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On the evolution lof barmonic maps in higher dimensions

Michael Struwe

Abstract: We establish partial regularity results and existence of
global regular solutions to the evolution problem for harmonic maps
with small data, The key ingredient is a decay estimate analogous
to the well-known monotonicity formula for energy minimizing har-

- MONiC maps.

-

Let H , N be {compact) Riemannian manifolds of dimensionsg
m,n with metrics Yeg respectively. In local coordinates
x =(x1,...,xm) rus= (u‘,...,un] we denote

. . a8, _ -1
Y * g 15q,85mr 9 9i30 151,450 ana (%) - (Yagt -

For a Cl—map Uu: M-+ N the energy of u is given

by the intrinsic Dirichlet integral

E(u) = [e(u)du

H
with density
e(u;:x) 3-;— Y“s(xJ 9, (u) A ol 2 ut
b a axB

in local coordinates. 2 Summation Convention is used.

Since N 1is compact, N may be 1sometrically embedded into
KN for some N , and E becomes the standard Dirichlet
integral of maps wu: M +NcE N .

U 1s harmonic iff E jg Stationary at u ; jip particular

i ' .
é% E(u+a¢l|e=o = J(-A“u+m(uHVu,VuMJ gijtu)¢3dx

u

=0 (1.1}

for any smooth variation ¢ with Support in a coordinate
neighborhood Uc.'ltm and such that (u+ed} {Uu) is contained

in a coordinate chart V in the target space, where

1 3 af 2
ay=L 2 (508 a2
u ffax“( axa)

is the Laplace-Beltrami Operator on M and the term

ey Ry gt s
(FN(ul(Vu,Vu)“ ) Y Pij(u) - u axs u” , 1sksan

involves the Christoffel 8ymbols of the metrice g .

I.e. u is harmonic 1ff satisfiesg

-A“u + PN(uJ{Vu,Vu)“ =0. (1.2)



Regarding uw as a map u: i +Nc|RN + E{u) as the

ordinary Dirichlet integral, wuw jg harmonic iff
J - A“u-odu = 0
M

for all smooth ¢: N~ R" tangent to N at u , i,e. such
that ¢(x)e Ta(x)N: the tangent space to ¥ at u(x),x€M.

(Note that

JFN(UJ(VH,VUJ“'¢GM =0 {1.3)
M
for all such ¢ , i.e. FN(u)(Vu,Vu)M is orthogonal to
TuN: cp. Schoen [8, § 1].)

Harmonic maps - in particular smooth E-minimizing maps -
are distinguished representants of maps M+ N. In order to
understand how much of the topological structure of a space
N is captured by harmonic maps M -+ N it 1is natural to

study the following

Problem 1: Given a (smooth) map xo:u+u + 18 there a harmo-

nic map homotopic to xo?

In particular, we may ask for representations of the funda-

mental groups of N by harmonic maps:

Problem 2: Given a (smooth) map xo:sm+n + 18 there a har-

monic map homotopic to xo?

In dimensions m = 2 Sacks and Uhlenbeck [7) have given an
(essentially) affirmative answer to problem 2. Moreover, the
existence of harmonic 2-spheres turns out to be precisely

the obstruction for Bolving problem 1 in general.

In dimensions m > 2 - apart from certain particular caseg -
essentially no significant pProgress has been made since the

fundamental result by Eells and Sampson [2] in 1964:

Theorem 1.1: Suppose the sectional curvature of y iy s 0.,
Then for any (smooth) map U, :d*N there is a {smooth)

E-minimizing map ux+ N homotopic to u0 .

Their method ig based on an analysis of the evolution

Problen

Btu - A“u * l‘Ntu} (vu:vu," =0, ult.o = uO (1.4)

which by (1.1) may be regarded as the Lz-gradient flow for
E with respect to the matric g(u) . Eells and Sampson prove
that under the above curvature restriction of the target
{1.4) possesses a global reqular solution u{t} , which as
t » @ converges to a harmonic map.

In [11]} the latter result was generalized to arbitrary

target manifolds in the case m= 2 :

Theorem 1,2: Suppose m = 2 . For any (smooth) map U, TN

there exists a (unique) global distribution solution to



(1.4} which is reqular on Hx[0,=] with exception of f£ini-
tely many points ‘xk'tk)l.‘nksx ‘ tk Sw At a finqularity
{(x,t) a non-constant, smooth harmonic map u:R 2 2 52 .

