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L INTRODUCTION

Since the end of the seventies a dramatic progress has been
achieved in Hamiltonian dynamics and symplectic geometry. In this
survey we shall look at several topics which play a key role in this
development. We are however far from being complete and we refer
the reader to [B), [Gr3] and IRa—Am-Ek-Ze} for other aspecis. The
topica are presented here in their logical, rather than their
chronological order. Be{oré we go into details however we give a short
“historical” sketch. )

‘The breakthrough In the variational theory of finding periodic
solutions of Hamiltonian eystems (if we forget the more special geodesic
problem) is due to Rabinowitz and Weinstein in 78, [Ral], [WeH]. In
his paper Rabinowitz showed that the well known classical variational
principle can be effectively used to show the existence of periodic
solutions for Hamiltonian systems. This came as a big surprise since
this principle was considered as very degenerate and as useless for
existence questions (see for example J. Moser's remark in [Mo2]).
Motivated by Rabinowitz's r&splt there was a flood of papers studying
different types of Hamiltonians, see [Ral], [Zel] and generaily
(Ra~Am-Ek-Ze] for & survey. Moreover it lead to the study of new
classes of abstract functionals, see [Be-Ra2}, [H1]. On the other hand
the dual variational principle was introduced in [Cl1] and led to the
celebrated Ekland-Lasry result [E-L), Ekelands Morse-theory for convex
Hamiltonizn systems [El}, the solution of the minimal period problem
in [E-H1] for convex Hamiltonian after preliminary results by
Ambrosetti and Mancini [A-M] and Clarke-Ekeland [CI-E] and recently
in [E-H3] to global and local symplectic invariants of convex



Hamiltonian energy surfaces and their periodic trajectories. A very
recent breakthrough is due to C. Viterbo [Vi] who proves the so called
Weinstein conjecture in the R%_case. This conjecture is concerned
with the existence of periodic solutions for & Hamiltonian system on a
prescribed energy surface. Motivated by [Vi] in [H-Ze] a new
phenomenon was detected — The Almost—Existence~Mechanism. In
[H-Vi} and [F-H-V] more cases of the Weinstein conjecture have been
solved. The method of proof in {F-H-V] is particularly interesting
since one uses a new ingredient: first order elliptic systems. This

" brings us to symplectic geometry and Gromov's key contribution to
this subject.

Symplectic geometry had developed separately from Hamiltonian
dynamics. Though a global aymplecti; geometry had been conjectured
in 65 by Arnold [Arl], [Ar2], the results stayed local for a long time,
see [Wel], [Mol]. In fact embedding resulis due to Gromov, see
[Gr2,3] indicated a high flexibility of the symplectic notion. In 82
Conley and Zehnder {Co-Zel] succeeded in proving one of the Arnold
conjectures vsing methods from the variational theory of Hariltonian
dynamics and the homotopy index of C. Conley [Co). Using this
"hook-up” M. Chaperon proved a Lagrangian intersection result for the
standard torus, [Ch], and in [H2| the most general case for Lagrangian
intersection theory in cotangent bundles of compact manifolds was
established, see [L-S] for a simpler proof. [Co-Zel] also inspired A.
Floer and 1. Sikorav in proving some of the Arnold conjectures in
certain spaces [Fl1], {Si]. A very important contributions ig then made
in 85 by M. Gromov [Grl]. He introduces his theory of almost

holomorphic curves. A. Floer quickly realized that Cmmov's

(nonvariational) ideas can be connected with the "classical" variational
approach used in [Co-Zel], {H2|, [FI1), [Si]. Tfis leads to Floer's
Morse theory for Lagrangian intersections [F2-F5| and then to the
Lusternik Schnirelman theory, simultaneously developed in [F7) and
[H3). A phenomenon well-known in the theory of harmonic maps and
detected in this set up by Sacks and Uhbenbeck [S-U] and for
holomorphic maps in {Grl], namely the bubbling off of harmonic or
holomorphic spheres plays a key technical role and causes difficulties if
certain topological conditions are not met. Recently Floer obtain some
very interesting results in this direction [FI6).

In another direction, in |E-H5|, the local rigidity of symplectic
maps has been studied, giving a new phenomenon. Rigidity in
symplectic geometry had only be accepted and expected as a global
phenomenon, see remarks in [B] and [Gr3) concerning the celebrated
Ellashberg Gromov result which says in a variant that the symplectic
diffeomorphism group gf a compact symplectic manifold is CPclosed in
the diffeomorphism group. Very interestingly the results in [E-H5)
show a close relationship between symplectic embedding problems and
Hamiltonian dynamics on energy surfaces.

In this survey we shall start with the local rigidity property of
symplectic geometry, connect it with Hamiltonian dynamics on an
energy surface and study the Weinstein conjecture. Finally, we look at
the Arnold conjecture and survey the recent results and explain some

of the key technical ingredients.



Ii. LOCAL RIGIDITY IN SYMPLECTIC GEOMETRY
We denote by (V,w) the standard sympleclic vectorspace R

equipped with the symplectic form w = <J+,+> , where

1=} exm
and <:,-> denotes the standard inmer product. We call a linear
map ¢ V.-V symplectic if it preserves W, e

$w=u (8ED) = MO, Hn)

We denote by Sp(V) the group of symplectic linear isomorphisms.
Given ¢ € Sp(V) we have ¢'u“ = o s0 that det(¢) = 1.

Given 2 smooth map h: U - V, defined on an open subset U of V
we write h'w for the 2-form on U defined by .

(" DE = Ab(ER X))

where h'(x) is the derivative at x e U. A map h as described
above is called symplectic iff h'w= @ on U. Assume now U,
and U2 are open subsets of V. We study the question, when there
exists a symplectic embedding h: U1 - U2'! By the preceeding
discussion h will be volume preserving so that the existence of such
an embedding implies vol(U2) 2 vol(Ul}. A volume condition in V
is a "2n—dimensional” condition in contrast to the 2-dimensional
condition of being symplectic. Can we say more than

vol(Uz) 2 voI(Ul) (if n22)7 For re [0,+} denote by B(r)
the open Euclidean ball in V of radius T, where we have B(0) = @
and B(w) = V. By E(r) we denote the open symplectic cylinder of

radius r, ie,

E(r):{xEV|x¥+x <r2}.

2
n+l
We ask now the simple looking question when can B{(r) be
symplectically embedded into X(r'). Obviously an embedding (even
linear) is possible if r' = r. Can we perhaps squeeze B{r) into
some E(r') with ' < r. It turns out that this is a very deep
question. In |Grl} proved the following result (among many other

things).

THEOREM 1 If there exists a symplectic embedding h: B(r) - E{r')

then ' > r.

