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1. INTRQDUCTION AND STATEMENT OF RESULTS
Let @ be a bounded aopen subset in &N with smooth boundary 2Q

and let f(x,s) be a real-valued Caratheodory function ch Q x R, Wwe
consider the semilinear Dirichlet problem

=Au = f(x,u)+h(x) in Q,
{1.1) {
u=0 on JR.

The nonlinearity { generates a potential

F(x,5) = J: f{x,1)dt

which, in this paper, will alweys be assumed to lie asymptotlically as
s = t= at the left side of the first eigenvalue A; of -A on H(2), i.e.

y 2F(x,5)
imsup
(1.2 N s2 =M

with some uniformity with respect to x. We are interested in the
additional conditions to be imposed on f or F in order that (1.1) be
solvable for &spy h. Such conditions are sometimes referred to a&s

nonresonance conditions.

A classical result in that direction, which goes back to
Hammerstein [7], says that (7 f 1s continuous, satisfies a linear
growih condition and if for some number p < M.

2F(x.5)
Iimsup
(].3) S—im s

A
=

uniformily for x € Q, then (11) is solvable for eny h. This was
extended by Mawhin-ward-Willem [9) who assume that f grows at most

as |s|% for some o ¢ (N+2)/(N-2) (6 < = if N=i or 2) and that for

‘some function @ € L™(Q) with a(x) ¢ A ae. in Q and alx) < Apona
subset of positive measure, .
2F(x,5)
< afx)

(1.4) 1imsup = <
T §=te s«

ol

uniformly for aex € Q.

we are mainly interested (n Lhis paper in the situstion wher
(1.4) does not hold, e.g. when

2F(x,s)
{1.5) _ limsup

= )"l
S§=t s

for se x € 2 The new assumption which will eventually yietd th
solvability of (i.1) bears on the way tha Yims in (1.5) are approschec
Roughly speaking, it consists in requiring thal the guolient 2F(x,s)/s
stays below A for sufficiently meny velues of § &5 s — 2= This i

expressed in terms of the density of certein sets at infimity Density
conditions of the same type but bearing on the quotient f{x,c)/s wer
introduced in [B) (see in this respect proposilion 4.10 below).

Let us state our resulls. Teke an exponenl p with p > 2N/(N+2) i
N2 2 p2> 1 if N=l. We assume that the Caratheodory function f(x,s
and its potential F(x,s) satisfy:

(ry) there exist a constant A and a function B(x) in LP(Q) such that

J1ex.s) ]| < Als|+B(x)
for ae ¥x € Q and all 5 ¢ R;

(FI) inequality (1.2) holds uniformly for e.e x € Q, ie. for any € > (
there exists be(x) in LY(Q) such that

A
F(x,8) ¢ ?l" §2+£52+b4(x)

~

for sa. ¥x € 2 and all s € R
To state our last assumplion on F, we need the following

DEFINITION 1.1. tet E be a measurable subset oi R. We say that i
has pogitive dengity at +e if

piEnlo,rd
imint —————= 3
re+e  p(lorl



Here p, denotes the Lebesgue measure on R. Of course one can give a

similar definition at -« by considgering the intersection of E with the
interval [r,0] and letting r -+ -

11 will also be convenient to say thal a measurable subsel A of a
measurable set B is a fyll subsel of B if B \ A has measure zero..

The jast assumplion impased on F in our first resull is now the
following, where we denote R \ {0] by R:

(F5) there exist & full subset Q' ¢ @ and n > o such that

. P 2F(x,s) < Apem)
§ € . 2 -
xeQ’ ° 52 "

has positive UBI’ISHQ at both +< ang -,

THEOREM 1.2. Assume (fy), (Fy) and (F,). Then, for any h e LP(Q),
there exists u € HMR) n w2.P(Q) solution of (1,1), which minimizes the
associated functiona)

(1.6) Hu) = 172 IQIVu|2-IQF(x,u)~IQhu

on Hy(Q).

Theorem 12. applies in particular to the case where f(x,u) does
not depend on X, f.e. 1(x,u)=T(u).
Assumption (F;) 1s gilobal with respect to . It can be replaced

by o local one, at the expense of strengthenning & little bit the
density condition al infinity. Let us introduce the following variant of
(Fz):

(F3), there exist an open set w, € 2 and & corresponding full subset

w, € w, with the following property: for any o0 < v < | there
exists n > o such that

(E(w'y, Ay=rpnfor,r
(1.7) liminr I wnloerd
r—eo piflor,rd ‘

whera

2F(x,s)
E(U',,)-"‘l})' n {s € K, _ff—_ £ M"I']];
Xew', s
(F3)- there exist &n open sel w. C 2 and a corresponding full subset
w_. < w with the following property: for any o £ v < 1 there
exists n > 0 such that

Elw . ,Ay-m0lr,
e A y-mnlr,or ]} > o

1iminf

r--o pillr.orl)
Condition (Fp) al += corresponds to (F3), with w,=Q and the
single choice v=o. Observe also thet if for some open set w, € Q and

gome number p < Xy,
2F(x,s)
limsup

S+ 32 = u

uniformly for ae % € w,, then (F3),, holds. Indeed, for & full subset
W', C w,, the set E(w,.(u*’{)/2) then conteins & hall line. Similar
observations can of course be made for (F3)._.

