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INTRODUCTION -

Many problems concerning evo.lur.ion equations or inequaciong of pa-
rabolic type, as 1s well known, canp very well be fitted in the important
theaory of monotone operators, eventually perturbed wirh suitable terms
(ase H.Brezis, “opérateurs maximaux monotomes", NQTES DE MATHEMATICA
(50), NORTH HOLLAND 1973).

This previous theory constituteg an important scheme of reference which
often peraits to interprete in s very significant manner aome of the
important aspsacts of the particular problem in consideration,

In the “variational® case, the fundamental Tequirement of the acheme of the
previous theory are &iven by a Hilbert Bpace H, a function f defined in H
which, for example, is of the type:

fwd&+

where £ 1s a lower semi-cont {inuoug convex function and T 14 o function of

class Cl'l, and by the equation:
(*) ~U'(c) ¢ 3EW(E) + grad r(uce))

vhare 34(u) 1s the sub:iifferen:ial &t u, with respect to the scalar pro-
duct in H, of the convex function £. U is the unknown function of the
real variable ¢.

We can say that {(*) 1s the evalution equation 4saoclated to the funceian
€+ T and that U is a curve of maximal slope for &+ r.

It 13 well known that, making use of the nice and fairly natura] defini-~
tion of subdifferential, the evolucion equation associated tod+ I on &
closed convex ohstacle K can also be foraulated in thig manner; that is,
the curve of maxims] 9lope for the restriction of €+T to K. In this
cRse, 1t is enough to substitute the function & by the fusction & + L.

“whare I‘ is defined by IK(U) =01f uek, Ix(u) =+e if usH\K,
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£+ IK is again convex and lower semi-continuous.
Setti
In other words the definition of subdifferential allows us to include ecting
the closed convex constraint K (which, in general, is not regular) in E={ué¢ Lzl .ls us ‘2]. sp - {u " LZ ‘ /uz(:m - 92]
]

the convex and semi-continuous function &, which thus takes also ths " consider

£ W) =172 n/lDulzdx +n/ [] g(x.t)dt]dx for ueﬂinl
o

value +=

There are several problems in which it is necessary to consider

certain constraints V vhich ere not convex. We are thus led to consi- fo(u) = +w for u(-Lz\H;nt (Du = (l:#l u.Dx UpaassD u)
1 2

der the following function defined on H:
. and £ defined by

f=&+T+ I\' 2
L.t f(u) = fo(u) 1f uesS, f{u) = 4= 1f uel \S§ .
where & 18 convex and lower semi-continuous, T is of clasa ¢ " and P o

Iv(u) -0 1if ueV, Iv(u) = 0 if udHV. - Clearly the functional fo is of the type considered in (*), under suita-
In this case, we substitute the equation (#} by: ble hypothesis on g. I
} _ But the functional f is not of the same type as the set { u[f{x) <+=} {s
(&4) ~U'(t) €3 £{U(L))
not convex.
wherte B-E(u) represents a natural extension (see (1.1)) of the notion of We shall be {nterested in studying, for this functional, the problem:

subdifferential mentioned earlier. e a-f(U(t)) . . ;

1t 1s evident that f can not be expressed, in general, as a sum of a

convex function and & regular function because {(u£(u) <+=} is not a We emphasire the fact that we are interested in considering the subdiffe-

rential 3 f of this functional with respect to the scalar product of

convex set if V 1s not convex. 2
L (m.

In this case also, the constraint is included in the function f and this

permits us to consider, as for the (#), non regular constrainte providad For sxample in the classical case of the convex Functionals:

that f belongs to suitable classes. A problem of this type has been con~

2 1
sidered in [B], to study geodeaics with-respect an obstacle. éw) = 172 n/IDuI x Af u&ﬂo(n)

the evolution equation for & with respect to L2 of type (#), coincides |

In order to illustrate th b1, idered in thi -
er to uystra e problem considere: n 8 paper, wa con with the heat equntion

sider a bounded open met 0 in Rr" » & suitable function g: QxR— R,

two functiona ‘l and .2 on 1 with 41 50502 on 3! and & number o> O, U'{e) = a(t) , Ufe) =0 omn 3g,
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because, with respect to the scalar product Lz. we have 3&(u) ¢ # 1f
and only 1if Aus Lz(ﬂ) and, 1f a&(u) 4 @, we have 3fu) = {~-Au} where
2 #(u) denotes the subdifferential of the convex function & in the

senss of (x),

In order to study our problem we shall introduce a class of func-
tions, namely, the class C{p,q) (see (1.6)) which is more particular than
the class of ¢-convex functions introduced in (6], and which seems to us
is particularly adapted to our goal.

We shall study the behaviour of functions of such a class under suitable
constraints (see the Theorem (1.13) on atationary points with constraints):
this gives raime to mome problem of "non tangency” between the domsin of
the assigned function (that is, the set of the u on which it takes fini-

te values) and the constraiant (in the exanple mentioned the function is

fo and. the constraint is Sp).

For the abstract equation (#%) we shall use a theorem on evolution, va-
14d for ¢~convex functiona (mee (2.4)),

The results of this paper will be used alsc to obtain & multiplicity re-

sult (vhich we shall explain in [31]) for the solutiona of the equation:
{xxa) Ged £(u)

under some suitsble symmetry assumptions,
We can say that the solutfons u of (##%) are the eigenfunctionas of

-4+ g{(x,*) with respect to che obstacles ‘l and ’2'

“l-

§1. SUBDIFFERENTIAL UNDER CONSTRAINTS.

In this section we recall the notion of subdifferential of a functiocn,
which was already introduced, for example in [5), and we shall consider
the class C(p,q) of functions, not necegsarily continuous, but adapted

to the problem with constraint considered in Section 4. It is concerned
with a subclass of y~convex functions treated in [6], which naturally
have properties stronger that the general ¢-convex functions. However,
for some other problems this class 1s not sufficient encugh (see for
example [8][101{11])(12]). We Bhall study some properties of the class of
functions C(p,q} which are useful for the problem under consideration and,
in particular, we shall show that g result on “constrained stationary

points" holde.

Throughout® this section we suppose that H {a a Hilbert space with
scalar product < , > and norm I I+ that W 1s an open subset of H and
that f is a function from W into Ru{+=}; we use the notation

D(E) = {uaW|E(u) c+m}.

(1.1} DEFINITION. Let u be in D(f). We call subdifferential of f at
u the set apf(u) of all o in H, such that

flv) = f{u) ~ <a,v-u>
lv-u

lim inf
vy

0.

f 13 said to be subdifferentiable at u if a-f(u) ¥ ¥; in this case we call
(lowar) sub-gradient of f at u the element with minimal norm gtad_f(u) of

# £(u) (3 £(u) 1s convex and closed as 1a easily seen),



a2-

1f f 1s convex or regular this definition coincides with the usual

(1.2) DEFINITION. 1f E is a subset of H we call indicator function

of E the functien IE defined as:

IE(uJ =0 1f ueE , 'Ia(u) w 4w Jfuel .,
If u¢E, then we call a-IE(u) the cone of normals to E at u, (Evi-

dently O&a_la(u) for all u€E). If usE, then va call cone of tangents

the set
‘l‘u(E) a{veH|cw,o> 50 Wy ea-lz(u)] .

(Note that a-IE(u) and ‘l‘u(E) are dual cones; cf. for instance [16], p.237).

(1.3) REMARKS. a) If f and g are two functions from ¥ into RU{ + =}
and if u ¢ D{(f+g), then

Y E(u) + 3 glu) S 3 (f4+g)(w) .