This result is proved using nonlinear first order elliptic systems
(Cauchy-Riemann type operators). Motivated by Gromov's resuit the
notion of a symplwtic capacity function has been introduced in [E-Hs}.
The idea is to put the embedding problem h: U, - U, on an

axiomatic foundation. This approach actually leads to an interesting

‘hook up with the fixed energy problem in Hamiltonian dynamics and

in particular this connection can be used to give an alternative proof
of Thearem 1 bsing periodic solution of Hamiitonian systems on a

prescribed energy surface, see [E-H5] for more details.

1. SYMPLECTIC CAPACITY FUNCTIONS
We denote by ¢ the power set of V.,
Definition 1 A map a: ¢ ~ [0,+a] satisfying the following three
axioms is cafled a symplectic capacity function
(A1) (normalisation) ofX(1)) = o(B(l)) = =



{A2) (monotoncity) SCT=>0a5) ¢ oT)
(Al) (conformality} If ¥ V + V iz a diffeomorphism
satisfying d;w =cw for some ¢ > 0 then,

o(¥S)) = ¢ ofS) for S€ g

It is not difficult to show that the existence of a symplectic
capacity function & is equivalent to Gromov's result. Let us define,

with D being the symplectic diffeomorphism group of V,

(1) ofS) = inf{m® € [0,4+c] | there exists ¥ € D with ¥S)cE(r))
afS) = sup[ﬂ'r2 € [0,4w] | there exists ¥ € D with ¥(B(r))cS].

An easy theorem is

THEOREM 2 o and ¥ are symplectic capacity functions satisfying

¥ < e. Moreover given any symplectic capacity function a we have

A
3’505&.

So % is the minimal and o the maximal symplectic capacity

function.

We call a subset S of V a linear ellipsoid if there exists a
quadratic form q, with q(x) 2 0, x € V, such that

S={xeV]| q(x)<1}‘=: Sq

The collection of all linear ellipsoids will be denoted by Ve An
ellipsoid is a set S guch that

§ = ¥T)

forsome ¢y€D and T ¢ YLE ¥E denotes the collection of all
ellipsoids. Note that in "short hand"

e =Dowpg
For o <1 ¢r,.8 1, define with r = (ryrty} S(r) €
by
»o1 .2 2
5() = {xeV Iigl —;? (G + xj,,) < 1) i

It is a standard result in linear symplectic geometry, see [Ar2),
that given any S € o which is bounded there exista r and
¥ € Sp(V) such that

Ws) = 5(r)
Using this fact one easily verifies that
nr|pE = ZrhoE

So there i3 only one symplectic capacity function on ¢g- This leads
to a good open problem.

PROBLEM 1 What i3 the maximal class M of ¢ such that
;|¢M = leM ? A result which we will obtain later suggest that if
S is symplectomorphic to an open convex set, then G(S) = X(S).

Given a symplectic capacity function a we can study

homeomorphisms in V preserving a. We start in the linear



category

DEFINITION 2 By A(V) we denote the subgroup of GL(V)
congsisting of all maps ¢ such that

(2) of¢(S)) = ofS)

for every bounded S ¢ LE
Note that the definition does not depend con the choice of
a since on gy %= a-=a

The key linear result ig

THEOREM 3 A(V) = Sp(V)uT o Sp(V), whete T' is a linear

isomorphism  (V,w) + (V,~w).

For the proof which is basicaily straight forward but somewhat
tedious we refer the reader to [E-Hs).
A useful result which we need later on is

PROPOSITION 1 If ¢: V +V is linear and o{¢(S)} > 0 for
every nonempty bounded S ¢ YLE + then ¢ € GL{V).

Next we move to the nonlinear category.

2. A LOCAL RIGIDITY THEOREM AND THE
ELIASHBERG—GROMOV—-‘I‘HEOREM
Having a symplectic capacity function and the key linear result
Theorem 3 we start with a technical result.

THEOREM 4 Assume (hk): B(1) « V s a sequence of continuous

maps converging uniformly to a continuous map h: B(1) ~ V which

is differentiable at 0 with derivative h'(0). Suppose
a(h,(S)) = ofS) , k € ¥
forall Se #LE: S CB(1). Then h'(0) € A = A(V).
An easy corollary of Theorem 4 is the result we are aiming at

THEQREM 5 (Local symplectic rigidity) Assume (hk): B(1} -V s
a sequence of symplectic embeddings converging uniformly to a
continuous map h: B(1) = V which is differentiable a1 0 with
derivative h'(0). Then h'(0) € Sp(V). ’
Assuming Theorem 4 for the moment we know since the h,
are a-preserving that h'(0) € A. If n is odd then I is
orientation reversing. Since h'(0) has to be orientation preserving we
must have b'(0) € Sp(V). If n is even consider the symplectic
vectorspace (V @ Ii2. w8 WRQJ \'uhich is symplectic isomorphic to
®30+2 w o +2) 82y by a map 7. Define f‘k by
f;k =70 (b Lo 51

Then l-lk is & symplectic embedding and I-lk converges uniformly to
l.x defined by

h=go(hxl ,)oql
h2

Now n + 1 is odd and fn'(o) € Sp(l!zn+2) by the previous

argument. Since



WO) = 70 (W) = 1) 0 77

we see that h'{0) = IR2 is symplectic which is only possible if

h'(0) € Sp(V).
Next we sketch a proof of Theorem 4.
Given Segp,SCB(l),and ¢ >0 we find T € gp such
that
cl(h(S)) € T , ofT) <.a(h(S)) + ¢

Since for k large enough we have hk(S) ¢ T we see that

afS) = ofS)

ah (5))
{;{nk(sn

a (T)

a (h(S)) + e

A A 1]

I~

¢ > 0 being arbitrary implies
(1) ofS) < ofh(s))
For t € {0,1) using (1) we compute

(2) oS} = e(kes)
7 oftS)

< ;é o{h(tS))
= offh(ts))

If now t]0 the maps %h(t-) converge uniformly to h'(0). Using

10

the same arguments as above we see that
() limsup affh(S) < oth(0)9)
combining (2) and (3) gives
(4) ofS) < a(h'0)S)

for every S € v with Sc B(1). By Proposition | this implies
that h'(0) € GL(V). Next we have to show the reversed inequality
in (4). Since h s differentiable at 0 we find a nondecreasing

map ¢ (0,1) + (0,4=) such that ¢(s) + ¢ as s+ 0 and assuming
h(0) = 0

[h(x) = h'(0)}x] < € (|x]) [x].
Given &€ (0,1) we find k(&) such that for k 2 k(8
Thy(x) - B'(O)x| < e(|x]) |x| + &

Pick 7> 0. For re€ (0,1) =mall enough we have (1+7)r < 1
which we assume in the following. Take an arbitray S € v g With
S ¢ B(1). We shall show that

(8) by((1+7)78) > h*(0)(7S)

for k large enough and r small enough. (3) wil! be a simple
consequence of a Bouwer degrec argument which we leave to the

reader, Hence from (5) we infer

(b (0)(1S)) = a(h'(0)(75)
< afhy ((147)75))

11



12

= of(1+7)718)
< a ((1+7)15)
< (1+9)%2 ofs)

Hence we obtain for S € PLE § ¢ B(1)
(6) ab(@)S) ¢ ofs)

Now combining (4) and (6) and using that h'(0) is linear we must
have

(M ofS) = o'(0)S)  Se ¢ p bounded,

This shows that h'(0) € A.