THEOREM 1.3. Assume {f}), (Fy). (F3), ana (F3).. Then for any

h € LP(R), there exists u € KA (Q) n w2P(Q) solution of {1.1), which
minimizes ¢ gn Hg (R).

The main part of the proof of these two theorems consists in
showing that the functional ¢ is coercive on H(Q). Conditions (F,) and
!ZF3)t ere applied in direct connection with two propositions relative

to inverse images. Given a Lipschitz function u and & Borel set B in
its range, these propositions provide an uniform estimsate from below
on the measure of u '(B) in terms of the measure of B and the
Lipschitz constant of wu.  These propositions are proved by
rearrangement metihods. In Lhis respect, the main {technical) difficulty
1o go from the global assurnption (Fz) to the local one (153)t comes

from the f{act that the classical Polya-Szegd theorem aboul the
Schwarz rearrangement of & nonnegative Lipschitz funclion is no
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lenger true i7 the function does not vanish on the boundary. we use
instead the Steiner rearrangement when dealing with such functions.

Seclion 2 is devoled 1o these two propositions. Since they mey
have some independant interest, we have tried to present them in a
rather sharp form, which is stronger than what is really needed Tor
their application in this peaper. Seclion 3 containse the proof of
theorems 1.2 and 1.3 es well as various remarks. Several examples
are given in section 4, in particular when equality (1.5) holds. We also
show there that 11 a nonlinearity satisfies our assumptions (n a
nontrivial wey, ie with (1.5), then @& certain crossing of the
eigenvaiue h, musl necessarily occur (cf.proposition 4.2).

we wish to Lhank P.LLIONS for suggesting the use of the Steiner
- rearrangement and providing .us with a variant of exampie 2.5 and
A.ANANE for some interesting comments aboul the density condition at
infinity, in particular lemma 4.5.

A NYVER A
The following propocition enters the proof of theorem 1.2.

PROPOSITION 2.1. Therg existc a conctent c=c(N) > o guch thet

M (BN
Lip(uyN

(2.) Pl WBY) 2

for _any ppen set @ < RN with finile mepsure. eny_nonconstent
Lipsehitz function w on 2 which vanighes on 2Q gnd any Borelisn sel B
inthe renge uf u

Here py and Wy denote the Lebesgue measures on R and gN
respeclively and Lip{u} is the Lipschilz constart of u on Q.

PROOF OF PROPOSITION 2.1. Let 2.,u and B be as in the proposition.
we first consider the case where the function u is nonnegative. Let
then u* be the Schwarz rearrangement of u. IL is defined on the
corresponding rearranged domeain Q¥, which is the ball tn RN centered
at zerc with messure W(Q). It is known that the range of u*

coincides with that of u and that
(2.2) pptu™ 1B =yt~ 1BY)

moreover u® is Lipchitzian on Q% and one has Lhe Polya-S2egt
estimate

(2.3) Lip(u®) < Lip{u).

The proof of {2.3) is given in [3,10] when Q is bounded. it carries over
with littie change to the present situation if one observes that our
conditions imply that w{x) —» o &s x| = =, x ¢ Q.

We claim thet for eny radius R of the ball QF,

b

- ou
(2.4) piB) = Ju"‘(ﬁ)nR Ia—"‘l dr,
-

where r denotes the distance 1o the origin. This is clear when B is ar
interval since, along R, u®™ is nonincreasing and is the integral of its
derivative. The genersl case of o Eorelien set B then follows since
both sides of (2.4) are measures on the range of u. Relation {2.4)
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implies that for any radius R of RF,

PT(B)

25 *=4B)NR) 2
(2.5) Hi(*~hEInR) 2 ~

we now consider the radially symmetric set u*~1(B) and let A
dencie the ball centered al zero of radius pl(u*' {BJNR). To compare

the N-measures of u*~}(B) and of A, we write
uﬂ(u*"(ﬁ))-f(fu.-‘(ﬁ)nRa rN"Taryee

where Rg 1s the redius through the point © of the unil sphere. An
application of lemma 2.2 below to the inner integrai gives

H(uhEn 2 pyta).

Consequenily, using (2.5), we obtain .

BN

W B) > uy ———
Pt ON Lip(u*)N

where Wy denotes the N-measure of the unit ball in RN. The conclusidn

(2.1) with c=wy then follows by combining the previous inequalily with
(2.2) and (2.3).
To deal with the case of an arbitrary function u, we write

u=u_-u._,
This provides a decomposition of u inlo two nonnegative Lipschitz
functions u, and u. which vanish on 32 and satisry Lip(u,) £ Lip(u)
and Lip{u_} £ Lip{u}). Moreoaver, writing

B=6" U B* u B*
where B™=B n Ry, B*=B n {o) and B*=B n R}, we have

BB 2 pgyCu_H-B N+ pyylu, "B

Applying (2.1} to u_ and to u,, we deduce

N
-yN +Ny1/N
LlD(u) (B py (BTYN) /T,

(- tent/N >

Cansequentlg

I/N
Lip(u)

where the constiant ¢, > o comes from the equivelence belween Llhe
N-norm and the i-norm on R2 QED.