Simple examples show, in general, that equality is not true. It {a easy
to verify that if f is differentiable at u, then

2g(u) ¥ ¢ if and only if 2 (£4g)(u) 4 0

and in this case

3 (f+g)(u) = grad f(u} + 3 g(u)
holds. Purthermore
grad (f+g)(u) = grad £(u) + P(-grad £(n})

whexe P is the projection of H onto the cotivex st aﬂg(u).

b) 1f E is & aubset of H, u € D(F) N E and a-(fﬂz)(n) ¢ # then
- gud"(fuz) (W) €T _(B).

If furthermore f im differentiable at u, then
gud-(f+lz) (u) = -Q(-grad £(u)) ,

where Q is the projection of H outo the convex cone 'l'u(E). 1l

It 1z expedient to recall here a theorem proved in (6] .

(1.4) THEOREM, Let the function h:H +RU{ 4+ =) with D(h) ¢ § be lower
semi-continuous and bounded from below. If u ¢H, then for every A>0 and

every 0>0 there exists u'¢ H with lu - u'||< 0, such that the function

1 2
v §H+hiv) +‘2—l“v - u'ff

attains a unique miniwum in H.

(1.5) COROLLARY, 1f the function f 1is lower semi-continuous, then
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the set {ueD(£)[3 f(u} # @} 1a dense in D(f).

An easy proof can be found in [6], but for the sake of completneas

we recall it here.

PROOF (of corollary (1.5)): First we consider the case W = H and
f bounded from below. According to the preceding theorem, for fixed u in
D(f) there exists a sequence (“i)k converging to u, such that the func-

tion

L o? 1
voH+f(v)+2lﬂv “k“ Q=1
has a minisum, If v, is the point which achieves this ninimum, then accord-

ing to a) 1in (1.3) B-E(vk) ¥ # since the norm of H 1is differentiable,
Obviocusly

L3 - kg
£ + 2y, ukllzsf(u) + 2w uku’ ;
On the other hand, one can suppose that ||y - u;"S i (by taking g = % ).

This implies that sup (k||vk - ui“z) <+=, Hence (vk)k converges to u.
k

The general case can be reduced to the previous in an obvious manner. //
We shall now introduce the class Cip.q).

(1.6) DEFINITION. Let P and g be two real continuous functions defined

e

on D(f).
f is said to be of class C(p,q) if:
for every u in D(f)} with 3 £{u) ¥ ¢ and every a in 3 £(u) we have

E(v) 2 £{u) + <a,v—ud> - [p(u)||u"+ qlu)] ||v - u“z y Wy eW

We note that the subdifferentiability of f at u is not required

explicitly.

(1.7) REMARKS. a) It 18 clear that if foz H+RU{ +=} 1a convex and
if g: W+R 1s of class Cl'l. then f + g is of class C(0,q) with some

sultable constant q.

b) It is easy to verify that the indicator function of & submanifold

K in H of class Cz (or Ci;i ) 18 of class C{p,0) and

a'rn(u) = {veH| <cvu> =0 weT ()} .

¢) 1f £ is of class C(p.q) and 18 lower semi-continucus, then the

following property of 3 £ holds:

if (uh)h 18 a sequence in D(f) converging to an u in D(f), and
for every h, a Ga*f(uh) and (mh)h converges weakly to a, then

1im £(u } = £{u) and a e £(u).
h h

This property 1s an obvious consequence of definition (1.6).

d) 1t is evident that for f ¢ C{p,q), 1f u and v are in D(f) and if

aeld £(u) and 8 €3 f(u), then
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<B-a,v-u>z-(ptuw)lall+ pev gl q(w) + qev)Mu - vfi? .

¢) If f&C(p,q) and 1s lower semicontinuous, then there exiat s and

b in R such that

f(v)z ~a-b Ilvllz ¥vew

Indeed, 1f D(f) ¥ 0, then according to (1,5) there exists y in nE),
such that 3-f(u) ¥ #. The conclusion now follows from the definition

(1.6).//

In (1.8) and (1.9) we net forth a simple but important property of
funceions of class C{pig). A somewhat weaker property for a wore general

class of functions is proved in el .

For the sequel we get B(uo.p) = {uel|[lu - u°H<p }.

(1.8) THEOREM. Let f be a lower semi-continuous funetion of class
C{p,q). Suppose that Sup p = P<+m and Sup q = g<+=. For u in H Jet
§(u) = d(u,D(f)) and let

Us{uew s < d(u,H-W),2p8(u) <1} .

Then there exists a function lo: U=+R, v:l.l:h Ao(u) >0 for every u of U,

such that for u in U and A in JO.Ao(u)[ » the function
v+fiv) + -il;"v - u"z

attains a unique minimum at a point rl(u) (in D(£)). Moreover

-7-

11; Il ra(u) ~ufl= §tu). Finally, for en u and v {g and ) with
A+
O<is lo(u) A lo(v). the {nequaiicy

ﬂrl(u) - rl(v)ﬂ[l-i(j[u-r“(u)||+||v-rl(v) M- 2315 - v

holds.

FROOF. 1) Given u in U, let p be a real tusber with 8{u) <p<d{u,H-N)
and 2pp < 1. Since B{u,p)ND(f) § ¢ and since the inequality e) in (1.7)
holds, one can verify easily that there exists a A°>O such that for

every ) in ]O.AOJ it followe that
1 2
inf {£(u) +H“v -ull” | veBu,p)) <

< inf { f(v) + 2_1.\."" - ullz | vew-8Gu,p)} .
It is possible then to suppose that J.o is 8o swall that 2pp + 253.0 <1,

11) According to theorem (1.4) there exists a sequence (uk)k converg-

. ing to u, such that every function

n 2
v+ E(v) + ZA“" - ukll

attaina a minimum at some point v in B{u,p) (one can redefine £ with
value + = in § - B{u,p) ). Since the norm of H is differentiable, accord-

iﬂg to a) in (1-3) we l‘ﬂve
o = - 1 (U ~ )‘a f(U ) .

Using d) of {1.7) we obtain:
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llvk - vhlltl-up(vk)llukll + p(vh)lluh H+ slv) + q(vh))lslluk - uh" .

Now limhaup (lp(vk)llahll - linhaup (p(vh) ] vy " uhll)s Pp and q(vh)a siq
for every h. Since 2Zpp + ZEAO <l, (vh)h is a Cauchy sequence and obviously

ite liwit point v belongs to B(u,p) and 1is a point of minimum.

II1) Using again d) in (1.7) one can praove the uniqueness of this
point and the inequality in the statement. Since p can be chosen arbitra-

rily close to §(u), we have also ptoved that lim ||r‘\(u) - ull = §qu).//
A+Q

These facts permits as to Prove also the following statement:

(1.9) THEOREM. If f fs lower semicontinuous and of claas C(p,q), then
for every “o in D(f) there exists po>0 and Ao>0. such that for every u

in B(uo.po) and every ) in }D,.‘lo]. the function

1 2
v+i{v) + H“v - u

#dmits one and only one point rl(“) (4n D(f}), at which s winimum ig

attained. Moreover the function r‘\: B(uo.po)-t D(f) 1e lipschitz continuous.

We recall an important property which we shall make use of also in

Sections 3 and 4.

(1.10) PROPOSITION. Let f be lover semi-continuous.

a) If f ig in C(0,0), then it is convex on the convex parts of W

(cf. also [6]).

b) If f 1g of clags €(0.q), then D(f) is locally convex, {.e. foyr

every u in D(f)there existsa p > 0 guch that B(u,p) Nn{f) is convex,

If furthermore Up ¢ =~ J<+w, then for any 4 {n i the function

- =yl
VrE} + qllv - G° 18 4n €(0,0) and hence 1s convex on the convex

parts of W,

PROOF. To prove a) we consider y and v in D(f) much that

I.lt “u+ t{v-u) €W for every t in {0,1] .