Finally we give as a corollary the celebrated Eliashberg—Gromov
result. The result had been anncunced in 1981 by Eliashberg, but had
never been published. According to Gromov the result had been
proved by Eliashberg using a very complicated combinatorial argument
based on Poincare's proof of the last geometric theorem. In [Gr2]
Gromov sketches a (difficult) proof based on the Nash-Moser implicit
function theorem and Theorem 1. Because of its proof the result had
been seen as a global phenomenon see [B] and [Gr3]. However the

proof used here shows that it is indeed a very local result,

THEOREM 6 (Eliashberg-Gromov) Let (M,w} be a symplectic
manifold. Then the symplectic diffeomorphism group D (M) s for
the C%~compact open topology closed in the diffeomorphism group
Diff{ M).

PROOF: Using Darbousk charts we can reduce the result to

Theorem 5.

3. RELATIONSHIP TO THE FIXED ENERGY PROBLEM

In this part we shall show thal there is a relation to the fixed
energy problem in Hamiltonian dynamics. This relation ig not well
understood today and a better undersianding could be mutally
beneficial for both fields.

Symplectic capacity functions give us an obstruction against
embedding one set symplectically into another set. The obstruction is
& number ofS) and naively one would guess the obstruction 1o be
visible as a class of 2-dimensional subsets in S. Since, while
embedding S into T the problems should arise at the boundary of
S, the geometric obstruction set should have a trace on the boundary.
The trace of a nice 2-dimensional set should be 1-dimensional and in
nice cases it should be a loop on 5.

Assuming 35 1o be smooth, there is a class of nice loops on
&5, namely periodic Hamiltonian trajectories. To be more precise we
need some notation.

Given & connected compact smooth hypersurface A in V the
normal bundle is trivial as a consequence of Alexander duality, [Sp].
Moreover V\A has a bounded and an unbounded component. We
shall denote the bounded component by B A+ There exists a canonical
one-dimensional distribution &, ~ A, &, ¢ TA, defined by

fr = {8 € TA | £ T A)
3Ch -+ A 18 called the chasacteristic distribution,

DEFINITION 3 A closed characteristic or periodic Hamilitonian

13



trajectory on A is a submanifold P of A diffeomorphic to s!
such that TP =£\|P ‘RA) denotes the collection of all closed

characteristic on  A.

We need further the definition of contact type, [We3], and
restricted contact type, [E-H4|.

DEFINITION 4 A compact connected smooth hypersurface A cC V

is said to be of contact type if there exists 8 Iform A on A such
that Mx,&) # 0 for (x,6) €€, and €40 sothat di = w/a.
If A can be extended to V such that dA = w we say A isof

restricted contact type. The collection of all contact type
hypersurfaces in  V -will be denoted by ¢, the subcollection of
restricted contact type by tr. One has the following result

THEOREM 7 There exists a symiplectic capacity function a such
that for A e ¢ there exists a positive integer k and a closed
characteristic P € (P(A) with

(1) a(By) = kif AP |
Moreover for every S € ¢ we have
o(5) = inf {o(U)| U open U 38}
and for every nonempty open U
ao(U) = sup {a(B,) | BycU,Ace L}

Some ideas concerning the proof of Theorem 7 will be given in
1II. 4.

14

Here are some open problems.
PROBLEM 2 Can we pick P ¢ (A} such that
ofB,) = | J AjP |

jecan wetake k=1. If B A 8 symplectomorphic to a convex

domain this is actually possible.

PROBLEM 3 Assume A ¢ ¢, is homeomorphic to g2l g
true that there exists . ¥ € D such that

¥B,) € Ho(B,)) ?

If yes, is it true that ¥(A) n az:(&(nnn contains a closed
characterstics on  y(A)?

15



ML THE FIXED ENERGY PROBLEM IN HAMILTONIAN
DYNAMICS AND THE WEINSTEIN CONJECTURE.

As already mentioned in the introduction the break through in
questions of existence of periodic solutions on a prescribed energy
surface i3 due to Rabinowitz. Motivated by some further result by
Rabinowitz, Weinstein formulated a conjecture which carries hi; name,
A very recent break through in proving the Weinstein conjecture is
due to C. Viterbo, [Vi]. Here we shall start with an almost existence
phenomenon which had been detected by E. Zehnder and the author
and which was motivated by Viterbo's Theorem, [H-Ze]. Moreover we
shall survey strong extensions of these results to the cotangent bundle
case [Ho-Vi| and the P « Ct—case [F-H-V], whete P is a compact
symplectic manifold. Then we indicate how one can refine the method
to tackle some new kind of fixed point theorem, [E-H4]. Finally we
give an idea how a symplectic capacity function based as the fixed

energy problem can be constructed.

I. AN ALMOST EXISTENCE RESULT FOR
PERIODIC SOLUTIONS

We use the notation as intreduced in IL3.

DEFINITION 5 Given a connected compact smooth hypersurface A
in V we call a diffeomorphism ¥ (-1,1} » A = U onto an open
bounded neighborhood U of A in V a parametrized family of
compact hypersurfaces modeled on A provided ¢(0x) = x for
every x € A. We also put A, = ¥W{e} = A) and we shall write
(A‘) or {At)EE(—l,l) instead of .

Denote by A & l-form on V such that di = w and wrile

16
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a(P} for |f A{P| where P E@(l\). We have the following
surprising almost existence result for periodic solutions,
see [H-Ze).

THEOREM 8 (Almost existence) Given F=(A J where A = A

is 8 compact connected hypersurface in V there exista a constani

Q

d = d{F > 0 such that for given §¢ (0,1) there exists an
le] < & so that the following is true

B+ and there exists P e
such that a(P c} <d.