Separates in the sense that for sequences

R.woO ,xm-r;, tm;\E
as n + «

N - 1,20, 2
u (x) = u(expxm(!!mx],tm] + U in Hoc®R%M .

Moreover, u(t) converges weakly in H"z(M;N) to a smooth
harmonic map N+ N ag t + = (strongly, if t s = jg
regular).

Here expy TgA + X denotes the exponential map,
HI'z(H;N} = {ug H"z(u;R H}Iu{ulcn a.e.}

and H1'2(M;IRN) is the standard Sobolev space of square-~
integrable (Lz-) functions u:d+RY witn distributional
derivative Vu€L2 - Remark that if m = 2 the space
H1'2(H;N) coincides with the closure of the space Cw(M:N)
of smooth functions wu:l-N in the H1’2-norm.

For m > 2 this is no longer true. {((10, Example, p.267];
cp. however Proposition 7.2 below.)

The purpose of this note is to partially extend Theorem
1.2 to the case m » 2 . In this case no existence and re-
gularity results for (1.43 and arbitrary target manifolds are

known unless certain a-priori restrictions relating the size

of the image ulﬂx1k+) to a bound for the sectional curva-
ture of N are satisfied, CP- e.g. [4]. However, unless M
is a manifold with boundary 3M ang boundary conditions are
posed on aM such conditions #eem unnatural,

Imposing no a~-priori restrictions on N or the range of
u we prove partial regularity results (Theorem 6.1} and
global existence and regularity results for smooth initial
data with small energies (Theorem 7.1).

The basic ingredients are a monotonicity estimate Propo-
gition 3.3 and the E-regularity Theorem 5.1 which are remi-
hiscent of the well-known monotonicity formula and €~regu-
larity theorem for minimizing harmonic maps in high dimen-
gions, cp. Schoen-Uhlenbeck {9), Schoen [8].

Forsimplicity we restrict ourselves to the case M= EP®
However, our results seem to carry over to compact mani-

folds M .,



2. Notations to the origin zo = 0 . In this case we simply write

Po(0) = P, etc. ,
Let z = (x,t) denote points iInR ™ xR . For a distin- R R
Weighted estimates will involve the fundamental solution

guished point z0 = (xo,toj + R> 0 let

G 1 (x-xoiz
(2} = — exp | -~ t <t
_ z _ Ill/z L] o
Bpix ) = (x | lx-x_| < R) o (47 (t -t)) 4t -t)
be an Euclidean ball centered at X, 0 and let to the (backward) heat equation with singularity at z, -
{Again GO(z] = G(z} , for Bimplicity.)
Pelz ) = {2 = (x,t) Ix-xol <R, It-t°|< r?) § denotes the parabolic distance function
be a parabolic cylinder of radius R centered at z, - dﬁx,t),(y,so = max {[|x-y| , |/|s—t|‘} .
Also let .
* The letters c, € denote generic constants,
m N
sntto’ = {z = (x,t) ¢ = to-Rz} Amap u: R x[to,t1] + R is regular iff u and Wy

are uniformly bounded and atu.vzu eLP for all p < = ,

loc

and
Remark 2.1: With this definition, by {5;Theorem 1v.9.1,p.341¢)

any regular solution u to 1.4} on an interval 0,t ma;
Tplt,) = {z = (x,¢t) t -4 R2<t<t°-R2] Yy reg ( n an interval o] ¥

be extended to a regular solution of an equation (at—A)uc Lloc

onIR by lettin u solve (3 -AlJu=0 for t>t .
be horizontal sections, resp. horizontal layers in 1R1“x R . + 9 t o

Note that equation (1.4) is invariant under scaling Lemma 3.1, Lemma 3.2, resp. Proposition 3.3 and 4.1 below will
also apply to the extended function u .
u ugix,t) = u(Rx, r2t) Moreover, for a regular solution u of (1.4), also
3tu . vzu + etc. will be uniformly bounded, if the initial

and translation x ,—, X=X, + £ * £t . Using this inva- data ", are smooth.

riance property we will aften shift the center of attention



3. Energy estimates and monotonicity formula

Let u:B™ . [0,T) + ¥ be a regular solution to (1.4) with

E(u(t)) < = for te[0,T] . The following estimate is wall-

known:

Lemma 3.1:

-

sup E(u(t)) +

2
J latu] dxdt s E(uol .
0s5tsT

-RII

O —,

Proof: Simply multiply (1,4} by atu and integrate by
parts. By (1.3} and since Efu(t)) < » for all ¢t the non-
linear term and boundary integrals vanish,,

qed

We also need a weighted decay estimate analogous to Lemma 3.1,

This is our key result.