LEMMA 2.2. Let f:[ab] - R pe nondecreasing. Take D < [abl

measyrable ang let D' be the interve] with left point & end Jengih
P1(D)- Then
(2.6) _[D. f< JD f

PROOF. Letting A=D \ {DnD) and B=D" \ (DND’), we have the
disjoint uniens

. D={(DND") U A ,
D'=(DND) U B .

Introducing this in (2.6), we are reduced to proving

forel,t.

Since py(A)=p,(B) and supB < infA, we have

fg 1€ m® ttsups < yea) tenrar < 1.
QED.

REMARK 2.3. It follows from (2.1) that for eny q > N and any open
sel Q with finite measure, there exists cy=c (N,q,p(R)} such that

pi(B)a
! Lip(u)d

27 pn(u=MB» 2 ¢
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for any u and B as in proposition 2.1. indeed (2.1) implies

B
Ca
“ Lip{u)

where |:2=c”N uN(Q)'”N. Rewriting (2.1) in the form

c iy (B)
whe) » — (c N
HN cN 2 Lip(u)

and observing that ihe NP power of @ number between o and 1 is
grealer than its q'" power, we deduce (2.7). We alto remerk that an
estimate like (2.7) cannot hold wilh an exponent q < N. This can be
seen by considering the funclions

ulx) = 1-k|x]  for |xj< 1k,
0 for 1/k ¢ |x|<1

on @ = the unit ball in RN ana the Borelian set Jo,if.

Estimate (2.7) was announced in [S). The preceding remark shows
Lthat the exponent N in (2.1) is sharp.

REMARK 2.4 The result of proposition 2.1 is valid for an arbitrary
open set Q provided the vanishing of u on 0Q is understood to hold
also &t infinity, ie ux) - o as [x]| = =, % € & Estimate (2.3)
remains true under these conditions, with & proof easily adapted fram
(3,10].

In the proof of thesrem 1.3, we will need a resull analogous 1o
proposition 2.1 for functions which do not necessarily vanish on the
boundary. For such functions, even nonnegative, the Lipschitz character
is not necessarily preserved by taking the Schwarz rearrangement
(cf.exampie 2.5 below; cfalso remark 2.9). We will see hawever that
the conclusion of propasition 2.1 essertially remains valid.

EXAMPLE 25. Let £=Bl0,1) ¢ RZ and consider u(x.y=(xZ+y2)!’/2
Then u*=0 on 3B(0,1) and, for o < t < 1, u¥ > t in Blor) where
nrlan-mt2, Letting t —~ o, one easily concludes thet u* is not
Lipschitzian on T*,

1

PROPOSITION 26. Let @ c BN pe_an open parallelipiped Then ther
exicls a gonstont c=c(N,&) > o guch that

Py (BN
Liptu)i

(2.8) p(u"WEY) 2 ¢

for eny nonconctant Lipschitz function u gn 2 end ony Giorelisrn el
in_the range of u

Observe thal without loss of generslily, we can suppose the face
of the parailelipiped 2 to be parallel to the coordinale hyperplane
Thic will be assumed from now on, without further notice.

The proof of proposition 2.6 uses lhe Steiner rearrangemenil of
Il will be denoled by u Il is oblained from u by N successi
one-dimensional Schwerz rearrangements with respect to each verneb!
Xy (CLLN,8D. The function U is defined on the correspondir

rearranged domain %, which here is simply the paralleliped
centered st 2ero. It enjoys properties similar to those of u®: tf
range of u coincides with that of v,

(2.9) pyHEN = e |

¥ is Lipschitzian on R and one has a Polya-Szegd tupe estimate :
(2.10) Lip@ ¢ 3N Lip(w) .

The proof of (2.10) can be adapted from that of a similar estimzt
sketched in [3;p.82] for periodic functions.

The following preliminary result will be used in ihe proof
proposition 2.6.

LEMMA 27, for ony messurable Tunction u on Q there existe a
such thet
(2.11) Ml € 2 5 ule) £ ayd > py(R)/2

> opyle)ia,

—
[E%)
M
—
=
o
-
b
th
Lal
| vl
=,
>
—
R
(34
=
it
v



PROOF. Consider the distribution functions of u :

dt) = pplx € 2 ; uix) > 8},
d* (0 = pylx € 2 5 ub) 2 3,

and define
g, =inf{t ; d (t) < ()72}

Since d,, is right continuous, one has
dylay) ¢ pyiR)/2
which gives (2.11). we claim that (2.12) holds, i.e.

(2.13) d'u(au) > Q)2 .

indeed, by the definition of «,, d,(t) > KQ)/2 for an t < a, and
consequently d* (t) > p(Q)/2 for all t < e, Since g*, fis left
continupus, we get (2.13). Q.ED.