Clearly it 1a enough to prove that u e D(f) and thar
f(ut)s tE(v) + (1-t)f(u)

for all te(0,1], such that d(ut.D(f)) <d(ut.ll-5'). If now u_ has thig

t
Property, then according to Theorem (1.8) (with P=qen), p fixed guch
that d(u:,n(f)) <p<d(u:.H—H) and X small enough, the function

! 2
v+ f(v) +-ﬁjfv -, il

hae & minimm in B(ut.p). Denoting by vl the point where this minimum ig

achieved we have:
g = - l ( =
A 3 "A ut) €3 f.(vx)

and moreover £(v) zf(vl) + <al,v—v‘\> and f£(u) zf(vl) + <u1,u-v‘\>.

Hence

£ - 1
LE(V) + (1-t)E(u) BEO) + <aumv s . £+ 2llu, - vlllz .
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o v, IF
Since inf f(v }>=-= we have lim sup —————<c+=, 1.0. lim v)‘ aqy
A+0 A A+ t
and the assertion follows from the semicontinuity of f.
As to b), we have to note that the first part follows from the second

and a), and that the secend part is obvious.//

(If sup q = +=, then the assmertion of b) can be false for example if:

1
£ -— 3.
(x) 2 )

In Sections 3 and 4 we need to consider functions of the type just

discussed but under a regular constraint defined by a hypersurface.

For the sequel we need to study when a convex set K and a hyper-
surface M are not "tangent". We prefer however to introduce here the no-
tion of tangency (and nontangency) between two arbitrary sets, aince it
enables us to obtain more general results than those contained in the

present paper (cf. [9]).

(I.11) DEFINITION. If A and B are two subsets of H we say that they
are tangent (externaly) at the point u of A NB if and only 1f
-3 na .
(-9 L)Na1.¢u) ¢ {0}

We shall say that A and B are not tangential (externaly)} if there does not

exist ue AND which satisfien the above property,

In the sequel we consider a hypersurface M of class Cl in W and we

denote by vw(u) one of the normals to M at u with [w(u}f| = 1.

-11-

(1.12) REMARKS. Let K be a convex subset of H and let ueKNM. It

is clear that:

a) K and M are not tangent at u if and only if there exist y* and

u” in K, such that <y(u),u’ - w>>0 and <v(u),u™ - y> <0,

b} If K and M are not tangent at a point u of KM, ther there
exiots a neighbourhood U of u, such that K and M are not tangent at any
point of KM NY,

(1.13) THEOREM. Suppose that fo: W+RU{+w) 18 lower semiconti-
nuous of class C(O.qo). where qo 1s a real valued continucus function

defined on D(fo). If XK and M are not tangent at any point, then:

a) For every u 1n Hnb(f ) we have 2  (f+1 )(u) -3t (u) +31r (u)
(hence if 3 (t' +I (u) 9, then also 3 £ (u) ¢ ')

In particular, ("constrained minimum theoren™): if at u € MND(f )
[+ ]
the mioimum of fo on M 1s achieved, then there exists a A in R,

such that Av{u) & a-fo(n). (In particular however: Av(u) # grld— fotu)).

b) There exist two continuous functions cl, C.1 nnn(t ) +R such
thnt for every utHnD(f Ys 1f aed (f +I )(u) and A€R 1a such that
o= Avl{u) ¢3 f (u), then we have IAI sc Wflaj+c (u).

¢) Furthermore, if for some u‘HﬂD(fO) and uta_(foﬂ‘.n) {u) there
exists a unique A€R such that a - A viu) € a'to(u). then X depencin conti~

neously on these u snd o .
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d} 1f M is locally of class Cl'l. then the function f = fo + IH is

of class C(p,q) where p and q appropriate continuous functions defined

on D(f).

The proof is based on the following lemmas.

(1.14) LEMMA. Let the functions §: H+RU{ +=) be convex. Lat V be
a hyperplane in H of equation (v.e°> = ¢, where e H, ||e°|] = 1 and ceR,

If g + IV hag & minimum at the point v of V, then for

v {ViHI(V.c°> ¢}, V ={vel ](v.c°><c}

g{v)-g(u ) g{v)-g(u )
W) e tof ——2 ) . sup ————2
v(-V+ <v-—un,:°) [ VeV <v-u°.|o>
we have
- - + v)-
a) A" (u )=lim sup 351’)—35“—;’“ (u )=lim inf fLLB-‘!)!) .
o veu veu e o veu veu e
vev™ vevt

- + -
b) For any real A, with A (uo) $135) (uo). we have Acoe 3 g(uo).

- +
c) 1f D(g) and V are not tangent at uo, then ==« ) (uo) Y (uo) Chw

snd hence there exists A in R such that Aeoe a_g(uo).

- +
PROOF. To prove a) we take v~ in V fD(g) and v* in V' ND(g) (if

~13-

one of these sets 1 empty, then a) 1y obvicus). Let ¢t e]O,l[ be such
o

that LA (l-—to)v"'tv. Then

Blu) sgv)s BV (1t )g(v).,

Moreover 0 = ¢y - - -
o uo.e°> - c°<v no,e°> + (1 to) <vtu°,e°>. Hence

8(vI)-g(u ) s(v*)-s(uo)

- s —p—2
v=u e > <v >
o' o o

- + )
which implies 2 (uo) sk (uo). The other equalities in 4) are obvious
(using egain the convexity of g). To prove b) 1t 1a sufficient to note

the:t 1f, for example, for some ) in j we have lsl+(u Y, then
[+ ]

«  B(V) - glu ) 2<v-u ,ie > eyt .
o o’ o

Reasoning as in 8}, 1t 1 &asy to verify that under the hypotheses of
¢) we have indeed --<l“(u°) and .l+(|.| Yetm,
. [

(1.15) LEMMA. Let A and B be two subsats of H and let u €ANBND(E),
I o
Let there exist a neoghbourhood U of y and a4 mapping
o

¥: UNAAD{EY +BAD(L)

such that
1 il 0 la tof  EWLGO) o
¥+ u " v'uo” ' Ve uo Hv—uo " . '

VeArD(f) VEAID(f)
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Then 3+ 1)) s 3 (f + 1)) .

The statement follows directly from the definition of subdifferen-

tial.

(1.16) LEMMA. If g: H+Ru{+e} is convex, if uot MnD(g) and £if M
and D(g) are not tangent at “o' then with T = uo + T“ (M) we have

- - o
dg+ 1) =2 (g4 IT)(uo)-

PROOF. We shall prove the inclusion 3 (g + 1,(u) s (g + 1) ).
The other follows in a similar way,.

To this end, we construct a mapping ¥: UnTnD(g) +MnD(g) defined
on a suitable neighbourhood U of u vhich satisfies the hypotheses of
lemma (1.15). Since M and D(g) are not tangent at uo' there exist ut and

v~ in D(g) with
<ut - u v(u)> >0 and <o = u ,v(u)> <0

We can suppose that uo = 0, snd that in a ball B with center uo. M is
the graph of some function ¢: BNT+R of class (:l with ¢(0) = 0 and
4'(0) = 0, by identifying ¥ with T xR, furthermore, we can suppose that
ut = (x*,y*) and u= = {x~,y") are in B and y* > §(x"), ¥y~ <(x"), y*>0,
y= <0,

Now for #t(x,t} = ty* « (x+t(x*-x))

we have

+
¢+(0,0) = 0 , %ﬁ; (0,0) = y*>0 .

-1%-

Hence there exist a neighbourhood U of 0 and a function l:+ of class ('.:l

defined on UnT, such that ¢*(x,t*(x)} = ¢ on UnT. 1n a similar manner

. L]
we can find a function t of class
such that t-(x)y‘

unT

< $(x+t (x)(x~ = x)) = 0, Now Let us define for x in

+
(ot (D (xhx), YYD 1f em) 20

v(x) =
(x+t” (x) (x~-x), t (x)y")  tf ¢ (x) <0

Obviously for x in TN U with ¢(x) 20, i(x) is on the line segment with

endpointa v = (x,0) and vt = (x*,y*} and moreover

B(¥(¥)) 5 g(uh) lv-pcn + 5 Hgtwy—utll

v ~ utlf e - wt] °

Similar inequality is obtained (vith u™ instead of ut) when # <0, Taking
into account that

e o)

ilv - Y,

v+u
o

as can eapily be seen, and applying lemma (1.15) we can infer that

3+ 1)) s g+ 1) .