Theorem 8 has at least two interesting consequences. Assume
first A is of contact type. As it was shown in [We3] there exists a
vectorfield g defined on an open neighborhood of A in V which
is tranaverse to A 5o that L”u = w. Using the flow associated to

7 we can construct 8 ¢ (-1,1) x A » U such that
(1) Ty,) = 4

where Yo A v A, ¢(x): = Wex). Cleary (1) implies
@ v @) =)

Since by Theorem 8 there is a lel < 1 with @ {A,) #98 we see
1]

that 6’(!\) # 0. This proves
THEOREM 9 (Viterbo) If A is of contact type then {P(A) # 6.

Theorem ¢ is a generalization of the Weinstein conjecture.



DEFINITION 6 We say a compact smooth hypersurface A admits
an a priori estimate if there is a family (A c) as in definition 5,

'\o = A, and a constant ¢ > 0 such that

(3) fP) < L a(P)

forevery Pe U G (A It is of course not assumed that
€(-1,1

U 8(1\‘) #0 Asa oonsequence of the almost existence result we

have

THEOREM 10 ([H-Ze]) If A admils an a priori estimate then

VIR L)

This follows immediately from Theorem 8 over the .
Ascoli-Arzela-Theorem. Theorem 10 had been (vaguely) conjectured
by P. Rabinowitz: a priori estimates imply existence. Defintion 6

makes precise what a priori estimate means.

We sketch now a proof of the almost existence result. The idea

is to construct a Hamiltonian system H: V 4+ R such that

Hl((o,h) = A
(O = v A

_for a suitable large number b and
o) = Agey Tor ce(op)

8o that the following holds: If x: [0,1)/{0,1} » V is & smooth
1-perodic loop salisfying

i = xH(x) ]

18

where XH is the Hamiltonian vectorfield associated to H via
= u(xH.‘) and if

bylx} = 3 1} <3k o> - [LHM >0

then x{[0,1]) C A, for some {e| < & Clearly this implies
Theorem 8 up to the a priori bc'Jund for the action a(P). So the
crucial point is the construction of the Hamiltonian. Fix 6 € (0,1)
and denote by B the bounded component of V\¢{[-44§ x A) and
by A the unbounded component. We may assume 0 € B. We
define

(4) * = diam (U)
and fix nﬁmben r,b such that

(5) v<r<2y

32<b<2n2

Note that 7,r,b do not depend on the choice of 4. Next we pick
smooth functions J: (-1,1) < R, g (0) + R satisfying

) j|(-t-8 =0,jl[6 1) =b,j{s) >0fer -~f <8 <8

2

g(s) = b for 8<r, gls) = grs s large,

g(s)zam;2 for s>, 0<g'(s) $3ms for 8> 1.
2

Next we define a very special Hamiltonian H € C*(VR) by

(¢) iE“E § 3

€ if x¢€ y € eg

“(") i!. it x €A, |x|¢r
s(ix]) it |x} >r



20
We note that

& >+ 3 xi® < HE) < b+ 3r fx?
for xeV

If x: [0,1]/{0,1} » V is a smooth loop we define ¢(x) by
(9) #x) = § Jg <=3k, x> dv = ]} H(x(t))dt
We have the following crucial observation

LEMMA 1 Assume x is a l-periodic solution of the Hamiltonian
gystem Xx = Xj(x) satislying ¢(x) > 0. Then P: = x([0,1]) is a
closed characteristic in some R (A) with |ef < &

The proof is simple. If x is constant we have P(x) € 0. If

x is nonconstant and |x{t)} > r for some I we have

|x(t)| = [x{0)]. Then x satisfies

—Jic=5l-(-i%‘-lx

With v = |x({0)] we compute

#x) = g g'(v)v - g(v)

v - g(v)

i~
L - T

2

A
[

TV2—%I’V

|
o

Hence we can only have x([0,1]) ¢ A ¢ for some ¢ € (-4,8), which
immediately implies our assertion.

Now 1-periodic solutions of % = Xy(x) can be found as critical
points of ¢ on a suitable Hil.bert.space of loops. In view of Lemma

1 it is enough to find a critical point x of ¢ satisfying 0 < ¢(x)
£b Infact if P = x([0,1]) we find since P EQ(A() for some
e} < &
a(P) < § [} <%, x>dt
= ¢(x) + fg H()dv
sb+b
= 2b

Define d(;%:= 167 diam (U)Z (> 2b).

In order to find critical points for ¢ we take a variational set

1
up as in {Be-Ra2]. Denote by E = H%(S'V) the Hilbertspace of all

functions x € L2(o.l iV)  satisfying
x(t) = L exp(2aktd)x, , x, €V
ktd k k

2
) ]k] X, <w®
kel Pl
As an inner product we take

{xy) = (2x £ |k| <xXpy>) + <Xp¥o>
y
and define ||x|| = (x,x)i. We have an orthogonal decomposition
E=EeE%e E+. where E, E°, E correspond Lo the subspaces
k<0, k=0 acd k>0 Wedenote by P-, P® and PV the
corresponding orthogonal projections. the functional ¢ previously
defined for smooth loops extends to a smooth functional on E and is

given by

(10) ¢(x) = H(-P7+ PPhxx) - J} Hx(u))ae



Using the compact embedding E ¢ LP, 1<p < w we see that the
gradient ¢: E~E of ¢ is a compact map, which has linear

growth since H is quadratic outside a big ball. We have
(11) ¢(0) =0, $'(0) =0 and ¢"(0) = -P~+ P
An easy consequence of (11) is
LEMMA 2 There exist a € (0,1) and A > 0 such that
$IF 2§ where T = {x ¢ E* | Jx| = o}.

Define eft) = 757 exp(2n3)(1,0,..,0) and put E = E® E% Re.
We define & bounded subset L of E by

D= {x=x+x"se | iIx+ X <r ,s5e€ 0]
where r > 1 will be specified later.

LEMMA 3 Denote by 4T the boundary of £ in E. If r> 1
is sufficiently large we have ¢|8E < 0.