Lemma 3.2: Let u:R™ . (0,T) + N be a reqular solution to
{1.4) with IVuix,t}| s ¢ < » uniformly. Then for any point

2, ® (x .t )e R™ x10,T[ the function

$(R;u) =182 J Ival%, ax
o

SR (to)

L]
is non-decreasing for 0'< R g Ro = ,to .

10

Proof: By translation we may achieve that z, = 0. we

establish that
d—dﬁ ¢ (R;u) 0.
R=R1

By scale invariance

®(Rju) = 0{1:uR) .

where uR(x,t) = u(Rx,th) i also it suffices to consider

R1=1.

By the exponential decay of G and regularity of

may differentjate under the integral sign:
d d
= Q(R;u)’ = -5 ${1;u.)
dR R=y GR R e

d
= Yuv | = u , )G dx
I (dR B Ret

84

= I VuV(x-Vu+2tatu} G dx

5

t

-J Au(x-Vu+2tatul G dx

51

- ] Vu(x-Vu+2t3tu)VG dx

54

u

we
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The vector x-Vu+2t3tu is tangent to N at u ; hance by

(1.3-4)and using the explicit form of G :

4
=— ¢ (R;u)
dr R=1

2 1 2
=~ j 2t|atu| G dx - I 3t Ix+9u|® © ax
S1 S,l
-2 J atu(x-Vu) G dx 20 .

5,

In order to obtain the last estimate we have used Young's

inequality
Ha _u){x+9u} s2|t| |3 uI2 ‘o Ix-Vulz
t t 2II:I :

Also note that t = -« 1 gn S1 .

qed

In particular, Lemma 3.2 implies the following monotonicity

formula for solutions to {(1.4):

Proposition 3.3: Suppose u:[R™ « [0.t0=‘IR§]+N is a regular
solution to (1.4) with |Vulx,t}] s ¢ < = uniformly. Then for

any point z, = (xo,to) the function

12

is non-decreasing for 0 < R < Ro .

Proof: Shift zo

¥{R;u)

by Lemma 3.2,

* 0 and compute for 0 < R < R1 < Ro

-2 2R
= J J ]Vu|2 G dxdt = 4 I r-10[r;u)dr
_‘Rz -RIII R
=,
<4 [ AN L G pnae s vrew
¢ir*;u)
R,

qed
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4. A Bochner-type estimate

Suppose u:Q + N 45 a regular solution of (1.4) in an
open space-time region Q<R ™ xR ., Taking the gradient of

both sides of (1.4) and Bultiplying by Yu we obtain

at Vu « %4 -4 V0 - pu =

2
= (3,-8) (1391—) v Jo%y)2

2

=T T, %u)) - vu s e 19212 4 cge) funfd .

Choosing ¢ = 1 Yields the following differentjal inequali-

ty for the energy density e(u) -‘%- qulz of u :

Proposition 4.1: Let u:Q + N pe a regular solution to
{1.4) 1n Q with energy density e(u) . Then there holds

(3t-5) efu) s ¢ e(u)2

with a constant c depending only on ¥ and m .

Remark 4.2: By the maximum Principle for the heat eguation,

Proposition 4.1 implies an a-priorji éstimate for (Vu| on

14

2 small time interval, for any regular solution u of (1.4)
“ith regular initial data U, + This guarantees the existence
of solutions te (1.4}, locally. I1f E(uoi < = , by Lemma 3.2
also E(u(t)) $¢c <= uniformly, locally near ¢t = 0, and