PROOF {of Theorem (1.13)). To prove

a), let uoe Hnn(fo) be fixed
and let ¥ be a fixed ball with center at u_ and such that U § W and
o

1
C on UnT (restricting U 1f necessary),
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BUp 4 = J<+ = , We shall prove that for each a in & (f +1 )(u ) there
u
exiats a real number A such that o +Av(u) €3 f (u ). Indeed, for

Gta(f +I)(u) let
g(v) = f (V) = <a,v-u > + q ”V - u " H
o ' 0 o :

E 15 of class C(0,0) on U as {s evident. Since g is lower semi-continuous
{on U), according to a) in (1.10) g 18 convex on U, Hence D(f }oU 1s
convex. To obtain the statement, we can suppose, without losn of genera-
lity, that g is defined on the whole space H (with values in Ru{ +w}),
(restricting U and extending g with value +« outeide {f necessary), and
that it is convex and lower semi-continuoua. Obviously 0 € a-(g +1 )(u )
and hence, according to lemma (1.16), with T = u + ‘l‘ (M) it follous
that Oia-(g + 1 )(u ). whence g + I has a mininun at uo.

According to (1. 14) there existas a real tumber A such that Av(u e s(u ).
As a consequence a+ Jw(u Yeaf (u ).

To verify b) let us eonsidur a u in HnD(f ). There exist u* and
v~ in D(f } with <ut-u,v{u)> >0 and <u -u,v{u)> <0 for all u in some
appropriate neighbourhood U of uo on M,

Now 1f uiUnD(f ), aead (f + 1 )(u) and o -Aw(u) €3 £ (u) for some

A &R, then, since f is of class C(O,qo). obviously we have

gt [ (™)~ (u) - <a,u™~u> + q (u) Jlu= - u"z
u” « u,vu)> o o o

and

1 2
- —_— +y_ - +_ + o
As @ < wvtas L t‘o(u ) fo(u) <a,ut-u> + qo(u) "u u" 3l.

- 7=

Taking into account that t' 1s locally bounded from below, (and restrice~

ing U if hecesgary) wve obtsin f.\ lsc "a “+ C for u €U with gome real
conatants CI and C + The rest is obvioua (using & partition of unity),
Clearly c) followa from the inequalities in b) and from ¢) in
(1.7).
At last, to prove d) let us note that if M {a locally of clags Cl 1
then there exists a continuous function p ! M+R such that
<v(u) .v—u)Sp (u)”v--u"z for u and v 1n M, Let now u be in MAD(f ) and
o
let ae3 (fo + IM)(u). According to b) there exists A€R, such that
a+iviu)esp fo(u). Hence 1f v €M, then;

fo(v) - fo(u) - <a,veud = fo(v) - fo(u) = <a+iufu)
2 = q_()|v-ul? - | e il -u)? .

The statement now follows using b). //

V=0 + A<u(u) ,v-ud 2



§2. SOME ABSTRACT RESULTS ON THE EVOLUTION PROBLEM

In this section we recall some results from [6] . which will be

useful in the sequel.

As in §i, H is a Hilbert space, W is an open subset of H and

f: Wa+Rul[++} 1B a given function.

(2.1) DEFINITION, Let I be an interval in R with 1 # @ and let U be
8 mapping from 1 into H.

U 18 said to be a curve of maximal (descending) slope for f 1f:
a) U {s absolutely continuocus on compact subsets of I;
b) U(t) € D(f) and -U'(t) € 3 £(U(t)) almost everywhers on L

¢} foUis non increasing on 1,

Let us note that the definition given in (2.1) of (6] 1is slightly
more general then the one above, since the property required nov in a)
is somewhat more restrictive.

The above definition however is sufficient for the scope of the
present paper, since chosen a point u in D(f), one can prove (see theo~
rem (2.4)), that there axists a U satisfying this more restrictive defi-

nition with u as the initial point,
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(2.2) DEFINITION. Let ¢ be a real valued continucus function defined
on D(f) xR xR,
The function f is said to be ¢-convex if and only if for any u in

b(f) with 2 f(u) # ¢ and any o in 3 f(u) we have

2
£(v) 2 £Qu) + <a,v-u> - #(u, E(u),ljalDilv-ull weW

£ 18 said to be ¢-convex of order r (r20) if for scme appropriate real

function 00 defined on D(f) xR the inequality
$(u,8,t) s¢°(u,s)(1+t')

for t non negative holds.

(2.3) REMARK. The functions of class C(p,;q) introduced in (1.6} are

¢-convex of order 1.

(2.4) THEOREM. I1f f is lower semi-continuous and ¢-convex of order 2
{in particular, if f ie of class C(p,q))sthen:

For every u in D(f) there exist T>0 and an unique curve U of ma-
ximal slope for f defined on [0,T[ with U(0) = u .

Purtherwore:

a) for every t in 10,T{ we have 3 £(UCE)) ¢ 0 and
U (e) = - grad  £(U(t))

(Ul(t) is the right-hand derivative of U at t); moreover t ¢U;(t)

1s right continuocus in JO.T[ ;
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. tz - 2 )
b) foll(t,)) - £olit)) = -[ ||grad  £(u(e))|["ae vt e [0,TL;
1

c) 1f 1 is the maximal interval of existence of U with 0% I and if

sup I <+=, then at least one of the following holds

c
lim fo U(t) « == lim  d(U(t),W ) = 0
t+sup I t+supl

(4f £ 18 of class C(p,q)s then, according to e¢) in (1,7), the first

alternative is excluded).

d} 1f {u ) with sup f(uh) <+w is a sequence converging to u ¢ D(f)
h h
and 1f U:(0,T]1+H 1s a maximal slope curve for f with U(0) « u,

then:

= the maximal alope curve Uh for £ with IJh(O) - uh is defined on
[0,T] for h sufficiently big:

- Bh converges to U uniformly on [0,T] 3

- foUh(l:) converges to foU(t) for every t im ]0,T] .

PROOF: For a) sse (3.2} of [6]1 , for b) and c) see (3.4) of [6] ,
for d) see (3.7) of [6]1 . //

(2.5) PROPOSITION. If f is lower semi-continuous and of class
C(p,q), and if the curve U: I +H 1s absolutely continuous on the compact

subsets of I and such that -U'(s) & a-f(U(l)) almost everywhere on I,then:
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a) lur o] sjjur (a)]jexp (zf[q(u(r)) + P(U(r))llu'(rjl]dr)

for almost all s and ¢ in I with g<t,

b) U is a curve of maximal slope for f,

PROOF: a) can be deduced with atandard argument from d) in (1,7)
See also (3.5) of [6] . :

To prove b} let us note that if [a,b] € I, then the inequalicy
foU(s+h) z fo Uls) ~ <U'(8),U(a+h) - U(s)> +
* ) () |+ auie)) Muashy = u(a?
and a) above lmply the e:gial:em:e of a real number ¢, such that
folU(at+h) ~ foU(a) zclh|

for almost all s in [a,b] and all h with 8+ h in [a,b] .
Since £ is lower gseml~continuous, this inequality holds for all s in

[a,b]). Hence foU ia lipschitz continuocus on [a,b] with constant c,

Morecver we have

(EoU)'(s) = - [lu' (a)[|?

a.e.inl,a8 follows from the following simple remark. 11

(2.6) REMARK. Given U: I +W and € e}, vien U(t ) ¢ D(£) and

2 E(U(t )) 01 U'(e ) and (foU)' (t ) exist, then for all o in
E] f(U(t )) we have

(Fo)'(U(t )) = <a,U' (e )> .
o o
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§3. A FUNCTIONAL OF CLASS C(p,q)

In this section we first of all verify that the functionals fo and
fl' defined respectively in (3.3) and (3.7} below, which are of frequent
use in the analysis, are of class C(0,q) under the assumptions (3.1),
which seem natural for this purpose. Herefrom we infere that under sui-
table conditions, the functional f defined in (3.7) is of class C(p,q).