PROOF OF PROPOSITION 26. Take u and B as in proposition 2.6 and
let @, be such that (2.11) and (2.12) hold. We decompose B into a

disjoint union
=8~ U B° u B*

where B™=B n [minug)[ , 896 n {ay} and B%=la,maxul. If we can
show that for some constant c=c(N,Q) > o, one has

wieyy » ¢ MEN
u —————
N = 7 Lip{uN
and
("N
w s > ¢
b =7 LipM

then, by en argument similar to that used in the second.part of the

proof of proposition 2.1, we conclude thatl (2.8) holds (with the new
constant ccc,").

13

we are thus reduced in this way to proving estimate (2.8) for
functions u and Borelian sels B which satisfy in addition either

{2.14) pﬂ{x € Q ; ulx) ginf B} 2 pN(Q)/:?
or
(2.15) Hnix € 2 ; ulx) 2 sup B) > py(R)/2.

Let us first consider the case where (2.14) holds. Let u be the
Steiner rearrangement of u. Then mex U is allained et o while min u
is attained at each of the corners of the parallelipiped €. Moreove .
by (2.14), :

(2.16) Pnix € 2 ; U(x) < InTBY 2 ()72,

Let x, be the corner of the parallelipiped R with positive coordinate
and tet y,=xo/2'"N. we claim that

(217) ulyy) < infB.

Indeed, if (2.17) does not hold, then u is > infB on a neighbourhgod of
the paratllelipiped centered et 0 with corner Ygp, Which contredicts

(2.16). we now deduce from (2.17) that u is < infB on (yom",) no, e
on the shaded paralielipiped in the following Tigure :
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we can then construct a small sector S around the radius [0,x0],

whose cap S entirely lies in this shaded poratlelipiped. The (N-1)
measure of S coan be estimated from below by a positive number
depending only on .

we are now in & position to adapl the argument of the proofl of
proposition 2.1. ‘we claim ihat for any radius R of the above seclor §,

(2.18) H;(B)'I"“(B)ng I l dr

where r denotes the distance to the origin. This follows &s in the
proof of proposition 2.1, with the edditional observation thai since U

“is ¢ infB on S, B entirely lies in 1he image of R by U. Il follows from

{2.18) that

1(B)

(2.19) P HBY) N R) » ——
Lipu

for any radius R of S.

We now consider the set u'(B)NS end compute (ts N-measure by
the formula

u G BIns)= J (f TR, T arae,

where Rg is the radius of S through the point & of the unitl sphere and

where the ouler inlegral is exiended on that part of the unil sphere

homothetic to the cap S Applying lemma 2.2 to the inner integrel, we

deduce from {2.19) thet

(BN
Lip(@N

(2.20) p(a- ) 2 c3

where c3 is the N-measure of the sector of radius | through the cap
S, 0f course €y 1s estimsted frorm below by & positive number

depending only on 2. Estimste (2.8) now follows by cumhmmg {2.20)
with (2.9) and {2.10).

15

Estimate ¢(2.8) is thus proved iIf u and B satisfy (2.14). Now if u
and B satisfy (2.15), then -u and -B satisfy (2.14), so that (2.8) stil
holds in this case Q.ED.

REMARK 2.6 An estimate like {(2.8) does not hold with & constant
¢ depending only on N and .the messure of the parallelipiped . This
can be seen by considering the domains

2 =((xy) € B2 ; |x| <k ang [y] <1/,

the functions

u(ry) = -1 for x<-1,
X for -1<x<1,
+1 for x 21,

and the Borel set }-1,1[.

REMARK 2.9. An estimate like (2.8) does not hold in an erbitrary
bounded open set &, even if u vanishes on a significant part of 6%
This can be seen by consgidering the domain.

Q={(x.y) € RZ ; 0 < x < 1 &nd -x% < y < x<},

the function u(x,y)=1-x and the Borel sets }1-1/k,. One can &lso see
here thal both the Schwarz and ihe Steiner rearrangements of u are
not Llpscmtzuan Indeed u{o,0)=1 and u® ¢ 1-t outside Blor} where

ﬂr2-2t /3; lettmg -0 telas the cenclusion for u®. On the other r_r_and,
u{0,0)=1 and ufo,y)=1- Igl ; letting y—o yields the conclusion for u.
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_P REMS.

PROOF OF THEOREM 1.2. It will be divided into several steps.

Siep 1 We consider the functlional ¢ defined by (1.6). Il is easily
verified that ¢ is weakly lower semi continuous on HL(Q) &nd we will
show thetl ¢ is coercive on HL(Q), i.e. that ¢{u} -+ +e= as lul - «. Here
I 1 denotes the HL(Q) norm. Assuming this for & moment, we deduce
that the minimum of ¢ is achieved et some point u in HL(Q). Since ¢

is a C' functiona) on H, (Q) whose critica) points are the week
solutions of (1.1}, we obtain that u solves (1.1). Finally a standard
bootstrap ergument yields that any HL{R) solution of (1.1) belongs to
w2:P(2),

Step 2 To prove that ¢ ic caercive on H)(Q), we assume by
contradiction the existence of & sequence u, such that lu -+ ang

(3.1 #u) < c

for some canstant c. Wrile
vom D
n .
duph

Then, for e subsequence, v, — v weakly in Hy{R), strongly in L)
and s.e. in Q.
We first show thal v % o. For that purpose observe that, by (3.1),

1 Fix,up) hv ¢
(12) 5 Iszrvvnlz - Ig 2 - IQ -‘ﬂ hY I
< ks ful ™ upl
which implies, by (Fy),
1 i b fv c
33) 4 Jolovl2- & e [g vz - e [, Mo ©
2 2 Jo w2 -Jo fu 02 o gl kugh2

17

If v = o, then the lest four terms go to zero as n = o This leads to
e contradiction since each v, has norm 1 in HA(Q).

