘.d,AJ) < 0, which contradicts the definition

1 '
of dl(al. Thus {3.5) holde.
By (3.5) we have that if d > dllA} and t & [0.1] then u(t.d,A}ru'(t.d,A} S O,
Hence, by (3.2) and the fact that E{t.d,A) 2 AF(kd)} for t & [o.to]. there
exjiste dle > dl {A) wuch that for d > d2

E(t,d.A) 2 AP(dy) * 20,° (3.6)
for all t 4 [0.1]. Now let d > dz. Since ()" + (n/r){da)' + p{dw) = O and

u™ + (n/e)u' o+« A{f{u)/u)u = 0, we get

nAflu/s))

(—m;r— - P)d. 3.7

t
w0y - vt et () = 7 s
0
where v = dd. Hence if u(t,d,A) 2 do for all t « [0,1/4] then by (3.4) and
fucts that v(1/4) « 0, v' (1/4) < 0 we obtain a contradiction to (3.6)., Thus

there exists t.l {0,1/4) such that



u(t A} = a. (3.8)

Also u is decreasing on lo.t.) and (3.6} impljes u'(t..d.A) < -2dn. ‘Since we
]
are assuming ult,d.4) 2 O for all t e {t +1], we have u* S 0 for t @ [t.,I].
.
Therefors 0 § u(t,d.a) 1 do for t & (t «1] ond by (3.6) we have Wt d,a) g

[ ]
-zdo for all t a (t +1). Hence integrating we have
uit’s 1/2.d.4) - 4, § -24 - (172},

that 4, u(t"+ 1/2,4.4) § 0 wbare t%r 1/3 < 1owth w (et 1/2,0.0) ¢ ~2d,.
Thus there exists T « (0,1) such that u{T.d,A) < 0 which 1s a contradiction,

hence the lemma is proven.

PROOF OF THEOREM 1.1. Lat Ao = ain. (Al Aa} and A « (0,4 ) Let
d(A). - d = sup{d & [v,+%); u{t,d,4} 2 O for all t € [0.1]}. By Lemma 3.3 we
have that d<+w Nowwe claim that: )
{A} nll.d.ll =0,
(B} u(t,a.A) >0 vtejfo,1),
(€) (1.4} <0 and

(D) uis decreasing on fo.1}.

Suppose there exists Tl < 1 such thaet n(Tl,d 4) = 0. Then Lomma 3. 2 glves

u' (T d A) # 0 and without loss of generality we can assune u'(r d WVA) € @,

Thus there exists r L (Tl.lj such that u(rz.d 4) < 0, a contradiction to the
definition of d. This proves (B). That is, uf(1, d A) 2 0. Suppose uil.d.l) >
0. Then there exists 7 > 0 such that u(t, d M) 2n torall t e [0.1]. Thus

there

exiata 8 > 0 such that u(t, d +0.A) 2 q/2 tur a)l t a [0.1). which contradicts
the definition of d Hence u(l.d.l} = 0 aud {A} 18 proven. Pinally (c)

follows from Lemsa 3.2 and (D) follows by Gidaw, Ni & Nlreuberg [1979].

4. REMARK.

Uniike the case N=) {see Castro and Shivaji [1987, Theorem 1.2]}, for W}
2 the probles (1.1)-(1.2) does not have non-negative solutions with iaterior
zeros. This follows because if there exjuts to € {0,1) for which u‘(to) -
ulty) = 0 then E(t)) = 0. By (1.3) e obtaln dE/dt = -n(u’ )%/t $ 0. But E(1)
20 Thus E = 0 for all t « [ty+1] which 1s possible only if ue = 0 and hepce
Uu=0forallte [to.I]. But from (1.3) we see that this ia iapossible with

(o) <o.



(1

2]

[}

(4]

(5]

(8]

7]

REFERENCES

A. Custro and A. Kureps 19874, "Eucrpy anulysis of a nonlinear sungular
differentinl equation and spplicatione,” Rev. Colombiana Mat. (to
appear).

A. Castro and A. Kurepa 1987b, "Infinitely many solutions to a
superlinear Pirichlet problea in a bal),” Proc. Amer. Math. Soc. 100,
no. 3 (to appear).

A. Castro and K. Shivaji 1987, "Non-negative soclutions for a clasa of
non-positons probless,” Proc. Royal Soc. of Edinburgh (to appear).

M. Mo Nl und J. Serrin 1886, "Non-existence theorems for guasi linear
partial differential equations,” Rend. Circulo Math. Palermo, Suppl.S.