&lso the energy inequality Lemma 3.1 will hold.
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o 2
5. The ¢ -regularity theorem . ¢ |Vu]2dxdt sc J |vu] G( ¢ o2 2jnz.htdt:
X _,t_+29
o’ o
P (z
Our monotonicity formula Proposition 3.3 allows to use . Po‘zo’ 0( 0,
ideas of Schoen-Uhlenbeck (9] and Schoen (8] to prove the 2
sc |vul“ G 5 dxdt (5.1}
following: {x_,t +20°)
T (t_+20%) oo
o' o
Theorem 5.1: There exists a congtant €, > 0 depending only 5S¢ J IVU|2 G ) dxdt .
t_+20
on N and m such that for any regular solution T (xo' o )
R
wrR™ x-4r%,0) « woof (1.4) wien E(u{t)) S E < = , uni-
formly in ¢t , the following is true: But on TR +9iven € >0 , {f & > 0 is small enough:
If for some R»E]O,Rol there holds
lx-x_ |2
2 G {x,t) § ——=—0  axp -—
YRiu)i= [ %9 %Gaxae < ¢, (x_,t +20%) (4n|e])™/2 4(t_+20°-¢)
T o’ "o ©
R
2
then xl? |x-x°]
5 C exp ATt - T | Gix,t)
4!t°+20 -t

sup quI2 sc (pR) "2
S
eR Coix,e) , 1 x| s &

2
5 C exp (c 62 H—%—) Gix,t) 3
R

with constants p > g depending on N ,m,E and inf{R,1} - -
By ' ’ CR mEKP(_C‘S Z,Iif le Z—?*

and ¢ depending on N and m , only,

5 CGix,t) +CR? exp ({2-::.1 log R-c.s'z)
Procof: We closely follow Schoen's proof [8; Theorem 2.2] for

the analogous result in the stationary case. -2
§ CGix,t) +eRrR ., (5.2)

Let r1 = § R, 65]0,%] to be determined in the sequel, For -1
Remark that & - [enR[™'/2 for small R and may be chosen

r,g€ ]0,:1[ ¢ £ ¢+ g <r . and z, = {xo,tole Pr our mono-

1
tonicity formula (for the extended function u + cp. Remark 2.1)

independent of R , 4f R 2 1 , Hence

implies
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2 v solves (1.4) in Pr i moreover, v satisfies
o " J |onf“axdt s ¢ ¥(R) +ce E_ se (e te E ) °
o o (-]
Pufzo? a(v) (0,0) = 1 ,
{(5.3)
5up e{v) 3 4 .
P
o

There exists aoelo,r1[ such that

By our Bochner-type estimate Propogition 4.1 therefore e(v)

2 2
{ry-0,)" sup e(u) = max (r, - i
17%) * gup (u) X (r,-g} Sop e{u) satisfies

dJo OSaSrl g

lat—A) e{v) s ¢, etv)

moreover, there existsg (xo.toleF such that
1}
“o

with a constant e, depending only on m and N + Thus, if

Sup e(u) = e{u)(x_,t ) = . v
F;p o' o - instead of e(v} we consider the function f(x,t) =

o
exp(-cIt) e{v) in P,  and if E, & 1, Moser's Harnack in-
o

1
Set p_ =~ {r g ) . By choice of o x ,t )
o 2 '"1 %% Y or ! o'"o equality [€; Theorem 1, p. 102]) implies the estimate

sup e(u) § sup e(u) 5 4 €, ¢

Pox_,t_) p 1= e(v)(0,0) s ¢ I e(vidxdt
o o

%*Po P
1
But, scaling back, by (5.3) and since

r
* G 5 p +G°<1

[}

Introduce

n
ro = feo * Py I e(v)dxdt =( JE; ) J e{u)dxdt 3 c(tofe EO)

P

1 p 1 (xo.tOJ
and define a smooth map v: P. + N by letting =
X=X t-t
v(xlt) =u 2 ’ o
/e e and we obtain a contradiction for small Eo,s > 0 . Hence we
® [}

may assume r. & 1 . But then the Harnack-inequality gives
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-n-2 resp.
1 = e{v)(0,0) s C ro I e(v)dxdt
2
P 2 fr-x_|
S , G 2 X,t) s crexp MES T 2 3 G 2 (x,t)
(x, et +20%) 4[t~-R°| 4|t-to-20 ] {0,R%)
«c ro'zpo"“ e(u)dxdt ,
P (x .t (5.4) 5 c exp (— C-1K2) G 2 ix.t), 1f x| 2 kR
o Xotts {0,R%)
o
1.e. by (5.1-2) and since Py * a9, --;— (r1¢ao) <ry s provided (xo,tol € PU + 9 < R/2 . Hence we obtain that for

any € > 0 there holds
ple =1’ SC¥(R) +ccE 5
o0 o 0 *

G 2 SCle) G +cG
(xo,t°+2a }

2 r
(0,R%)
Finally, by choice of 9, this implies

nax (r1-0}2 %?p elu) s ‘pgeo Sac . uniformly on TR + uniformly in R > ¢ . Thus, instead of

osusr1 g (5.3} we obtain
Hence, we may choose o =-%—r1 --%-R and devide by o? to o iVufzdxdt S C{e})¥(R) + ce I [Vulz G 2 dxdt .
{0,R")
complete the proof, Po(zol T
qed