We claim that v is an eigenfunclion corresponding io X, Indeed,
letting first n + <« in (3.3) and then € - 0, we get

which yields the claim.
we also deduce from (3.2), by using Poincaré’s inaequality, that
2F(x,up)

(3.9 limsup Ig(klvnz Y
' Rupd=

write lu l=t. By the mean value theorem,

2F(xtpvn)  2F(x,tpv )

1,2 th2

2
{35) [qt =] ez 1(X 4 v+0(L V-tV v -tpV)
n

where 6=6(n,x) € (0,1], and we observe, using (f;), that the right-hand
side of (3.5) goes to zero as n —+ =. It thus follows from (3.4) that

2F(x,tyv)
(3.6) limsup Jqlav2- 2 )< 0
n

This will be used in siep 4 {0 reach the final contradiction.

Siep 3. we will show thal for some & > o and all n sufficiently
large,
2F(x,tpv(x))

(3.7 {neQ ;
I tp2v(x)?

- h"q} 2 8 »
where n 1s the positive number entering assumption (F,).
Since v 1s an eigenfunction corresponding to Ay, we have either

vo on all @ or v<o on all Q. We consider the first case. The second
case can be treated similarly, by using that part of assumption (Fj)

relative 1o ~=,
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we apply proposition 2.1 to the open set Q, the function u, and
the Borelion set

Bpy=E(Q" A -mnfo.t,maxv],

where E(Q'.A;-n) 15 the sel entering assumption (Fo):

2F(x,8)

E(Q Ai-r)= N _ {seRy ; —— < Ap~n}.
e A seRe L i
This gives
ﬂ](ﬂn)N
{(3.8) {xe@ ; tpw(x)eBr} ? ¢ ——
. " " it

for some consiant ¢ > 0. The left hand side of (3.B) is equal to

(3.9) BnixeQ’ ; tov (x)eBp}

and the set in (3.9) is clearly included in the set in (3.7). Moreover,
assumption (F,) tells us that for seme §; > o end all n sufficiently

large,

H1(By) 2 &ymax vty .
Finally

Lip(tv)=t Lip(v}

where Lip(v) is a constant. Collecting these informations, we deduce
(3.7) from (3.6).

Slep 4 we will now deduce @ contradiction from (3.6) and (3.7).
Let X, be the characteristic function of the set in (3.7). From (3.6) we

hava

2P0tV
ty2v?
2F(x,v)

e lim g gh - Tz vZ (1I-%Xp) $ 0.
neve

lm inff gy ~ v2

we apply the definition of %, to the first term and Fatou's lemm
together with (F|) to the second term 1o get

n Himinf [ ov2X, € o.
This implies, for a subsequence,
lim]avzxn-o.

Thus vzxn - o in L}{Q) and consequently in measure.
Recall that %, is the characteristic function of & varying set ¢
measure > & > 0. Choose € > 0 so0 small that

5
(3.10) InixeR ; v2(x) <€) ¢ 3

The existence of such an € con be seen &s foliows: in the contrar
for each k=1,2....,

o

]
(xeQ ; v2() <=} 2 —;
HN [ k4

calling A, the sel involved in Lhis inequality and A the intersection ¢
those A, we get p(A) > 8/3 and veo a8 in A; this contradicls th

unigue continuation property of the eigenfunction v. ‘we then deduc
from {3.10} that

MxeR 5 v2(x) 2 ) 2 py(R)-8/3

and consequently
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Hy(ReQ ; Xp(xW20x) 2 €)
= pyllxeQ ; v2(x) 2 ednixe@ ; X (x)=10)

iv
wl®

This contradicts the convergence in measure of xnw2 towarods 2ero.
QED.

PROOF OF THEDREM 1.3. Il is identical to that of theorem 1.2
except for step 3. The claim here is thal for some n > o and some
§ >0,
2F(x,1v(x))

(3.11) {xeQ ;
i 1p2v(x)2

£ )\l'l]} 2 8

for all n sufficiently large. As before we can sonsider only the cass
where v is >0 on Q.
Replecing if necessery the open sel w, of assumption (F3), by a

smaller one, we can always suppose that w, is a parallelipiped. Since
the eigenfunction v is not constant on w,, we have, on ,,

0 < minv < maxv.

Lel us write minv=a and maxv=b. We apply proposition 2.6 to the open
sot w,, the function tnv and the Borelian set

By=E(w' 2 -n) n {atp, bl

where n 1s associated 10 the number v=a/b according to assumption
(F5)*. This gives

py (BN

(3.12) Hylxew yvinieBn) 2
ren "2 TLip{t,wN
for some positive constant ¢ > o,

Estimate (3.11) can then be deduced from (3.12) as in the proof of
theorem 1.2. Q.ED.