One can consider mwore generzl assumptions that those in (3.1), (cf.
for instance [7]) under which the functionals Eo and fl would be in the
slightly wider class of ¢—convex functions of order 0. We have not consi-
dered this case here, since in our opinion it would require a rather in-
tricate and hard version of theorem (1.13), even though thia would enable
one to arrive nevertheless at the results we are interested in. in this
case f would be ¢-convex of order 1, and not necessarily of class C(p,q).

For a general theory concerning the ¢-convex functions on certain

constraints see {9] .

Let 3 be a bounded open set in Rn. We consider in the sequel a func-

tion G: I xR +R satisfying the following sassumptions (all or some of them):

{(G.1} for almost all x, G(x,t) is continuous with respect to t,
and for every t it is seasurable with respect Lo x; morecver,
thers exist a in L! and b in R, such that for almost all x

G(x,t) 2 <a(x) - bt
holds for all ¢}

{3.1) { (G.2) for slmost all x, 3% w g(x,t) exists for all t, g 1is conti~
nuous with respect’ to t for almost all x, and is measurable
with respect to x for all t; moreover, there exists ¢ in R
such that for almost all x and every t; and t3 in R

G(x,t3) zc(x,t1)+g(x.t1)(tz-t1)-=(t2't1)2

{G.3) G(*,t) «L! for every t in R.

-23=-

Obviously the validity of the assunptions
following:

(3.1) is ensured by the

(3.2) for alwost all x, G is of class Cz with respect to t; for all t

it ia measyrable with respect to x and there exists a ¢, in R

1
such that Gtt(x.t) z-cl; moreover G{*,t) ¢ Ll for every t and
G (*40) L2,

2
On the space L () with the usual scalar product <u,v> =

u(x)v(x)dx and norm "u||- (<u,u>)’ we consider the functional

2
fl: L (f) +Ru{+w) defined by

1. 2
fl(u) =3 . IDul dx + fc(x.u(z))dx if uGH‘:(Q)
1}
(3.3)

£ =+ 1f weLi(n) \u:m)

(Du = (Dx u,szu....,Dx u)).

1 n
(3.4) REMARKS. It is obvious that:

a) under the essumptions (G.l) of (3.1), tl is well defined, lower

seml-continuous and moreover

1
XD = fwek | ot ucnett @) ;
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b) under the assumptions (G.l) and (G.2) of (3.1), the function
2
g{x,u}{v-u) 18 upper sewmi-integrable for every u and v of L with

G(x,v) € Ll;

¢) under the assumptions (3.1) the function g(x,u)u ia _lmr semi~

integrable for every uth.

d) under the assumption (G.2) in (3.1}, for any I:l. l:2 and t in R

with 05151 we have

2
G(n.tl+r(t2-tl)) 1 (l-r)G(x.:l) +1G(x.tz)+1(l-'r)c(tz-t1) .

(3.5) THEOREM. Under the assumptions (G.l) and (G.2) of (3.1):

a) - D(fi) i3 convex and besides if u and v are in D(fl) and 1if

Utll; is such that uavSwSuvv then wiD(fl);

- 1f u and v are in D(fl). then for every t in [0,1]

fl((l-t)ui--nr) S(l-t)fl(u) +1 fl(v) +1{l=1)c f (v-u)zdx .
@

b) 1f u and v are in D(fl), then:

£ L (ut+t (v-u)~£ 1 (u)
bl) lim = ’[DuD(v-u)dl +fg(x,u) (v-u)dx
]

t+ ot ¢

bz) fl(v) zt'l(u) +r[Du D(v-u)dx +ﬁfg(x,u)(v-u)dx —J(v-u)zdl
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c) 1if u and v are in D(fl) and a-fl(u) ¥ @ then g{x,u)(v-u)e Ll

d) if u€D(f,) andae t?, then ae a-fl(u) if and only if

h[DuD(v-u)dx +6/‘ g(x,u) (v-u)dx k!q (v-u)dx WGD(EI)

e) 1if uED(fl) and o€ a-fl(u) then

t'l(v) H fl(u) + <@,v=u> = ¢ ]Iv-u"2 vxtb(fl)

i.e. fl is of class C(0,c).

PROOF: a) The sssumption (C.1) in (3.1} impliea that G{x,u) is lower

1
semi-integrable for any u.:l.n Ho. It is enough then to use d} in (3.4).

b) 1f u and v are in D(fl), then G(x,u) and G(x,v) are integrable
and (G.2) in (3.1) implies bz). The inequality

G(x,utt(v-u))-G(x,u) 5 t[G(x,v)-G(x,u)] + t(l-t)C(\r'll)z

and Fatou's lemma imply

f1 (r.r!-t(\i'—t.l))--t'1 (u)

lim sup . stuD(v-u)dx +bl.g(x,u)(v-u)dx
t +ot f

Now bl) follows from bz).

1f u and v are in D(fl) and uia_fl(u). then obviously
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£ (u+t(v-u))-f1(tl)
lim inf z fa,v-ud> .

t
t+ 0t

Now from bz) and b} in (3.4) follow c) and d}. The rest is obvious.//

(3.6) THEOREM. Under the assumptions (3.1), besides the conclusions

of theorem (3.5), one has:

B DD 2 HLHL‘. ;
b) if ueD(fl). then

g{x,u) tLl and in the sense of

3£ (u) = @ e 5
1
distributions: -Au + g(x,u) &L

2
(under the same conditions, if g does not depend on x, then u¢H as
has been proved in [1]). For the converse implication the assumptions
{C.1) and (G.2) are sufficient: these ensure thac ~4Au + g{x,u)-2 fl(u)).

a-fl(u) has the unique element: a = = Au + gi(x,u).

PROOF: a) follows from d) in (3.4).

Let um suppose now that utD(fl) and ae a_fl(u).1

From ¢) in (3.5) it follows that g{(x,u)u is in L since OGD(fl)
and hence g{x,u)v is in Ll for every v&b(fl). From (G.2) of (3.l)i£ollwa.
that g(x,u)v is upper semi-integrable for all \vrtn[.2 with G(x,v) €L .

1
Next setting v = 1 and v = -1 we obtain g(x,u) €L , We deduce, from
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condition d) of (3.5) considered for vtc::, that if a ¢ i-fl(u) than
a ™ - Au + g(x,u) in the sense of distributiom (if vel then also
tv ec: for every t). °

Thus the implication from left to ;ight in b) is proved, To comple-
te b), let us suppose that uen{fl). that g{x,u) is integrable and in
the senee of distributions a= -Au + g(x,u) is in l.z.

To prove that uti-fi(u). due to d) to (3.5) it is enough to show
that

[D“D(""’dl +Js(x.u)(v-u)dx 2 Ja(v=u)ix vv(-D(ll)
a

(in virtue of b) 1in (3.4) this expression has seanse).

According to the assumptions, the {dentity

[mwa-+ﬁf.(;,u)m.[,m

bolds for vtc:. If now vtﬂ:n i thars exists a sequence ('k)h o C
-]

converging to v in E: and almost everywhere, and such that

lgy ||wk[|L.<+-. This implies that the identity holds for every w in

E:n L slso, since s(l.u)wkl s {g(x,u) |l=p "wdll.. .

Let us consider now UHI: such that g(x,u)v is upper semi-integrable.