P. Pucci and J. Serrin 19868, “A genera! variationsl identity,” Indiana
Univ. Math. J. 35, no.3, 681-708.

J. Smoller and A. Wasserman 1987, "Existence of Positive Solutions for
Semilinear E!1iptic Equations in Genera) Uomeins,” Arch. Rational Mech.
Anal, Vol., 98, No. 3, 229-249.

B. Gidas, W.M. N1 & L. Nirenberg 1878, “Symmetry and Relsted Properties
via the Maxisum Principle,” Commun. Math. Phys. 68, 209-243.

NOH-NEGATIVE SOLUTIONS FOR A CLASS OF NON-POSITONE PROBLEMS

Alfonso Castro R. Shivajl

Department of Mathematics Department of Mathematics
North Texas State University Misaisalippi State University
Denton, TX 76203-5116 Mississlppi State, MS 39762

Abstract

In the recent past many reaults on non-negative solutiona to boundary value
problems of the fora

~u*(x) « 2 flu{x)) ; O <Cx <1
w0} =0 = ul1)

where L > 0, £{0) > O (positone problema) have been establlished. In this
paper we consider the impact on the non-negative solutions when (o) < o.

We find that, we need f(u} to be convex to guarantee uniqueness of positive
solutions and f(u) to be appropriately concave for multiple positive
solutions. This is in contrast to the case of posltone problems, where the
ralss of convexity and concavity were Interchanged to obtaln similar results,

We furthar establish the exiatence of non-negative solutiona with interior
zeroea, which did not exist in positone probleas.



1, INTRODUCTION
Conaider the two Paint boundary value problems

~u(x) = 1 r(ufx)) i xc{0,1) (.1

u(g) =0« ui) 1.2y
where 1 5 0 43 5 conatant and f ¢ ¢2 Satisfies

o) ¢o. 0.3)

First note that any solution u(x) of (t13-01.2) 15 Symaatric about any poine
%y € {0,1) such that u'{xy) = 0. Then by (1.3) 1t 1a PGasible that o
non-negative solution u(x) or (1.)-(1.2) 23y have fnterior zeroes In {0,1),
(This was not the ¢aae when £(0) 3 0 where if u(x) {s » hon-negative solutjon
of (1.1)~(1.2) then u(x) > 0 op {0.11.) S0 we will distinguien those
30lutions which 40 not have interior zerces by refaring to thes 43 poaitive

3clutions. We shall consider three diatinct cases:

(A} t%(s) > p for 3 £ 0,
(b} re{s) ¢ o for a3 0 ang

(e} There exists Some 3, such that 3) <0 foro g 8 < a; and
£°(3) > 0 for a > 8.

Our main results are:

THEOREN 1.9

et oy ¢ 0, r'(a) > 0 for s 2 Oand g, @ be positive real numbers thag

s
Zatisty 7{3) « 0, F(o} « ¢ Feapectively, where Fis) = [0 £it)de.

(A}

(8)

It rs) >0ftorszo and Lim f(8)/a = +m then there exist A% > 0 sueh
Srem

that {1.1)=(1.2) has 8 unigue positive solution for 0 ¢ o 5 z» &nd has no

Boaltive solutions for 4 > A%, Also dencting by p, the Supremus norm of

the positive solutjon, P increases 23 1 decreases, ana in particular,

Pre = 8, Lin Py = te,
L0

1f r“(a) <O for sz 0, Lin F(a} = K where 0 < 4 5 +o,

sj""" (4o - 6§'ey) = 2a >0 and ((@)/0) € FU(0) +hn then eant )\', '8
o0

(c)

auch that ¢ ¢ By < A% and (1.1)-(1.2) has No posltive solutions
for 0 ¢} ¢ By and at least one pesitive solution for i 2 Hy. Further
(1.13-(1.2) hay at least twa positive solutfons for uy <1 g5 )10 and there

exista ¥y & A% such that (1.1)-(1.2) has a unique positive salution tor

i Ha. Alsg, Py = 8 and Lim Py = tm,
Atte

I r(s) <0 for s ¢ {0,35) with a5 > @, £7(s) > 0 for s > a5, (£(e)re) < rr(e),
there exists o > 8 such that Hla} = Fla) - (as2)r(a) > 0,