If now either E(u(t}) s E, <% or [Vu| $C <o we may

apply Proposition 3.3 to the term on the far right and de-

Remark 5.2: Instead of {5.2) we may estimate for K > 0 , duce that

R > 0 , uniformly on TR :

G 2 8 5 £ 5 cicix, e, if Ix| s KR
R

(xo,to+2o ) .
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g B [ ]Vulzdxdt 9 C(c}eo +

P
a¢z°)
2
tee Il G 5 dxdt
{0,R“)
T
R0
S Clele, + ce RZ® g
ele, [+ o °

With this modification and leaving the remainder of the proof
of Theorem 5.1 unchanged we obtain the following variants of

this result:

Theorem 5.3: For any Ro >0, Eo there exists a constant
€, > 0 depending on Bor Eg + ¥ , and m such that for any
regular solution u : RPx [-4R°2,0] + A of (1.4) with
Ef{u(t)) < Eo < ® the following is true:

If for some Reg ]D,Rol there holds

¥(R;u) = le[z G dxdt < €

Ta

sup  |vuj? 5 ¢ r~2
R/,

with a constant ¢ depending en A and only.

22

Theorem 5.4: For any CO > 0 there exists a constant £y > O
depending on Cor¥ ¢+ and m such that for any regular so-
lutlon us R™ x(-48%,00 + # of (1.4) wien [P sc<w
uniformly the following is true:

If for some Re‘.]O,Rol there holds

V(R;u) = IIVuIZ G dxdt < £,

Tr
while
2
[qulG , dxdt sc_,
(0,R%) i
Ty
then

sup f\?ulz scr?
R
/2

with a constant ¢ depending only on A and m ,
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6, Partial reqularity . Proof: This proof is modelled on [8 + proof of Corollary

2.3]).
L]
Using the a-priori estimate obtained previously we can
prove partial regularity of weak solutfons u to (1.4} with Define
finfte energy and which can be weakly approximated by smooth
m 2
global solutions to {1.4): I=nNn z €R XR+|11m1nf Iou, 1°6, dxae 2 €Y
R»0 k+w °o
Tnlzol

Theorem 6.1: Suppose u: R™ x R _+ A is limit of a se-
where € > 0 1is the constant determined in Theorem 5.1.
quence {“k} of regular solutions u, to (1.4) with uni- o
E i8 closed., Indeed, 1f {z,} is a sequence of points in
formly finite energy L
converging to zOETRm x IR’ rforany R>0, L6 N we

have
Blu (t)) SE <w , ¥Yxe N, t>o0
o
2
in the sense that E(u(t)) S E a.e. and liminf IVukI G_dxdt z ¢
F'e ] K+ z" [+ ]
Tr(z)
Vuk + Vu weakly in Lz(Q) .

Since Gzl -+ Gzo uniformly away from z, = (xo,to) and since

for any compact Q ¢ R™ x R, .
E(uk) 3 Eo uniformly, this implies that for any § > 0

Then u solves {1.4) in the classical sense and ig regu-

lar on a dense open set rom'“ X R, whose complement [

2
t +5-R
has locally finite n ~dimensional Hausdorff-measure {with ° 2
liminf Yu G dxdt 2 ¢,
respect to the parabolic metric § ). Moreover, there exists k+eo 2 ! kl s °
m
t -6-4R
t, > 0 (depending on 4 , m, and E ) such that Ch
m
(R « [to.wll = @ . Finally, u(t) + u, S ped in
C;oc as t + @ , where u, = p is a constant map. By Proposition 3.3 and since R,§ > 0 were arbitrary this

implies that
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Liminf [vu, % axae 2 ¢
4 [n)
k= o
TR(zol

for all R > 0 , whence zoe I as claimed.