Clearly there exists a sequence ('k)lt in ll;n L. converging to w in !l
. 0

snd almost everyvhere, and such that v':Sv*‘ and wESw" , we have also

stuwv s (exv)’ = (e + e 3

s (B 'vt 4 (g(x,0)) v = (glxaww)? .
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Fatou's lemna now implies JDqudx + [;(x.u)wdxz ‘[cwdx.

Since g(x,u)(v-u) 18 upper semi-integrable for v in D(fl), this completes

the proof. //

In the sequel we consider two measurable functions ¢1 and ’2 from £
in k= Ru{=~e,+w}with ¢1 s.z a.e. onfl.
(3.7) DEFPINITIONS. Let

K- {uel..2|¢1$ usg, s a} (K is convex};
G m 4O e, 5 s - {uiL2|Ju2(x)dx -o%)

fo - fl +1 , f= fo +1 (cf. definition (1.2)).

K Sp

(3.8) In the sequel we use the following conditionm:
(4-1) B i gxe), glxie) 6!
L 01-02‘ i B x"l r Bix:4,

There exists a T>0 such that for all ui(:: with w2 0

h[n;lnudx+ Jg(x.‘l)wdxsi:'"v" 2
L

‘!DQZDde +‘[s(x.¢2)udxa-3||""l‘2 -
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(The laast two inequalities are of the type indicated
in [2] and [15] and are satisfied,1f -A’l + g(x,‘l)
and ““2 + g(x, ’2)‘ taken in the sense of distribucions
are in LY,

(3.9) REMARK. If ueX and B& L%, then e 9T (u) 1f and only 1f:
B{x) 0 for alno'st all x , auch that Ql(x) = u(x) < gz(z)
B(x) =0 for almost all x , wsuch that .l (x)} < u(x) < Qz(xJ
B(x) 20 for almost all x , such that ol(x) < u(x) -Qz(x)
(cf. definition (1.2)}. The proof is very simple,

(3.10) PROPOSITION. a) Under the conditions (G.1) and (G.2) in 3.1)
the following hold:

al) the function fo - fl + I‘ ia of class C{0,c) {vhers c 1s the

nusber vhich appears in (G.2)) and D(fo) L] D(fl) nk.

az) if u.vtD(to) and a"t'o(u) # 4§, them g(x,u)(v-u) (Ll.

4,) if ueD(f ) and aetl, then ae a-fo(u) if and only if

bI‘l}ul)(v-l.l)cl:l: +{g(x.u)(v-u)dxz I[u(v-u)dx vv‘D(fo)

b) Under the assumptions (3.1), if ’l and 02 are in lll. then
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_ (30, gix,u) eLl and a, = ~8u + g(x,u) GLZ in the sense of distribu-

bl) D(fo) 0 “k'n(fl) b ‘T ' T ’ZED“I) tions. Let us note that this kind of regularity result cen be inferred
2 from theorem I1.1 in [2] 1f g satisfies certain growth restrictions.

bz) D(fo) A e D(fo) 1a dense {n K (vith respect to L) Hence o, €3 f (u) according to theorem {3.6). From the inequality

in D(F )3 a,) it follows :m: a- ull-a L(u). //
¢) Under the assumptions (3.1) and (3.8), for every u in o

= -3 + 3—1 (u) .
3 f (w =3 £ (u) K In the variationsal inequalicy in a ) of (3.10) the sat D(E ) of the
test functions depends on G. Ag in the case of f one can lubatitut- this

set with another one that does not depend on G. Th'.l.l vill turn useful,

PROOF: nl) follows from the inequality for example, in (4.2).
£ (utrt(v=u))=f (u)
' ‘ llv - ul
f. (v) zf (u} + 1lim inf Y -e
e G-11) RERE. Let K, = {(9,v v) Ay, | weCtm).

1
Suppose that th auunption 3.1) hold and tlut and re in . Then
¢ b) 1n (3.5) ) which is true for f also, since K ie convex and fro uppoRs fhat the ® (1) hold o ¢ i

ses n . o

the inequality a} If D(f } 48 then K, S D(f } and morecver for every v in D{f o)
f (u-H:(v-u)-fo(u) there exists a sequence (v ) in K converging to v in l.2 and

Lin tnf ——p ® e h that also (£ (v.)). tend to £ (v)

¢ oot such ¢ also ovhhensoov.

for every u, v {n D) and every o in a-f"(u). b) 1f utD(fo) and ifae Lza then a ¢ a-fo(u) if and only if

Also ‘3) follows from this last inequality and b) in (3.5).
Finaily '2) follows from l3) and b) in (3.4). ﬁI‘D“ D{v-u)dx +[l(x.u)(v-u)dxt [a {v-u)dx ’ivelo .
b ) follows from a) in (3.5).

'l'o prove b), let u be an el:nenl: of K and let (u ) be a sequence

Fi + _ .
in H:nL converging to u in L « As we already know uheD{f ) and PROOF: a) If D(E ) ¥ 9 then ’ and ’ are in D(f )
A= A
Yn " (o7 40 A0y Le stLll du D(E)) aince u N () SV, Su Y 4y besides Por any wec] ‘)"'- hl; w) (-4; )‘:‘v/ WA, Swvel L Since c < D(E ).
ccording to a) 1 5 v «D{E ).
(vh)h also converges to u since ueK, i ; ording : : n { . (‘ v "’2 ( ) ) “ln ]
Finally to prove c), let us note that 1f aed fo(u)’ then the ine- t now v&D( ) Let us suppose First that v . (¢ v W) ¢2 with we X L.

quality in aa) holds. Then, as we shall see subsequently, (see (3.6) in
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1
Then there exlsts a sequence (wh)h in co converging to ¥ in H with
s:p lIw, )l 5 <+w. Clearly i ® (’1" vh)l\ *,¢ K, and (\rl‘)h tends to v

in 8l, In order to see that

1lim fc(x.vh)dx - [G(x.v)dx
Q

here

let us note that (~8)A (—4;) sv, S svg‘: and besides G(x,(-s)}» (-0;))

and G(x.sv"{’) obviously are integrable. The conclusion now follows from

d) 1in (3.4).

In the general case, given vGD(fo) one can consider vh - (le vh)ﬂ Qz

with L (-hvv)AheH:ﬂ L . Then obviocusly (vh)h converges in Hl to v

and moreover .21\ vvi svhs le vv 0,

One can deduce as before that (iotvh))h tends to fotv).

b) It is enough to use a) taking also into account (G.2). /!

As regards the functional f = fo + ls , theorem (1.13) allows sasily
to conclude that f is of class C{p,q} p:ovided that D(f ) and s are not

tangent at any point, as now we proof in (3.13).

{3.12) REMARK, Suppose that all the sssumptions (3.1) hold, that
0 and 4, are in lil, and that utD(fo) nSp . Then the following facts are

equivalent:
a) D(t’o) and Sp are tangent at u.

b) K and Sp are tangent at u.
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€} uw= uk (i.e, —uia‘lx(w)) or

sess ({x: 4 (x) <ulx) <0} U {0 <u(@ <4, (x)}) = 0

(1.0, ue Q_IK(u)),

The simple verifaction follows from the fact that D(f ), if nonemptry
[

is dense in K and from the characterization of 3 l‘. (u) given in (3.9).

An analyeis of the non tangency betwesn D(f. ) ami s in terms of 0

’ and ) is carried out in section 2 of [3] .