Lim (f{a)/a) = += and Lim f(s) - tim af'(a) < 0 then there exists
a+im 3+ ¢m LAl

4%, 1y, 13 such that 0 < 4y €A% 3 45 and (1.1)-(1.2) has a unique

Positive solution for 6 ¢ } ¢ 4, and no positive soluticns for 1 > 1,

Further there exists & rahge for 3 in (1,,A%) 1a which (1.1)-(1.2) has at

least three positive solutions and 1f 1, > A% then (1.1)-(1,2) has at

least two posftive solutions for i ¢ [l'.lz). Also Piye = 6 and .l.llpl - te,




BIFURCATION DIAGRAM (Theorem 1.1)
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LEMMA 1.1

Lot o = 8%/[-F(8)), Then 2a § i# 5 g,

LEMHA 1,2

If wi(x) angd uy(x) are distinct positivae solutions of (1.1)-01.3) then

(x e €0,1)/uy(x) = Ua(x)) ia the empty sat.

THECREM 1.2

Let the hypotheses or Theorem 1.1 hold. Then in each of the cases (a), (B),
or (C), given n a positive integer, (1.1)-(1,2) has 8 non-negative solution
With n interior zerces Af and only iT & = (ne1)2ys, Further, such a solution

is unique,

REMARK 1.1

These above reaulta on poaltive sclutiona are in contrast to tha case of
positone problema (see [11-03)) where concavity (not convexity) guaranteed
uniqueness while convexity (not concavity} allowed multiplicity to be a

posaibllity.

REMARK 1.2
Our reaults are related to the fact that the Heasian of the varlational
functlonal corresponding to

“u*{x) = f(ulx)) - (o} i 0 Cx ¢



s non-singular at a positive solution. However, our assumptions are quite

jeneral and as such &re not enough to warranty the above.

IEMARK 1.3
nlike in the case of po;ltonc problems where £(G} > 0, here, In general, it
sams rather difficult to apply the sethod of sub-super solutions to track
own the positive solutions. This ia because, £(0) < 0 makes ¢ = 0 a super
clutlon and not a sub solution as in the case of positone probless. In fact,
or many of these solutions we suspect that it will not be posaible Lo uae
nis method. However, sse [4] where boundary value problema of the type
caa=Mu-u)-¢ 4 xreach"
u=20 i xec

eres considered and existence of positive solutions for certain range of A and
> 0 small enough were derived, using sub-super sclutions via the anti-

aximum principle due P, Clement and L. A. Peletler.

EMARK 1.4
ge [5] where {1.1}={1.3) 1a conaldered when f*{u) < O and when { satisfles
srtaln additional hypotheses which are not easy to verify in general. They

rove that, at most there are only two positiva solutlons for any i.

‘s shall prove our results in Sectlon 2. In Sectlion 3 we glve an example
atisfying the hypotheaes of Theorem 1.1. In particular, we choose the (C)

art as construction of examples for part (A) and part {B) are much easier.

2. PROOFS OF RESULTS
First we will prove Theorem 1.1,

Multiplying {1.1) by u'(x) and Integrating we obtain
“[u'(x))%72 =« 1 F(u{a)) ¢ C. (2.1)

Since we are dealing with positive solutions, u(x) has to be symmetric with

respect to x = 1/2 and u'(x) > 0 for x ¢ (0,% ).

J\u(‘)

0 172 1 7 x

) .
In fact, {f p = Sup u{x) then u(;i = p, p 2 8 and substituting x = % in {2.1)
xc(0,1)

L]
we obtain

u'lx) = /Za[Flp)-FCu}] ; = ¢ [0, %J. (2,2)

Now Integrating (2.2) on [0,x] and usalng (1.2) we abtain

u{x) du 1
lo Wﬁr «a i x ; xc [0."2-} {2.3)



1
and hence subatituting x = 7 in {2.3) we get

p du
Y = /T Io —mT'm_,T te G(p) . (2.4)

Now for poaitive solutions # Buat be In [8,=). In ract, if #ve l'suoh that
there exists a p ¢ [9,=} for which Glp) = /I, it follows that (1.1)-(1.2) has

4 positive solutfon u(x) given by (2.3} such that Sup u(x) « u(%d L
xe{0,1)

Further it follows that, G(p) ia a contlnuous function and differentiable for

p e (0,=) with

a Gy r H{p)~H(pV)
a5 Z |, (Flp)-F(pv) 13729

(2.5)
whers

H(s} = F(3) - (as2)t(s). (2.6)

Hence In order to prove part (A) of Theorem 1.1 we wil]l prove that G'(p) <O

and lim G(p} = 0. Now H'(s) = %-[r(-)—ar'(-)] and H"(s} = -(%)ar'(a).