This is an immediate consequence of the properties of H.
What we have established o far is the existence of what is
called a linking, see [Be-Ra2), [H1]. Here we have the following

picture

#Ir2450 x>

r "CD #1350

Now we solve the ordinary differential equation x' = -¢'(x) in

23

order to obtain a global flow R « E « E: (t,x} - x - t. Ciearly

it = ~ foeeul? < o
Since t + ¢(x-t) Is a nonincreasing fnap we see that

() -tnT =9 for t20
Our alm is to show that

L«tnl#® for t>0

So we need
LEMMA 4 Z-tnT ¢##® for t20
The sta}ement is equivalent to the solvability of

(12) (P7+ PO)(x-t) = 0, {fx-tf = e
20

,XEL
Applying the variation of constant formula to x' = —¢'(x) we can
write
{1

x - t=¢e%x+ 2%+ et B{t,x)

where the map B: R x E + E i3 smooth and maps bounded sets into
precompact sets. Hence (12) is equivalent to

(13) 0 = x7+ %+ (P7+ P%) B(, x+ x4+ se)
0 =se—(3+ a-lx+ x"+ se) « tfe

Clearly {13) is of the form
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(4) 0=2+T) zes

We know already that 0 # z + Tyz) for z€ 35 and ¢ 20
Since T is mmpa.ht we can apply Leray-Schauder-Degree-Theory Lo
_ find with £ = interior of L in E

dey(I + T}, & 0)

= dey(l ~ qe, 2‘ 0)
= dey(l, £, ae)
=1

since ae el

LEMMA 5 ¢ = lim sug #(x-t) exista.
t+o XE

Moreover +ow > ¢ 2 >0 and ¢ is a critical level of ¢.
PROOF The asymptotic behavior of H implies immediately that ¢

satisfies the Palais-Smale condition, see [Am-Ze], (H-Ze}. Since ¢(E)
is bounded in R we have ¢ < +w. Since the map t -rsuE o(x-t)
XE

is nonincreasing c exists.

From Lemma 4 we infer that £« ¢ AT #9 for ¢ 2 0 which

implies
sop p(Et)2inf )2 8> 0

Hence 0 < ¢ < +w. Assuming that ¢ is not a critical level we

find using the PS-condition that

19000 2 € i 9(x) € [coe, e

for some ¢ > 0. So there exists T > 0 such that
P T e ¢ where ¢ = ¢ M(-wi]). I L >0 s large enough
we have by the definition of ¢

E.£C¢C+(

Hence
E (t4T) = (B¢ - T
c ¢C+(. T

i

12

showing that ¢ < ¢ — ¢ which is a contradiction.

2. EXTENSIONS TO MORE GENERAL SPACES AND REMARKS
Let us first formulate the general Weinstein conjecture.  If we

replace {V,w)' by a symplectic manifold (M,w) and A is a

compact smooth hypersurface in M we can define again contact

type.

CONJECTURE (Weinstein) If A is a smooth compact bypersurface
of contact type in (M,w) then e (A) 2 0.

Actually Weinatein also assumed that Hl(A; R) = 0. This
hypothesis seems however not to be crucial.

Moreover we can ask when does an almost existence result hald,
which i8 a more general concept then the Weinstein conjecture.

First we consider the contangent bundle case. Let M = T N

be the cotangent bundle of a compact connected smooth manifold of



dimension at least two. Given a connected compact hypersurface
ACM wesay A encloses the zero section if A does not intersect
the zero section N C T‘N and M\A has exactly two components,
so that the bounded component contains N. M is equipped with the
standard symplectic form dA, where X = "pdq". Again we can
define a parametrized family. We have '

THEOREM 11 ({[H-Vi]) Assume N is a compact connected smooth
manifold of dimensions at least two. Let J* = (A J bea
parmetrized family modelled on a compact connected hypersurface A
enclosing the zero section. Then there is a constant d(8") > 0 such
that for every &€ (0,1) thereisa |e¢] < § with ‘?(A‘) i@

containing P P and
0<| ’\!P¢ | ¢d

In particular the Weinstein conjecture holds and the existence
mechanism based on a prioti estimates.

Another result is the following

THEOREM 12 ([F-H-V]) We have an almost existence result for
families (A 6) modelled on a compact connected smooth hypersurface
ACPx Ct((?_l), with trivial normal bundle. Here P x Ct is
equipped with the symplectic structure wp U(t and (P, “’P) is a

compact symplectic manifold so that wp vanishes on 1,(P). Cc ~

RY i equipped with the standard structure.

The proof of Theorem 11 is very technical and based on methods
developed in [H2] in the proof of one of the Arnold conjectures.

Theorem 12 is proved with the aid of first order elliptic systerns. This
is conceptual much simpler though the technical difficulties are still
nontrivial. A proof of Theorem 11 using the machinety of Theorem 12
should be possible.

There ia obviously one open problem:

PROBLEM 4 Does there exist a smooth compact hypersurface A in
v with §(A) = 07

3. GENERALIZED FIXED POINT PROBLEMS
An interesting question in the global perturbation theory of
Hamiltonian systems is the following. Consider an autonomous

Hamiltonian system
(US) -Ix = H'(x)

having A = H™ l(l) as a compact regular energy surface. We call
{US) the unperturbe'd system. Assume now (US) is perturbed
between time zero and time one by a nonautonomous Hamiltonian

system giving the perturbed equation
(PS) I = H'(x) + €(x)

where ¢ has compact support and supp(;) c 01 x V. We are
interested in solutions of (PS) which agree before time zero and after
time one with the unperturbed movement up to a phase shift. More

 precisely do there exist solutions x of (US) and y of (PS) and a

number & € R such that

H(x(t}) =1 forall teR
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y(t) = x(t) forall t <0
¥(i) = x(t+8) for ¢t 21

If CiA - A, A= H_l(l). ig the characteristic line bundle we denote
by Lp(x) for x € A the leaf through x. If p is the
time-one-map of (PS) (we assume it exists) then the problem

described is equivalent to the following generalized fixed point problem

¥x) € Ly(x), x€A

Here we give two results which can be proved by a tricky extension of
the method first described. The details can be found in [E-H4]. See
also [Mol] for local results in this direction.

We denote by G the group 12 acting in the usl;al way by

X+=-x on V.

THEOREM 12 Assume A is a compact connected smooth
hypersurface which is G-invariant and of restricted contact type. Let
¥ be a G-equivariant symplectic diffeomorphism in V. Then there
exists x € A with ¢(x) € Ly (x).

What happens if we drop the group action. As the following

Theorem ghows the situation is subtle and far from being understood.

THEOREM 13 Assume A s a compact connected smooth
hypersurface of restricted contact type in V enclosing 0. ‘Let
t = 1[" be an isotopy of the identity in D w fixing 0 and let
“H: {0,]] x V4R be the Hamiltonian generating & - ¥, and

29
normalized by H{1,0) = 0 for all ¢ € [0,]], We assume
H(t.x) - §<H"(t,0) xx> 2 0

for every t € {0,]] and x enclosed by A
and

%'j_(‘, <-Jkp>di - J3 H(Lx(0)dt € 0

for every fixed point X, of ¥; which is enclosed by A where
x(t) = qbt(xo). Then there exists x € A satisfying
#x) € Ly(x).

If one relaxes the condition somewhat one can have nonexistence
as an example in [E~H4) shows. Theorem 13 implies generalization of
results due to F. Clarke [Cl1] and J. Moser [Mol]. It is not known
how good Theorem 13 is, i.e. how shatp are the hypotheses?