We now state the following theorsm which can easily be obtained from
theorem (3.10) using of theorem (1.13),

{3.13) THEOREM. a) If the assumptions (G.1) and (G.2) in (3.1) hold
and 1if D(fo) and 5, are not tangent st any point, then

.1) f= fo + Is 1s of class C(p,q) witk p snd q (suitable) sppro-

priate continuous functions on D{f) =D(f )ns,_ ;
o e

.2) for any u in D(f)

2 flu) = a-fo(u) +{iu: AeR}

2 -
13) 1f weD(f) and a€L”, then aed f(u) Af and only if thers exists
Ain R such that:

DxD ’
'nf (v=u)dx +f g(x,u) (v-u)dx +1Ju(v-u)dx ?.[u (v-u)dx wve D(E )

)




34—

This variational inequality is equivalent to o —Aue a'to(u).
(The implication <= is alaoc valid when D(f.o) and 5, are

tangent at u).

by If (3.1) and ($.1) in (3.B) hold and if D(fo) and Sp are not tan-

ent at any point, then for every u in D(f):

b)) 2 f(u) = a-fl(u) + a'1K(u) +{ hu: AeR }

s(x.u)ELl and -~ Au + g(x,u) taken in the

b,) FE() F P e

2
gense of distributions belong to L .

{3.14) REMARK. Suppose that the conditione {3.1) hold and that &1 and
*2 belong to HL. Let u& D(f) such that:

meas {{xefiu(x) ¥ 0, 0‘(::) <u{x) < Oz(x) B=>0

(in particular D(fo) and Sp are not tangent at u according to (3.12)).
Then for every a in a-'f(u) the pair (uo.l) with uot- a_fo(u) and A &R such

that a» ao + Au is unique.

PROOF: The unjqueness of ) follows from the variational inequality

a3) in (3.13). Now we have to find a w in H: with the properties

u+tw, u- utD(fo) and {u(x)u(x)dx ¥ 0.

=35~

1f for example

weas ({xeQ:u(x) 40, ¢, (x) <u(x) < ¢2(,)}) >0,

8iven positive integer k, let us consider § = v+~ k, ;2 - ¢tag,
2

- + - - - -
$ 4 "k and v~ (G- 01)" “z - u).
It is clear that vtll: and w2 0; 1f u(x) <0 of u(x) >k then w(x) = 0 and
moreover if 0 Swix) Sk then 0':'50 -wiu + us‘zAk. Hence u + w and u ~ w
are in K.

Finally u + v and u - v are in D(fo) since G(x,u + %) and C{x,u - w)
are integrable on Q by (G.3) and the sbove inequalities,

It is also evident that uwdx f 0 4f k {s big enough. //
a

(3.14) REMARK. Assume the hypothesis of (3.14) and let ued(r).
The condition that .
meas (fx e 0: u{x)40, ‘1(31 < ufx) <$z(x)}) >0
is equivalent, aw ia evident, to saying that D(fo) and Sp are not
tangential at u under the additional assumption that &1 <0< ¢

2
on




~-36-

§4. AN EXISTENCE THEOREM

In this section we present an existence theorem for the problem (Pe)
stated below after the assumptions (4.1), the solutions of the problem
being interpreted as curves of maximal slope for the functiomal £ consi-
dered in section 3}, Crucial for obtaining the existence of solutions to
~ (Pe) is the hypothesis of “nou tangency” between ls and S, : .na (1.11)
and (3.12). This hypothesis is completely characterized in terms of s.¢l.
02 and p only in secticn 2 of [3] .
For the existence in the "strong mense" we resort instead to the "re- (4.1)
gularity"” of ‘l and ¢2 (by means of the regularity theorem (3.6) in [3]).
In this eection we also consider a bounded open subset R of R“. the
function g: 4x R+R | the measurable functions 01. 02: Q+R wicth
01 502. and & nunber p > O,
Let us recall that:

2
for w& L  we denote by ||v|| the standard norm in Lz;

K-{vﬁL2|¢15v$¢2 a.e. onil) B

2
ux-¢1v0+¢2A0; Sp-{vtLlﬂv“-p}

For G(x,t} = f g{x,8)ds we coneider also the convex set
°

1 1
Ks ={veH nK |G(x,v) €L" }

In the gtatements below we suppose that g, 01. ¢2 and p satisfy some

of the following assumptions

(3-1)

{g.2)

(g.3)

(o.1)

($.2)

It should be noticed that (¢.2) is
(2.5 -

) of [3] (l:8 D(fo)). In view of this 4
for the validity of (¢.2)
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for almost all X, § is continuous with Tespect to

t, aod for every t it {g measurable in x;moreover

1
thare are a 6L and b &R, such that for almoat
all x:

/ B(x,8)de 2~ a(x) - btz

vt &R

Ther
e exists cl €R such that for almost all x and
every t, and t_ in B with
2 :l # tzz

g(x.t ) - s(x.t )
_—tr
~ &=
t t, “

8 is integrable in 0 x (a,b) for a, ben

0 and ’ ars in H ’ and ¢2 are in lll. '“"l)

~a¢, + s(x.o } and
-M + gix, 02) are in 12 1\1 the sense of distriby~
tious (or more generally (¢.1) in (3.8) bolds).

and g(x‘o ) are in L

l‘ and S arc ROt tangeat at any point of lsn s

(sae the fol.lou:lng remsrks and the remark (3. 12)).

completely characterized by

rather comprehensive criterion

£
Or any p> "uK" is the following: the hypo-
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thesis (g.1), (g.2) and (g.3) hold for the function G, and morsover
¢, and ¢, are in Hl C{4) and there is no open subset Q' of 2 such that
1 2

at least one of the following holds:
a' and ¢ eul(u')
‘2’0 on 27 o

1
¢1<0 on &' and Olﬁ‘ﬂo(n')

We study the following problem.

EVOLUTION PROBLEM: Given u in Ksn Sp find an interval 1 in R with
0 =minl, a function U: I *Lz(n) which is absclutely continuous with

U0} = u and & A: I+R with the following properties:
o

U(s)ixsns Veel

and moreover, for almost all s snd with u = U(s)

! Vo ek
(Pe) gix,u)(v-u)e L € 8

and

/U'(u) (v-u)dx +[D\l D(v-u}dx + [ g{x,u) (v=u)dx +
Q

+ A(®) n/u(v-n)dxzo VVGK!
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(4.2) REMARK, ) Note that, in the varistional inequality in (Pe),
the test function v varies in the convex set Ks, vhich depends on g, 1f,
however, one assume§(g.1), (g.2) and {g.3), angd if 0 and 0 are in Ill.
then we obtain a problem equivalent to (Pe) by taking the test function v

in the convex set K defined by K -{(‘V w)A 02' vlc (ﬂ)} instead in

K.
g
b} If for exemple g satisfies the restriction
24<]
| Blxst}|s 2 (x) +b ]t|

_2*

24-] 1
with a e L ' bl ¢R, and n> 2, then cbviously ‘8 = Kn!lo.

The proof consists of an easy consequence of the Remark (3.11) l.ft‘l'
taking into conaideration the condition b) of (3.4) and 13) of
{3.10).

In the existence theores (4.5), also solutions of (Pe) "in the strong

seuze” are considered. In view of this we give the following definition:

(4.3) DEFINITION. Let D{A) ={ue l {g(x,u) ¢ Ll. =8u + gl(x,u) ¢ l.z in

—

the sense of distributions}. ¥or u in D(A) and X eR let
(v ~ g(x,u) = Au)v0 a.e. on {xen: ol(x)-u(x) <02fx)}

du - g(x,u) - Au s.e, on {xeqn: tl(x) < u(x) <¢z(z)}

A(,u) =

(du - g(x,u) ~ Au)AQ a.e. on {xen: Ql(x)<u(x)=¢z(x)}

0 a.e. on {xeQ: ¢l(x)-u(x)-02(x)}

<
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(4.4) PROPOSITION. let U: 1+sp be an absolutely continuous func-
tion (in the Lz-uom) and @ At 1+ R, where I is an interval in R.

Under the sasumptions (g.l1) and (g.2), if U(s) ¢ D(A) and U'(s) =
= A(A(8),U(s)) for almost all s in I, then (U,A) satisfies (Pe)

The inverse is also true under the agsumptions (g.l), {g.2) and
(g.3), and (4.1},

The proof is given in (4.7).