L has locally finite m -dimensional Hausdorff-measure with

respect to the metric ¢ + 9iven by

m-meas(]) = lim inflc(m} J oy S
R>0 1

The infimum here is taken with respect to all covers J of
L by cylinders Py (2,) of radius Ry s R
i

It will suffice to show that

m-meas (J~nQ) 3 c(Q,Eo)

for all compact regions Qcm By |R‘_ . Let

R > 0 be given ang let J = {Pnltzi)} be a cover of fngQ
with Ri SR . We may assume zie L : By vitali's covering
lemma (cp. Caffarelli-Kohn-Nirenberg [ 7 ; Lemma 6.1,

P. 806} for a parabolic version) there exists a subfamily

I . {91=Pni‘zi’} of J such that P Pisp i gay

and such that the collection {pSR (zi'}} covers I[nQ
i

26

Note that for sufficiently small R g R(d,Eo) and arbitrary .

zo = (xo,to} + kKEN , e >0 ¢+ by (5.4} there is a constant

C{e) such that:

2 -n
Vu [“G_ axdt s ¢ R 2 dxdt
vu, z, J [vu, | %
T.(2 )
k™ cle)r'?}
2
+ € ]Vuk] G 5 dxdt
(z°+(0.R ))
TR(zo)

Applying Lemma 3.2 the last term may be dominated for suffi-

ciently small R > ¢ ¢ E >0 ;

£ fVuk|2 G 2 dxdt s
(z,+(0,8%))
Tn(zol
sec (tofRz) Iva, |2 @ , dx
(zof(O,R }) t=0
-

1
3 ec {Q) Eo H T -

Thus for zoe InQ, 0 < R« R(d,EO) we can choose a cylin-

der pR [zo) of radius RO < R such that for sufficiently

o
large k
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2 -1 _m
I IVu.kf dxdt 2 c{Q,E } R, €, . (6.2)

P (z)
R, %o

Since I 1is closed we may cover In Q by finitely many such

cylinders P_ (z,)}) from which we extract a dispoint finite
R, %1 po

sub-family J* = {P.I. 'PR (zi)} as above. We choose k&N
i

such that (6.2) is satisfied on each cylinder P.i. .

By summation over |
m =1 2
E R, s ClQ/E) e E J [Vuk| dxdt =

Py

-1 2 -
* C{Q.E} €, J ]Vukj dxdt 3 Cl{QE)) < = ,

VP
i

i

Moreover, the collection {PSR (zil} covers In Q with
i

sup Ri < R . Hence
i

28

m-meas(f~ Q) s lim {inf [c(mj I Rﬂ 5 e(Q,E) ,
B+ | T i °

as was to be shown.

Next, for 2, ¢ L there exists R > ¢ such that

2
J (%o, |°6, axdt s N
o
Tpiz)

[¢]
for infinitely many k&N . By Theorem 5.1 then also

]Vuk] 5 C uniformly in a uniform neighborhood of z, + and

a-priori bounds for higher derivatives may be derived from

{(1.4). It follows that a subsequence 4 *u in
2 m

Cloc(-k *R, \E;N) and u  ig a regular solution of (1.4}
off [ ,
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2
Finally, using Proposition 3.3, for large t°,4R s €,

we may estimate

2
[u |© G dxdt s
J k z,

Tnlzoj

t
o/
4 2=-m
2 2
s J IIVuk]GzodxdtSCto E, <€,
o R™

uniformly in k , and we obtain full reqularity for
2 -

[+]
le and applying Theorem 5.1 we infer the uniform decay

(vatx,£)]? s c/e

for large t , and ui{t) - u, = congt{t+=) ,

qed

t > C(Eo/eojm'z + Moreover, choosing R as large as possib-
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7. Small initial data

In particular, Theorem 6.1 can be turned into a global
existence and regularity result for smooth initial data with

small energy:
Theorem 7.1: There exists a constant £, > 0 depending on
€, + N and m such that for initial data u, € !{L’)ﬁ(‘ﬂlm; N)
with Vuoe L” and

||\?uo||” H C1 r E‘uo' < E1

there exists a unique smooth solution u of (t.4) which as

t + = converges to a constant map u, IpEN,

The proof is a consaquence of Theorem 6.1 and the following
approximation result for functionsg u € HIéi(]Rm;N } with
finite energy and Batisfying (7.1) below. (This result is
analogous to an approximation result of Schoen-Uhlenbeck

[10, Proposition, P. 267] in the case m = 2 .)