p'...
But r{0) < o, r*{a) > 0 ror a > 0. Thus H'(s) < 0 for 3 > o,

/
H(I)h

10

Hence H(p) - Kipv) < 0 for v « [0,1) and €onaequently G'(p) < o,

Next note that for pcle,»)

1

[ dv
G - _ T |
{p} = V& o) Jo TITFGRTT 539 (2.7}

Lot Liv);:« F(pv}/F(p). Then L{o) = 0, L*(v) » CECpv)p)rFip) ana L*(y) -
(f‘(aV)pZ)IF(p)- But r(a) < 0 for 3 ¢ (0,8), r{2) >0 tor 8 » 8 and
£'¢a) > 0 for 2 ¢ 0, Hence for a given P e (0,%), L{v) cakes the shape

A
L(v)r

Hence clearly Liv} S v for v € [0.1). Consequently from (2.7)

1
6ip) ”"r/?;n Io 7:% - 27 a1 /FG) .

11



Bﬁt since tim [r(3)/a = +=, wg have Lim psz(p] « tim 2p/f{p) = O .
geea o= gvom where w = - (£(0)pv)/F(p). Hence

and hence tim G(p) = 0. This completes the proof of part (A) in Thecram 1.1.
pora Glp) & -2/Z (/FTp)/r(0)) (D) - (£(0)p}/F(p)1V/2 - 1)

= 207 (p/EGGNILI-(r0)}/FLp) 3 /2 0 1)V /2,
In _order to prove part {B), note that [(0) < 0, (“(a) < 0 for s > O,

1
rie) < or*(s) and Lim f{s) = @. Thua H"(a) > 0 for 3 >0, H'(s) < 0 for But Lim p/F{p) = ; while tim DZJF(’) « Lim 2p/f(p) = ¢=. HNHence
Aeém pete pere pro-
3 ¢ [0,8) and tim H*(3) = (W/2) > 0. tim G{p) = += and part (B} of Theorem 1.1 13 proven.
e en A pe =
H(s}
s Next we consider the part (C) of Theores 1.1, The hypotheses ilaply that H(s)
[ ¥ ;
0 T >
| 1 takes the form
P! H(s) ﬂ\
i
lence there exists &, Y such that & < & < Y, H'(§) = 0 and H(Y) = 0.
a
‘onsequently, G'{p} < 0 for p ¢ [8,6) and G*'(p) > O for p 2 ¥ and, In order o !

0 complete the proof of part (B} In Theorem 1.1 we are left with to prove

-————

hat Lim Glp) « o=,

prim

Now L{v) = F(pv)/F(p} 2 [f(0)pv)/F(p)} since F* = ' > 0. Hence from (2.7) we

ave

where a, 9z. 03 and gy are as deacribed in the above (lgure. Hence

1
dv
Glp) 2 F2p/H/Fph IU /T:r(?fajavfﬁﬁfiﬁj . Hp) - H(pv) < 0 for v ¢ [0,1) when p ¢ [0.0) and when p > 0y while

‘(f(a)ﬂ)/F") du

- = S0
(pisrioy) Jo o

12 - 13



Hip) = Hipv) > 0 for v ¢ (0,1} when p e (°2'°3]° Consequently G'{p} ¢ g for
p € [0,0] 4nd for p & oy while G*(p) > O for p ¢ [°2"3]' Now to complete

the proof of Theorem 1.1 we are left with to prove that tia Glp) = 0
'10.

which follows by identlcal arguaeats as in the proof of part (4).

Next we prove Lemms 1.1, First w nota that (O //=F(a}) ¢ (1//~F($}) ror

3 ¢ {0,8), and since F¥(s) = £'(a) > 0 for 3 & 0 we have

r

“(HE)B)s for 0583

-F(s) 2
=[F(8}/(8-8))(0=3) for g < » 5 s,
/
F{a) r
a .
T AR
] \‘\‘\ E - ]
' -~
N\ L

Thus

B/(-F(8Ys) for 0 54 g []
O//~Fls))y s
/(a-iiif:F(a)leléil for § ¢ a3 .