4. A RELATED SYMPLECTIC CAPACITY FUNCTION
We skeich now a proof of the existence of a particular symplectic
capacity function as given in 1.3 Theorem 7. Prompted by the proof

of Lemma 4 in I 1 we introduce a subgroup # of the
1
homeomarphism group of E = HE(S'; V). Namely
(1) heg<=>hE-E isa homeomorphism such that
h(x) = e7+(x)x+ +x° 4+ 67—("){ + K(x)

where 1+, 7: E -+ R are continuous and map bounded sets into

bounded sets. Moreover K s continous and maps bounded sets into



precompact sets. Further

(2 K(x} =0, 77X = 7(x) =0 if ||xl| large
or [§ <-Jex>dt < 0

That £ I3 a subgroup of homeo (E) is not difficult to verify.
Given A€ ’r , ie. A is of restricted contact type, we denote
by J(A) the set of all H: V =+ [0,4a) such that

(3) H(x) =0 for al x in an open neighbothood of
B T A

and

(4) H(x) = k|x|2 for |x| large for some &k € {0,4w)
Finally we define for A ¢ A

®) A8) He3(A) heg aes* ()

where ST is the unitsphere in E* and. By I8 defined by
() = § (P7+ PH)xd - 1 Hex(upan
Then we put
ofBy) = r(A) for A€t
and for U #4¢ open
o(U) = sup {o(B,) | B, C U, A € {)

and finally for S € p

k(|

ofS) = inf {e{U) | U2 S, U open}

One verifies then (which is quite téchnical) that a is a symplectic
capacity function having the properties stated in Theorem 7.



IV. THE ARNOLD CONIECTURES

In the introduction we have already described some of the history
of the Arnold conjectures. In the first section we describe the
problems and introduce the necessary notation. We also like to
duggest the reading of [Ar1]. ‘

1. SYMPLECTIC FIXED POINT THEORY AND LAGRANGIAN
INTERSECTION THEORY

In the following we assume that (M,u) is a compact symplectic
manifold. We are interested in studying fixed points for symplectic
diffeomorphisms on M. Ogne cannot expect in general that every
symplectic map has a fixed point. Just look at the map on R2"/12n
induced by x - x + (%.0,0,...,0). However maps generated by a time
dependent Hamiltonian vectorfield aze good candidates. We say
YE GJM) is an exact symplectic diffeomorphism iff there exists a
Hamiltonian H so0 that ¥ is the time-1-map for the flow
associated 1o the Hamiltonian vectorfield
X = th(x). dH, = u(th,-). |

Arnold conjectured in [Arl)] certain lower bounds for the number
of fixed points of an exaxt symplectic map. A more general concept
than fixed point theory is Lagrangian intersection theory. A
submanifold L of M is called Lagrangian if 2dim L = M and
w/L =0 Denoteby MxM the symplectic manifold with
symplectic form w @ (-w). One easily verifies that the graph of a
symplectic map ¢ , say graph (¢) is a compact Lagrangian
submanifold, also diag(MxM) , the diagonal is Lagrangian. Clearly

we have a natural bijection.
Fix(9) — graph() 0 diag(MxM)

S0 the study of the fixed point problem is equivalent to the
intersection problem. There are of course intersection problems which
cannot be formulated as a ﬁxe& point problem.

The result whose prool we are going to sketch is the following,
see [F7), [H3).

THEOREM 14 let (M,s) be a compact symplectic manifold.
Assume L i3 a compact Lagrangian submanifold such that

wiry (M,L) = 0. Assume L' i3 an exact deformation of L. Then
#(.LnL') 2 ¢(L), where c(L) is the cohomological 12-category which
ig defined below.

Hete L' is an exact deformation of L iff L' = YL) for an exact

symplectic diffeomorphism on M.

DEFINITION 7 The cohomological lz—cat.cgory is the smallest number
k s0 that there exists an open covering Ul' U, of L sothat
the inclusion maps ¢ Ui‘"' (L,{xo}) for some fixed x, € L induce
the zero maps ’c’l ﬁ(["{xo})i I, - ?l’(Ui) Z,) in Cech cohomology
with coefficients in I,

A trivial consequence, 23 already sketched, is the following
Theorem,

THEOREM 15 Let (M,w) be a compact symplectic manifold such

that o] r.z(M) = 0. Then an exact symplectic diffeomorphism on M

33



has at least c(M) fixed points.

It i3 possible to replace c{M) by the cohomological category
where we maximize the number k in the definition 7 over all
commutative rings R which we take as coefficients. Such a
generalization is not possible for Theorem 14.

We sketch now a proof of Theorem 14, We can construct an
afmost complex structure J on M. ie  J(x) TxM - TxM.

.l(x)2 = -Id such that g = w o (JuI) i3 & Riemannian metric. We
call such an almost complex structure positive (better w-positive).
Denote by Z the strip (s + it |.n €ER . 1€e[01]} in €. We
shall study the first order elliptic system on Z given by

(1) "s+'](")ul.=°' wZ+M
u®) L, uli+B)cL
Iz Uugl®+ [y, Pdsdt < =

A solution of (1) is automatically smooth by standard elliptic
regularity theory. Denote by 1 = Q J(L,L') the set of solutions of
{1). We equip 1 with the compact—open C‘”—topol_ogy induced from
C®(Z,M) and which is of course metrizable, say d i3 a metric. We
have a continuous map 0 -+ L: u = u{o). The key step in proving

Theorem 14 #s the following

THEOREM 16 Under the hypothesis of Theorem 14 (f2,d) is a
compact metric space. Moreover ¥ Ti(L) - ‘li(ﬂ) is injective.

Next observe that we have a continous flow on 0 defined by

H

Rx 1@ (ru) ~ur , (utha+it) = uls~r+it)

Moreover it is not difficult to show that there existg a strict Liapunov
function o 2 4R, ie. 7 ofu-7) is strictly decreasing unless u
fs a fixed point for the Mow. Clearly u can only be fixed point for
the flow if u(s+it) = const € L N L' since | lusl?'+ |"t|2 < o
In fact one has

ofu-1) = afu) = - 5f (1ul*+ [u,P)dsat
{ -ro}+i[0,1]

Summing up we have a gradient like flow on a compact metric space.
Now using methods as in [Co-Ze2] one sces easily that
# Rest points of "+ » ¢L). Since Rest points of *-" = L n L'

the proof of Theotem 14 is complete.