<l

REMARK 3.1. A natural guestion concerns the introduction in this
probtem of strong nonlinearities, as in [4). This is poscsible under
assumption (1.4), as was observed in [2), where this gquestion is wmlso
studied with the operator -4 replaced by the pseudo-lzplacian -L\D.

The difficuity to intlude strong nonlinearilies in our approach liec sl
the end of step 2, to derive (36) from (3.4). The came difficulty
arises when one tries to relax the linear growth assumption for f into
the more natural growth condition in |s|9. ‘

REMARK 3.2. The method c¢f this paper does not apply lo the study
of the Neumann probiem

[ ~Hu={(xu)+h(x) in 2 ,
ou/én =0 an 4Q

near ils first eigenvalue M=0. This is due to ine fact thel the

corresponding eigenfunctions are constant. A similar difficulty arises
in the study of the periodic solutions of Liénard equation (cf.iED).

REMARK 3.3. H is easily seen that theorems 1.2 and 3 still hold
tf assumptions (F,)} and (Fz), are weakened in the follewing way. It

suffices in (F,)} to assume that for some nonnegative function d(x) in
L'(Q), the set
2F(x,5) d(x)

n_{seRy ; ——=— < A+

}
XEQ' 52 s

has a positive density al both += and -e. In (F),, one can replace
the set E(w’,,A(-n) by the lorger set

N fseR 2F(x%,s} < d(x)}
&€ - samamalih.§ "q" ’
REWw', 0 g2 ' s

where the nonnagative function d{x) lies in Ll(w,) and possibly depends
on v. Of course & similar variant can be introduced for (F3)_ .

REMARK 3.4, Assumption (Fs), Of theorem 1.3 can alsoc be weakened

in the following way, which involves the verification of (1.7) for only
one choice of v. Denote by v the positive normalized (ie. dvi=1)

W
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eigenfunction associated to Ay It suffices to require the exisience of
a full subsel w', of an open parallelipiped w, C &, a number v with

mlnuv
—-*-(D“

meax,*v

and a number n > o such that (1.7) holds. Using lemma 4.5 of section 4
as well as the notalions introduced there, we see that thic will be
satisfied if there exist a full subsel w', of &an open parallelipiped

w,c2 and 8 number n > o such that

g(E(w',, A 1-n),0) S ming v
WE(W'y M =1, 0) maxy v

A similar observation holds of course for (F3)_.

REMARK 3.5. Resulis similar to theorems 1.2 and 1.3 also hold for
the prablem

Lu=r{x,u)+n{x) 1n R ,
D%=o on 32 for |a|sm-i

where L is o differential operator of the form

Lus = (-1 1Pl DP(a g00D%u)
tal,lg]sm

with the following eseumptions: Ggp=tpq : %ap € Cla‘*!ﬂ@) for
lal+|8]>0 ; tgp € LT(Q) for |a|=|B|=0 ; for some ¥ > o,

R W S S
lal=ipfam F

for @e. x € 2 and all § € RV, the eigenfunctions of L asscciated to
the first eigenvalue Ay have the unique continuation property, i.e. the
only function v € Hg (Q) setifying Lv=a,v &nd vanishing en & sel of
posilive measure is ve0. Assumplion (Fs), must however be reinforced
o 1ake Into account the fact that the eigenfunctions correspending to

23

Ay may not be of constant sign on Q. One requires that the open sels
w, and w_. be equal.



4 _EXAMPLED

we first give an example of & nonlinearity f(x,s)=i{s) which
salisfies the assumptions of theorem 1.2 together with (1.5),

EXAMPLE 4.1 Take a sequence

6 < oy < 2ﬂ| < as < 20.2 <..¢ D.k < 2ﬂk < ...

such that lim a,/a,,(=0 and consider the sel

L- -

Lettin
g (e A {o,rD

wy (Lo, 1y

&

tir)

we see thal {(r) is increasing in each intervai (28),84,1], decreasing
in each interval [a,,2a,] and $(2a,)=1/2 {(a,); consequently

Hm inf Tr) = lim inf T{(2a,)

r—sc k= eco
‘ 8x-28y-
= 1/2 lim inf T(ay) 2 172 lim inf ———— = /2
koo k= By

and

12 1im sup $r) = 1im sup {(a,)

r=c k=
A28,
2 1im sup Kk = |
k=eo &y,

Teke a > ¢ and define a function ¥ on R* in the following way: put

o onfo03/2 a],

¥ -{ a on E,
o ot each point 3/2 q

and connect theseé values in & smooth almost piecewise linear

25

oscillating manner, as described in the following figure :

This function is extended to all R by taking, for instance, $(s)=+¥(-s)
Tor s € R™. We then define the potential F by

§2 s2
F(s} = &) = - ¥(s)

2 2
Clearly (Fy) and (1.5) hold, and, by the computation of Ym inf I(r)
above, the set

2F(s)
&2

{seRy : < hma} = E U (-E)

has positive densily at bolth +e and -«. Il remains to verify (1)). we
have

f{s) s
(4.1) —— = A~¥(s)- — ¥(s).
s 2
A simple calculation gives
y f(s) i f(s) \ 3a
m sup — = |im sup —— = Jq+ — .
N e "2
1(s) 1(s)
lim inf = = lim inf — = A\ -3a,
S=r o C—— o0 -

which yields (f)).



we observe in this example thal the guotient f(s)/s does not lie
asympiotically at the left side of X as s ~ 2= Some sort of

crossing of A occurs. However it is not of the Ambrosetti-Prodi lype,
which would mean

lim sup f{s}/s < Ay < 1im inf 1(s)/s.