Proposition 7,2: There exists €y 0 such that any map

u€ Hlégﬂk T satisfying the condition

sup rI™m J |Vu[2dx s €, .

R < Ro
BR(xo)



3

uniformly for all XO€R " and for some R, > 0, can
be approximated in H]l_('; {R™wu) by smooth maps
u € "R .
Moreover, if u has finite energy, resp. [YuleL”, we may
choose u, with finite energy and E(uk) S ¢ E{(u) with a

constant c¢ depending only on ¥ , resp, |Vuk|stc|Vu|Lw.

Proof: There is 6° *> 0 such that any point q RN at
distance < & o from N has a unique nearest neighbor
n{q)&€ N . Moreover, this projection % from the Go-neigh—

borhood UG {(N) of N onto N 1ig smooth.
o
For R <Ro let ¢ = ¢R be a mollifier -

« |
$R€ ColBg) 4 0 5 ¢ s cr™™, J op AW = 1 .

Be

For u as above, R < Ro let

uglx) = (u* ¢p)(X) = u(x)¢p(x-xtdx .

BR(E)

_ © 1,2 m N}
It is well-known that uRG c and Bp +u in Hloc(]R ,R

as R+ 0 . Hence 1f we show that up R® *Ug (N)  for

o
sufficiently small R » the family Vp = To up » 0 < R< Ro ,
will lie in ¢ (‘[Rm:N ). and will converge to u in

Hlég(mm, N) , as required,
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As in {10}, for any Xx€R ™ e estimate

dist(uR{;),le SCR™ I |uR(§l-u(x:|2dx

Bp(x)

2_
s cr?*™® j [vu]?ax s Cep . 1f R<R,

Bp (x}

which will be <« 6: if €, >0 is small encugh.

Finally, by smoothness ©f n and Fubini's theorem

2 2
J (9l %ax s c] I7u, | 2ax

R® r"

= C I , I Vu(y) OR(x-yldylzdx

®r" BT
sc I (J¢R(x-y)dy) (J [Vulzty)%!x-y)dy)dx
-IRHI -Rm mm

= c [ Ivu| 2ax

mlﬂ

where C = [|on]|_=c(y) . The estimate for fPu t  is
L

obtained in a similar way.

qed
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Proof of Thecrem 7.1: If €, >0 1is sufficiently small, by

Proposition 7.2 there is a segquence u € CMR™N) of
smooth functions approximating u, in Hiég and with

E(ukol scC E(uo] = Eo - Remark that by convolution also

Pagglly s [fva_|], .

We will show that for ¢. » 0 sufficiently small

1

sup R? J quko!zG 2,9% < g

XorR>0 (x,.R%)
-Rm

which by Theorem 5.1 and Lemma 3.2 will imply the existence
of smooth global solutions 4 to {1.4) with initial data

uko .

But using the explicit formula for G, for 0 < g « e ™
2
I |Vuk 1“6 2 dx 3

Q {(x_,R }
fs ]
r"

= 2 ~m+|¢n R|
scR I[Vukoldxi-cR E,

B2Rr ) znr|(x)

5$C |tn g™ |]VuoI]: + CEj

~2
and this is < R e, 1f R< R1 = R1(f[Vu°j]_,E°)
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while for R » R1 we can achileve

qukOIZG 2,9 SCRTE ¥
(xofn }
Rlll

m-2
if E, <cC L

Hence Theorem 5.1, Lemma 3.2 and our monotonicity formula
Proposition 3.3 guarantee uniform global a-priori bounds
[Vu, tx,t) 12 s c/t. Since by Remark 4.2, cp. also (3], (1.4}
for smooth initial data Yo admits smooth solutions locally,
we thus obtain global smooth solutions u, to (1.4) with
data Uyo - Morevoer, {uk} is uniformly bounded in c! .
hence relatively compact in C?oc with uniform limit u
solving (1.4) with initial data Y, + Since u is continous

U is also regular. (This followa from standard results in

regularity theory for parabolic systems, cp. [5].}

qed

R+y

Remark 7.3: Inspection of the Proof shows that Vuo € Lloc

and uniform local boundedness

sup J IVuolm*udx sc
*a
B ix.)