14

Hence

0 4 o
G(e) = /2 Ioﬁﬁﬂ ¢ 2 wiSF (2.8)

and

r[’ ds . l' ds
RO = 2 ZFGaT

s ZTAFNY 20 . /T e8I/ -FaN) /653

« 22 /R (2.9)

From (2.8) and (2.9} 1t easlly rollbua that 2a 5 1% = [G(8))2 g 8q where
a= 32/[-5‘(!)1 and Lemma 1.1 {3 proven. Note here Lhat for i = L' the minimal

solution u(x) has supremus norm # = @ and hence u'(Q) = 0,

ulx) ‘r

A e jw

g
4+
]
[}
[l
4
.
i

— .
0 1/2 1 x

Finally, the proof of Lemma 1.2 follows easily from {(2.2) and we will conclude

this section with the procf of Theorem }.2.

First we note that in order to atudy a non-negative solutlon with n interjar
teroes, due Lo Lhe Sysmetry, we need to atudy the solutjon only in the
interval (9, 1/(2(av1))).

15



u(x) with n Interior zeroes given by (2.11) with Sup ul(x) = u(1/(2(n+1))) « o
A xel0,1]

ul{x) Hence theorem 1,2 is proven.

[}
B
x
rd
0 1
2(ntl)
From (2.1} we have for x ¢ [0, V/(2(n+1))],
u'{x) - /AlF)-Flu)]) {2.10) ,
shere p = sup u(x} = uw(1/7{2(n+1))). But since we must have u'(0) = a,
xc[0,1]
F{p} = 0 and hence p = 0. MNov Integrating (2.10) on (0,x] we obtaih
l-l(l) du *
lo Vil 2 x ; xc (0, 1/(2(n 1))} {2.n) .

and hence subatituting x » $/{2(m*1)) 1n {2.11) we must have

¢ du .
/T« (n1) /7 lo Ve i (ne1)/7%, {2.12)

Thus in order to have a non-negative solution u(x) to (3.1)-{1.2) with n

interior zeroes 1 must equal (ne$)Z1% and Sup uw(x) = &. 1In fact, given
1w[0,1])

Los (ne1)ie gy follows that (1.1)-(1.2) has a unique non-negative solution
L]
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3. EXAMPLE (THEOREM 1.1 - (C) part)

Consider
fis) o a3 - 282 v by - g (3.1)

where 8 > 0, b >0, 0 > 0 and aatlafy
b > (32/81)a2 , {3.2)
ad > 540, (3.3

Clearly r(0) < 0, Further
r'(s) = 33% - 2a3 + b

= 3([s-(a/3)12 v (b/3) - (a2/9)} (3.4)

But (3.2) lmplies that (bs3) > ta?s9), Hence f'(s) > 0 far s 2 0 and alnce

Lim f(3) = +=, there exists a unique 8 > 0 such that f(g) = 0,
LAl d

Next F(s) = ag(s) where

8(3) = (83/4) - (a32/3) + (bar2) - ¢ (3.5)
and
8'(8) = (33271 - (2a8/3) + (b/2)
= {3/4) [[a-(ﬂal9)]2 v+ (20/3) ~ (|6a2/8l)}. (3.6)

Once again (3.2) implies that (2b/3) » (16a2/81) and hence g'(s) > 0 for

3&0. But g(0) < 0 and tim 8(8) = +=, Hence there exiats & unique 8 > g

svim

3uch that F(8) = g(g) = 0,

18

Now note that
(s} = 68 - 2a , (3.7}
Clearly there exista Bg = (a/3) such that £%(s) < 0 for g £ (0,85) and

t"(s) > 0 for » > Bg. Alsa (3.2), (3.3) imply that

P(a/3)=(a/3){(a3/108) - (a3/27) + (abs6) - o)
= (a/3)({abs6) - ¢ ~ (a3/36))
Z (a/3)((32a3/486) ~ (a3/50) - (a3/36)}
. (19a%2916) > o , 13.8)

Hence @ < 8g = {a/3),

Next conaider
£(6) - o r'{e) = -203 + 292 - ¢,
But g(8) = 0 and thus asubstituting for ¢ we get
T(0) - orr(o) = (-903/4) + (2a02/3) - (nos2)
= (-90/4) ([0 - (827271012 + (6vs27) ~ [B4a2/(27)2); .

Hence uaing (3.2) we nave r(a) - arr(e) < o,

Finally, the hypotheses Lim (ris)/s) = +» and tim r(a) - Lim af*{s) < 0 are
Brim . Stee aAvia

8asily saen Lo be satisfled, and hence we are lert with to prove the existence

of @ number o > & such that Hle) > 0. But (3.3) Implies that

H(as3) = (-a"7320) + (2%162) - (acs6)
- l(a“-SHac]/32ui >0,

and (a/3) > 8. fence the result.

19
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