§-w Eave

it turns out that the crossing exhibited in the above example must
always occur under our assumptions if (1.5) nholds. This is a

_ consequence of 1he following

PROPOSITION 4.2. Lel 1:R* - R be continuoys and denoty by F ihe

) 2F(s)
lim sup

S+ m €

-Al .

ang thet, for some n > o, the set

. 2F(s)
{seR, ; 3 £ A\rf]]
S

has positjve density ot infinity, Then

) 1(s)
Iim sup — > Ay
S S

PROOF. We write 2F(s)/s as A,-¥(s) so that

{4.2) lim inf ¥(s)=0
S o0
and the set
(4.3) {seR} ; ¥(s) > n}

has positive density at infinity. By (4.1) we have to show that

s
{(44) !irg inf (y(s)+ ; ¥is)) < o .

By (4.2) there exists & sequence by, — e« such that ¥(b)=g, -~ ¢

without loss of gensrality, ons can ajwaye assume that ¥ tlakes |
value 2 n at the lefl side of by end that e < n for al k. Call &, the

largest s < by such that ¥(s)=n. Thus ¥(s,)=n &nd ¥ < n on J& b
Define

By=inf{¥(s)+s/2 ¥(s) ; s € [g, b 1)
Thus, on {8,.b,J.

¥(s)*s/2 ¥(s) 2 By,

(s2¥(s)) 2 258,

which gives, arter integration,

ag
{4.5) ex~Bk 2 = (-By) .
bk

wa claim that for some constant ¢ > 0 and all k sufficiently large,

(4.6) Be < -C,

which will of course yield the conclusion (4.4).
To prove (46) we first observe that no subsequence of p

converges to zero. indeed, suppose by contradiction that there exist
such a subsequence (still denoted by By). Then (4.5) implies that

{4.7) -— = 0.

Since the set (4.3) does not intersect the union of the interval
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]nk,bk], lemma 4.3 below shows that {(47) contradicts the assumption
of posilive density for (4.3). We now claim that no subsequence of B,

satisfies an inequality like

(4.8) B2d>o

for some constant d. Indeed, suppose by contradiction thal there exists
such e subsequence (still dencled by B,). Then either B, > n for an

infinite number of values of k, or B, < n for an infinite number of
values of k, or B.=n for an infinile number of values of k. We look
separately at these values of k. In the firsi case {(4.5) implies

since €, < n. This is contradictory since &, ¢ by. In the second case,
{4.5) implies ‘

sk SkBi
Bk~ nBk

where the righl hand side becomes < o since (4.8) holds. This is again
contradictory. In the third case, (4.5) implies

Br < g

which, by (4.8), is also contradictory.
We have thus a sequence By such that no subsequence goes 10 2ero

and no subsequence saltigfies (4.8). This implies that {(4.6) holds. 0.E.D.

LEMMA 4.3. Supppse that the measurable set 6 c B* does npt
intersect o sequence of dicjsint intervals Jo, byl where e, end b+

1 6 has pocitive density s1 infinjty,_then there exicis # constant c
such that

b
(4.9) X ¢
8y

for ol k.

PROOF. The quotient .

Hy(Gnlo,rl)
pillorD

is multiplied by &, /b, when r crosses the hole Ja b, [. Il follows that
if for & subsequence, uk/bk -+ 0, then G does not have positive density
at infinity. Q.ED.

We now construct & nonlinearity Tr{x.s) which satisfies the
assumptions of theorem 1.3 together with (1.5).

EXAMPLE 4.4 Take % as in example 4.1 and consider, for
0¢<n g a’2 the set

En-{sele" ; ¥(s) 2 nl

We claim that for any o < v < 1, there exists n > o such that

(E.nlvr,r))
(4.10) lim inf WEgnlor.r) > 0
re pyfor,rl

For that purpose we first observe that the holes in E“ are intervals
lck,dk[ centered at 3/2 &, with length &t most equal to

8 n-4n+2a
= .

Letting

() iy (Enﬂ[D,l’]}
L llo,r)

and computing as in example 4.1, we obtain
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lim inf (n(r) = lim inf (n(dk)

r-+e K=

m inf —% e 2 lim inf =X g(ay)
= m inf — 2 hmi — a
ke g 1K T ke g N

Cp &p-26¢. la-
> lim inr X K21, 27T
dy ay - 3a-n

and

Nm sup i;n(r} 2 lim sup Z(r)=1.

o (el

- Consequently, given &ny v with o < v < 1, we can choose n such that

Him inf tﬂ(r) ,
lim sup E,I(r)

i.e.,, with the notations of leamma 4.5 below,

g(Eﬂ,n) -
ElE,],u)

The cleim {4.1¢) is then a consequence of this lemma 4.5. We can now
construct the desired example. Choose two balls B, and B_ in & and

define

g2
Fix,8) = ?\15'" if x € B, UB._
or if x € B, and s < 0
or if x € B- and 8 > o,
§2 s2
Mg ¥e) 5 ifxeB, ands>o

or if x € B and s < 0.