for some yu > ¢ would suffice instead of Vuoe L.
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8. Tangent maps "
J 1[G axat < ¢ .
z, .3
The appearance of singularities can be related to non- Ty (zol
o
constant harmonic mappings of {m-1) -dimenaional spheres,
as in the case of locally minimizing weakly harmonic waps, Then by Theorem 5.1 Wy remains uniformly bounded as ¢ ~ to'
¢p. Schoen-Uhlenbeck (9 , Theorem III, p, 310); contradicting the hypothesis.
. Thus, given a sequence of radii P}, P} + 0 {k+w)} , there
m
: : x 1
Theorem 8.1: Suppose u : R ©.t [+ ¥ with unifornly finiee exist points o = (5.8, t, < t, such that
energy Efu(t)) < Eo <« 1is a locally reqular solution to
(1.4) which develops a singularity as ¢t .r t, - Then there J l7u|2 G, dxdt = _sup _ IVulzG_dxdt. -,
M m k - 2‘(_’5.1:) - z *
exist sequences Rk + 0, RE + = kaR ' tkﬁ to such Tgklzk’ tstk,Rst T_(3)
that t-4R220
U (XE) 2 uix sRRox, b +RZR2E) » u_ in Cloe (RMx}==,01; ) -
Moreover, since |[Wu] 5 ¢ uniformly for t s t « t, s it

it first k » = and then & + = , where either follows that & At .

Rescale, letting

u, (x,t) = v_(x/lxlj . {8.1)
2
is induced by a non-constant harmonic map v, ? s™ Ly , or Uy (x,t) u(xk+ka,tk*Rktl :
x ‘ N
uLlx,t) = v /./ [t] J . (8.2) . k
Then u  :R" x]- =<+ 0[ * N solves {1.4) ang satisfies

where _ is a fon-constant solution to (1.4) in the half-

space {t<0} and homogenous on curves t = cx? , : sup |vu ,26 dxdt = lvulzcdxdt =g .
E=(x,0) _ k3 °
ts0,Rs1 TE(ZI T‘
. 2 —
Proof: Suppose there exists R, « GRO ¢ t. such that for all Tz4R - tk/ 2

z, = (xo,to) there holds
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By Theorem 5.4Jtha family {uk} is uniformly bounded ip Cloc;
Passing to a subsequence we may assume that uo- u uniform-

ly locally {and henca in C1 ¢+ ©p. the proof of Theorem 6.1),

where E:]RMX}-m,O]+-N is a hon-constant, regular solution

of (1.4) such that

z=(x,t)

sup vl %6-axat J Ivd| 2Gaxae = & -
ts0,Rs1 'ni('z'} T

1

Moreover, by Proposition 3.3 for any z=(x,%) ,tso0, any

R>0

J [v3)%6dxat = 1im |9, [ 26zaxat
Tz(2) Tgzlz)
. 2
= lim |vu] ‘g = 2= dxdt
Y [ (xkfnkx,tk+kkti

T_RRk txkﬂ&;, tkﬂliﬂ

2
3 lim sup |vu|“g dxdt 5 CE
K+ xoe‘em J (xorto) [+]

Tl (xo.tol

uniformly in R, 7 .

It follows that, letting

¥{R,u) = ijﬁlzcdxdt

Ta
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as above, we have by Proposition 3.3

d -— = -d_ - o o+
J ar YR;u)dr J 'dR V(R,u), dR < :

L] o

and there exists a sequence §£ ¢ 0 such that

a - -
3R V(Rk;u) + 0 (k+=)

Let

= 2 I Vuk V(x-Vuk*Zt'atuk)dedt

T

= - 2 J atuk(x'Vuk+2t-3tuk)dedt

T

[

X-Vu _ —
-2 [ —_—— (x-Vuk+2tatuk) Gdxdt

. J T:_T (%-vu +2e3.0 )% G axat .
T

1
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It follows that either

- - 2
atuk ' x-Vuk + 0 in Lloc

in which case (using Theorem 5.4 again)

U+ u (xt) = G.( x/jxl)

converges to a map G; induced by a hon-constant harmonic
map v :Sm-I-»A/;

or

where u_ 1is a non-constant solution to (1.4) on R™s}-=,0(

with
x-VG;
at o = iTETh '
i.e.

u_(x,t) -F_( x/m) .

ged

Note that by Theorem 6.1 if a solution u of {1.4) behaves
irregularly as t + ¢ a8 =, necessarily a singularity must be
encountered in finite time,

A natural question ig whether homogenous solutions of the

kind {8.2) may appear.
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