2. GROMOV'S THEORY OF ALMOST 1IOLOMORIHIC CURVES
A we have seen the differential equation tg + J(u) u =0

plays an important role in the study of Lagrangian intersection

problems. Note that this differential operator is basically a nonlinear

Cauchy-Riemann operator. We shall therefore write
Du= U + Hu) oy,

It was Gromov who pointed out in his seminal paper [Grl] the
importance of almost holomorphic curves in symplectic geometry.
Gromov's method was non variational. Floer however was able to
combine Gromov's ideas with the variational calculus, more precisely a
homological Conley index.

There are two important analytical facts concerning certain maps
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u: B(e) » M, where B{¢) is the e~ball around 0 in C. Using a
theorem due to Gromov and Rohlin, see [Gr2] we may assume that
(M,g) is"isometrically embedded in some large (llN.<-,»>).

With other words we may assume that we are given a compact
submanifold M of some IIN. Moreover M is equipped with an
almost complex structure J 80 that w = <+l,-> i3 a symplectic
form on M. _

Denote by HYGRN); j = 0,1,2, the standard Sobolev spaces.
By Hj(G.M) we denote the subset consisting of these maps in
H(GRN) which bave their image in M. I |3 2 HGRY) can
be actually seen as a submanilold of the Hilbertspace Hj{G,RN)
provided G is bounded. We give now two important facts.

FACT 1 Let (uk) be a sequence of maps in Hj(B(c), M} ,j>2,
such that “a‘k"j—l,B(c) -0 as k + o Assume ""k"j,B(() e
for some comstant ¢ > 0. There exists a 6 ¢ {0,¢) such that

(4w, | B(8) is precompact in HI(B(8), M).

Fact 1 i8 a consequence of basic linear elliptic estimates for 3.
The difficulty 1o apply Fact 1 is that one needs the a priori
bound on ""k"j.B( o Here fact 2 is useful.

FACT 2 Let ("k) be a sequence of maps in Hj(B(E). M) such

that "a'k"j-l,B(c) +0 as k -+« Assume “"k"l,B(c) <c for

some ¢ >0 andall k If o rz(M) = 0 there exists 4 € (0,¢)
such that (u, [B(#) is precompact in HI{B(8), M).

Similarly one has the above estimates if B(¢) denotes the ball
around 0 in €V = {zeC|im(z) > 0} and u, maps the

(boundary of B(¢)) n AT into a compact Lagrangian submanifold,
see [H3).

In fact 2 the assumption w] (M} =0 comes in as follows. If
the a priori estimate does not hold we are able to use the conformal
lnvariance of the operator 3 to construct a map u: € - M
u # constant, J |u“|2 + u, |'2 < o One can apply a removable
singularly theorem [P] to obtain an almost holomorphic map

T S% 4 M. Since U is non constant we have

_*
Lpgw=%1 |ul?+ |u?> 0
8 ¢ -
On the other hand w| 1,(M) = 0 s0 that Iy Gw=0 giving a

8

contradiction. So we obtain a contradiction since bubbling off of a
holomorphic sphere does not occur if w| (M) = 0.

Note that Fact | and Fact 2 with the remark thereafter imply
immediately the first part of Theorem 16 if one can show the existence

of a constant € > 0 such that every u € Q1 satifics
1 2 2
J Iz”us‘ + Iull ) s Cl
or equivalently
L ]
jzu w<C
This is however purely topolagical and follows from the calculus of

differential forms, see [H3|, using that L' is an exact deformation

of L.

n



3. LUSTERNIK-SCHNIRELMAN-THEORY AND ALMOST
HOLOMORPHIC DISKS

In order to be able to obtain a Lusternik-Schnirelman-Theory we
have to show that the map ¥ induces an injection in
Eech-—Cohomology. In order to do 30 we use the continuity property
of Gech cohomotogy together with an approximation result derived in
[H3]. We choose a compact domain with smooth boundary &G in
€ such that GcZ and 3G f 3Z 3 [-1,1) + if0,1}). We also

assume that G is convex. S0 G looks like

L)

-1

Now we stretch G to obtain domains G o for v >0 as follows.

We cut G into two hatls G™,G* along the axis iR and shift G~

to the left and Gt to the right so that we can insert a piece

(~ew) + 1[0,1).
(G'-w G++a

.—v

(=T
b3

Now using that L' is an exact deformation of L, say there is an
exact isotopy % of the identity in D M} such that #(L) = L'
we define a map ﬂG‘p «+ Lagrangian submanifolds of M by

X -+ "’ﬂ(x)(l‘) having the following property. For simplicity write L,

18

instead of ‘bﬂx)( L)

L X € [-p-1, w+l]

Lx= L' X € [~p-1, prl] +i
interpolation between L and L' for
the remaining x.

If we enlarge  we can take the same Interpolation between L
and L' and just keep Ly=L or L, = L' on s corresponding

longer interval. We study now the elliptic boundary value problem

(Pp) =0 on GS’
u(x)eLx for xeaGw

It is not difficult to see that we have a uniform Hl-bound for
topological reasons independent of ¢ > 0 (just use gome calculas with
differential forms.) Using the estimates in section 2 one gets uniform
C™-bounds on every compact subset K of Z for the restriction of
the solution of (P'P) (¢ large enough) to K. In view of the
Ascoli-Arzela~Theorem this is of course a strong compactness
statement. Let R -+ [0,1] be a smooth map such that +s) = 1
for 8<1 and 7(s) <0 for 1<s <2 and +s) =0 for
822 For u a solution of (PP) we define a new map
rw(u): Z-M by

r0)(s + it) = u(2LEly 5 + 1)

provided ¢ is large enough. It is an easy exercise that r 0 defines

a continuous map

39
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{ue C"’(G‘P,M)lu(x) el xe (X}’P} <+ {ue CZM)|u®) c L,
u(R+i) C L'}

Denote by ” the solution ser of (P"). What we said about a
priori estimates concerning (Pp) immediately implies the fdllowing

approximation result.

THEOREM 17 Under the hypothesis of Theorem 14 we find for a
given open neighborhood U of f(L,L') in

{ue CAZM)| u®) C L, u(R + i) ¢ L'} a number ¥, > 0 such
that for every ¢ > ¢, we have r st ‘p) ¢ U. In particular we have

the commutative diagram

r

a, =y
“\( N //u "y
ufo) L u(o}

Assume now we can show for cvery ¢ > 0 that the map 1,
defined by

Ty ﬂv - L u-uo)

induces an injective map in Cech cohomology. Then we see since
Y% =¥,
that *U is injective ag well. This implies since LL') is a
compact subset of a metric space by the continuity property of Cech
cohomology that « l\l’(L) - l‘{’(ﬂ(L,L')) is injective. In view of this
remark we have to study (P v) and show that =« p fn o L induces
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an injection in cohomology. The advantage of P \0) in conirast 1o
the elliptic problem defining Q(L,L') is that (P w) i3 a problem on

a bounded domain. We freeze now ¥ and consider the problem

{(P) Bu=10 on G‘p
u(x)ELx for xeﬂ(}‘p

We embed the problem (P} into a one parameter family of problems
s follows: Recall that L, = vbﬂ(x)(L) for a suitable map
J A BGP = [0,}. Define for r € [0,1] a new family x - L; by

= Yoy

1 _ o _
Then L, = L and Ly = L for every x € 4G o
We consider now the family of nonlinear elliptic boundary value

problems.