Clearly (Fy) end (1.5) hold, and the calculstion in example 4.1 shows

that (fy) holds. Moreover (4.10) shows that (Fy), &nd (F3)_ &re
satisfied on B, and B_ respectively.

LEMMA 45. Let 6 ¢ K* be measurable and dencle. for 0 < v < I,

p{Gnfvr,rli
4G,v) = m inf —————————
r-o hiler,rh

Gnlvr,rd
alG,v) = lim sup il CL
r—eo pylfur,rl)

Assume ¢{(6,0) > o. Then g(G,v) > o for a]) o £ v < 1 guch thet

d¢G,0)
dG.a)

v <

PROCF. Writing

wmi{Gnivr,rl)  mdonle,rl) pyiGnlo,urd
{(1-v)r {(1-vir (1-vir

we obtain

! v

dG,v) » — d(6,0) - — WiG,0) ,

i=v 1=
which yields the conclusion. Q.E.D.

We now turn to & nonlinearity f(x,s)=f(s) for which the glob
result (Theorem 1.2) applies while the local one (Theorem 1.3) does no
This illustrates the fact thal the density requirement at infinily
stronger in theorem 1.3 than in theorem 1.2.

EXAMPLE 4.5. Take a sequence

8 ( by <dby < bp <4y <.

such that 1im b /by, =0. This implies, as in example 4.1, that the set
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G -k Ul [4bkabk¢ |]

has positive density al +=. Teke & > o and define a function ¥ on R*
in the following way: put

P=sraonb,
{0 on [0,2b4] ,

o on U [2b.,3b.],
k=1 k+~Pk

and connect these values by a construction similar 1o that in example
4.1, as described in the foilowing figure :

o \ - /
° : 8 kb

Then, for any n > o, the set

Gy={s € R*;¥(s) 2 n}
does not intersect
k§1 {2by,3by ],
and consequently
ﬂ(Gn,2/3)=u.
A potential F{c) can then be constructed from this function ¥, &s in
example 4.1, which satisfies (f)), (Fy), (1.5), (Fp) but does not satisfy

(F3):. .

Our next two examples concern nonlinearities whose potential
oscillates below Ay bul which fall outlside our present results.

EXAMPLE 4.7. Consider

3 .
(4.11) Fis) = p Ase + : sZsins .

Clesrly {F), (1.5) and (F,) hold. However (f;} is not verified since
f(s)= = Ays+ - njssinss — Ais2coss
a ™ 4 ™M g ™1 -
EXAMPLE 4.8. Consider
) 3 1
(4.12) F(s) = S As2 + s A s2sinlog(1+log(1+]s ).
Clearly (F;) end (1.5} hold, as well as (f) since

1(s)
{4.13) limsup — = Ay,

S~ s

(s) Xy
« liminf —— & — |
§ § 2

However (F5) does not hold. This can be verified -directly by using
lemma 4.3 It also follows from proposition 4.2 and {4.13).

Observe that a 1ittle less damping in the oscillations in {(4.12)
leads to a nonlinearity which satisfies the assumptions of theorem 1.2:

EXAMPLE 4.9. Consider
2 1
' F(s) = - Ays2e S As2sinlog(1+|s|).

Clearly (Fy) and (1.5) hold, as well &s (f) since

b -
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A < Himsup — < — Ay,
$— o 1 a8

Ay

3 1(s) 1
= Ay € liminf == < =
E=c § 2

A direct computetion show thel (F,) also holds.
To conclude this seclion, we show that a density condition at

infinity for f(s)/s implies a stricl inequality at infinity for 2F{s)/s2.
This was observed in a particular case in [1]. See also [2]).

PROPOSITION 4.10. Lgt 1:R* = B be continuous with

1(s})
(4.14) Hmsup — < A .
S ao -3
Suppose thal for some n > o, Lhe set )

1(s)
E={s € R . —;— < Mnd

has positive density at +w. Then the associated potential F salisfies

2F(s)
limsup 2
S—~+c  §

<N -
PRGOF. By (4.14) and the definition of E, we have
F8) £ [1g et [ gqnge ytoeteng)
where the constent b, is associaled o € > 0 in the detailed
expression of (4.14) and where EC denotes the complement of E. Lemma

2.2. implies

{Enfo,s]}
J‘[o‘s]ngftl 2 Iop' [ snt=n/2 p,(En[o,s]}z,

vhere, by the positive density at infinity, the last term is » r|832/2
for some & » o and all s sufficiently large. Conseguently, taking

£=n§/4, we oblain

Y né
Fis)s ny —-—
2 4

which yields the conclusion. Q.ED.

g2 \
— +g R
,, *SPe
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