(P") u=0 on G,
T
u(x)ELx for xeaGp

For 7 =0 wein fact know all the solutions, namely all constant
maps with image in L. Morcover our a priori estimates imply that
we can consider (P”) as a problem for a family of proper Fredholm

operators. Define a Hilbertmanifold Al for j > 2 by
i i
A = {u € B(G_ M) | (4G, c L}
Moreover define for r € [0,1)

j\i = {ueE Hj(G‘P’M) | u(x) e L; for x ¢ 3G¢}.
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We define a Hilbertspace bundle EF! « Hi(G oM by

i = ui " T™)

whete u TM s the pullback of the tangent bundle via wu: G'p - M

By Kuipers theorem, [Ku], there exists a trivialization
eH & HYG M) « H

where H is an (abstract) separable Hilbertspace. We can construct a
smooth family of diffeomorphism of M, say ¢, x M-Mxe G'P
such that T: A 4 (G M) defined by

L u)ix} = ¢, (ulx))

induces & diffeomorphism A =% A} still denoted by I We
consider now the l-parameter family of smooth maps 'r: Alan
defined by

f(u) = pry o 8o Jo [‘r(u)

where  pr: Hj(Gp.M) x H+ H is the projection onto the second
factor. It turns out that f , Alw is proper with respect to an
open neighborhood of 0 in H. Hence degree theory is available.
Moreover [, i3 a Fredholm operator of index n. We define a
family of Fredholm operators f: Al + H « L by

£0) = (1,(0) , n{u))
We see that i;l(o,to) for some fixed {, € L consists precisely of

the constant solution u(x) = {, Moreover

i r("o): Tu Al - Tt L is an isomorphism. Hence denoting the
0 0

I,~degree by d12 we infer |
dlz(io. L) = 1.

By homotopy invariance of the degree we obtain
dlz(il. (04,) = 1.

Now the desired result concerning the behavior of x on cohomological

level follows from the following abstract result, [H3). .

THEOREM 18 Let f: V + H be a smooth Fredholm map of index
n defined on a separable Hilbertmanifold V with image in a
separable Hilbertapace H. Assume [ is proper with respect to a
zero neighborhood in  H. Assume there exists a smooth map

© V -+ L into a compact manifold of dimension n such that
d12(f.(0,£o) =1

where f(x) = ((x), n(x)) and ¢ €L is fixed. Then
¥ ) -+ f o)

Is injective,

For a simple proof see [H3)].

4. MORSE-THEORY AND FLOER HOMOLOGY

In 3 we gave a relatively simple proof of the
Lusternik-Schnirelman theory for Lagrangian intersections. The
Morse-theory developed prior to the LS—theory by A. Floer is very
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difﬁcult: Actually the idea i3 quite simple but the technical realization
is very hard. Here we shall sketch the simpie idea. The idea was
motivated by an influential paper of Witten [Wi]. The reader should
read also [F3]. Consider a time dependent family of positive almost
complex structures, say t - J;- We have an associated family of
Riemannian metrics g on M.

We agsume L and L' are compact Lagrangian submanifolds
% that L' is an exact deformation of L and the intersections in
LnL are transversal. We define for J = ("L)telo,l]

Ry = {u € C@M) | ugr J(wu, =0, [ [ul%+ [u)? <
uf®) c L, u(R + i) c L'}

First one derives the same estimate we derived for the L3-theory.
Then one shows that for a generic family J ﬂJ can be written as
the union of finite manifolds M(x,y) where {xy) € (LnL')2

where M(x,y) consists of thase yu € QJ such that u -+ x,y as
8 + #n. Moreover there exists a unigue map & L AL + K defined

up to an additive constant such that

dim M(xy) = ux) - u(y)

for generic J. Moreover we have an obvious R-action on M(xy).
Denote by M(x,y) = M(x,y)/R the reduced space. Clearly

dim M(xy) = 4x) = py) - 1

It turns now out that under the assumption 12(M,L} = 0, the set
lt.'l(x,y) is finite if p(y) - p(x) = 1 (for generic 1J).

Denote by C the free lz—vectorspace generated by the points in
LnL'. C isa graded vectorspace where the grading is given by the

map g, he

P = span {x | u(x) = p).
So C=9 CP. We define a coboundary operator & C - C of

degree 1 by

= L < y,bfx> y

#ly)=pu(x)+1
where <y,0x> i3 the number of elements in M(y.x) mod 2.
(recall that h.d(y,x) is finite if p(y) = u(x) + 1. A crucial
observation is then 6 = 0. So we can define the colomology of the

complex (C,§)

(LLY) = kern(8)/im(6)

I'(L.L") s called the Fioer Cohomology of the intersection problem

(M,(L,L').

Assume now L, i8 an exact homotopy of L = L. In [F2] it

o
is shown that
(1) I'(L,L') does not depend on the choice of J ag long as
J is generic.

(2) ['(L,Lrl) = l‘(L.Lr) provided L and LTi L,: intersect

transversally.
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3 r'LL) = 1 (LL).

Clearly if we have only transversal intersections in L n L' and we
associate to an intersection point x the monomial (*(X)*+C g0 some
fixed integer ¢ (which we assume to be zero), we obtain the
equality
T s Py 4 a)QQ)
xeLNL!
where P{t) is the lz—Poinca.re polynomial of L. So we have the

following

THEOREM 19 If (M) is a compact symplectic manifold, and L
a compact Lagrangian submanifold satisfylng w) (ML) and L' an
exact deformation of L intersecting L' transversally then there
exists a unique map g L n L' -+ 7 such that

p g{x) _
- t P(1) + (1+t)Q(t)

where P is the Poincare' Polynomial of L associated to H with

12-coefﬁcienta and Q(t) is a polynomial with nonnegative coelficients

in L g

If rz(M.L) # 0 one can give easily counter examples for the
Lagrangian intersections problem. However one expects some results
for the fixed point problem if 75(M) # 0. The first such result was
given in [Fo] by B. Fortune. Recently in [F6| Floer proves some
further results. The difficulty is that one does not have in general
compactness and the phenomenon of Bubbling off of holomorphic

spheres can occur and has to be taken into account,
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