(4.5) THEOREM (EXISTENCE). lLet p be a given number, such that

KS~S ¥ @ and p>|¢lv0+¢zz\0|.

a) suppose that (g.l), (g.2) and {g.3) hold, and let olﬂzﬂll. Then:

al) for every u, in KB'- Sn with

meas ({xe 0:01(3) < uo(x) <0}ulxea:0c< uo(x) < Qz(x))) >0

there exiat T in ]J0,++=] and a unique absolutely continuous
u:[0,TC *Lz with U(0) = U such that (Pe) holds with an appro-
priate function A:{0,T[ +R. Moreover the energy Inxﬂ(s)lzdx
and /G(x.u(a) (x)}dx are continuous &nd bounded 1in [0,T[;

fq

if (uk)k is a sequence in Ksﬂ Sp converging to uo and if the

sequencs

([onle) we (fonpe),

are bounded, then for any T' with 0<T'< T, there exist

Uk:[O.T'[ *Lz with Uk(O) = u , satisfying the above condi-

k
tions and converging to U.
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-2) 1f {4.2) alec holds then, for every uo in Ksn sp s there
exist U and A defined in [0,+=[ with the properties stated
1 .
n .1)

b) If the assumptions (g.l}, {g.2), (g.3) and (¢.1) hold, then (U,A)
in ll) or az) is such that U(s) « D{A) n Sp and U;(s) = A{A{s),U(s)) for

every &> 0,

For the uniqueness of A ses (2.6) in (3] .

The proof of the theorem is concluded in (4.10).

To prove (4.4) and (4.5) we counsider apain the functionals fl (see
{3.3)), fo and f (see (3.7)) defined by wmeans of the functions G, ¢1 and
’2' and the number p > 0 considered above in this section. Nots that

K‘ - D(t’o) and ‘Ens" = D(f).

(4.6) PROPOSITION. (Interrelation between (Pe} and f). Suppose that

(g.1), (g.2) and (¢.2) hold. Let U: I-Lz. vhere I is an interval in R be

an absolutely continuous curve. Then thers exists a A: I+& such that

(Pe) holds for {U,A) if end only 1f U 18 a curve of maximal slope for f.
The condition (§.2} can be substituted with the following two:

D>II¢IV 0+ QZA 0 I[ and

aeas ((xul(x) <U{8)(x) <0}u{ x:0 < U(8){x) < Qz(x) B0,
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PROOF: 1f (U,A) resolves (Pe), then -A{s)U(s) - U*(s) €31 (U(a))
for almost all s according to ’3) in (3.10) and hence ~U'(s) ¢ a-fl(U(s)).
On the other hand f is of class C(p,q) according to theorea (3.13) and
hence the assertion follows from (2.5).

The inverse implication can be easlly obtained from the identicy
a‘f(u) - a-fo(u) + a_ISp(u). which holds in view of thf assumption of
non tangency (see (3.13) and the characterization of 3 fo(u) by means of

the variational inequality (3.10). //

(4.7) PROOF OF (4.4): Let us firat of all note that for every s such
that U'(a) = A(A(8),U(8)) we have g(x,U(8)) (v~U(a)) & Ll for every v in
D(fl) since by {3.6) we have a-fl(U(s)) ¥ @ and besides (3.5) holds. We
obtained the firat part of the assertion by multiplying the expression
A(ACa),U(s) - [au(e)-g(x,U(a))~A(=)U(s)] by v=U(s) for v in ls. If now,

" on the contrary, (U,A) satisfies (Pe), then according to a ) and ¢) of
(3.10) we obtain, for almost all 8, =U'(8)-A(s)U(s) €2 £ (U(u)) and
3 4 (U(s)) =3 f (U(s)) + 51 (U(s)) It then follows, tro- b) of (3.6),
that U(s) « D(A) nnd moTeover -U'(u)+AU(u)-g(x.U(n))—A(u)U(s) €31 (U(a))
for almost all a.

The assertion follows in view of the following simple remark. //

L]
(4.8) REMARK. 1f V: 1 +K 1is differentiable (in Lz) at some soe I,
then

V(e )(x) =0 a.e. on {xe f:¥(s }(x)=¢,(x)) . {xe 0 :V(s ) (x)}=¢, (x)].
o o 2 o 1

-PROOF: Apply (2.6) for the curve V and the function 1‘. i
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(4.9) PROPOSITION. Let all the assumptions (4.1) hold. Then for
every e D(f) = l(sn S we have ) f(u) ¢ @ if and only 1f ueD(A); if
2 f(u) ¥ #, then there exists a A®R such that -grad f(u) = A{},u).

The condition (¢.2) can be substituted by p >|¢ AGLUE Y ﬂ~0| and
meas ({xe¢ ¢ (x} <uf{x) <0} v { xeq: 0 < u(x) <0 (x}}) > 0.

PROOF: The equivalence is already clear (zee b ) of (3.13)).

If 3f(u) ¥ @, then from the relation 3 f(u) = 3 ¢ (u) + 3 I (u) +
+ aI (u) (see (3.13) the existence of ) in R and B 1n 31 (u). such
that —:rad f{u) = Au-gix,u) - au - p follows.
For this ) the 8 has to uinimize the L2 uorm of the expression on the

right-hand side. Hence the assertion follows,

(4.10) PROOF OF THEOREM (4.5): Under our assunptions the functionsl

f is of class C(p,q) in & neighbourhood of u, according to theorem (3.13)
and remark (3.12): D(f ) and S are not tangential in a neighbourhood of
uo, because D(f } s denae in x (Bee b ) of (3.10)) end K and S are not
tangential at u by assuvaption. If, moreover, (4.2) holds, then f 1s of
class C{p,q).
Let us then make thias auuulptiou.

From the existence theotem (2.4) it follows that given u in D{f) =
- I n S', thers exists a unique absolutely continucus u:fo, 4-~DtL2 with
U(O) - uo wvhich 1s a curve of saximal slope for f,

From b) in (4.6) it follows that there exists one and only one solu-
tion of (Pe) with U(Q) = U, Since foU 1s nonincreasing (on [0,4=[) and
since d/lc(x.u(x))dx 1s bounded from below on sp, both functions

a*[leU(n)Izdx and a*{c(x.u(a))dx
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are bounded on [0,+=[ Moreover, obvicusly thess two functions of s are
lower semi-continuous and the function foU is continuous accoxrding to
(2.4). Whence both addenda are continuous, Now the dependence an the

{nitial data is #n immediate consequence from theorea (2.4).

b) follows from (4.4). /I

The Following remark is obtained from the propertise of the curves

of maximal slope, stated in theorem (2.4).

(4.11) REMARK. Let (U,A) with U:[O.-l-‘--[-bl..2 absolutely continuous and
A:[0,+=[+R be a solution of (Pe). Under the assumptions (g.l), {g.2) and
($.2):

a) fol 1is bounded;
2 2
b) fol(s)) - fol(s) = - fu'(e)|["de for 05s, $8,;
1l

e) ||U'(s)|l['2 is bounded on [B,+=[ for every 8>0.

If ($.2) is substituted with the following two of conditions,

52 lhyv 0+ 4yn0 |

meas ({x:4, (x) < (0} (x) <0} u {x:0 < U{0){x) < 02(‘5) n»>o0

then the above properties hold in a neighbourhood of 0.

Finally, if (4.1} hold, then for every &>0, U(s) € D{A)} and moreover,

“~§ 5=

the mapping s+ A(A(s),U(s)) is right-continuous aud bounded ou [G,+=
for every 3> 0. ’

PROOF : Tlh‘.ns into account that f 1is prﬂvld to be of class C(p q)
L *
it followa fro. (‘06) that U is a curve of mi..l llopu for f

Then a) follows from the inequality f({v) z-l-blvlz (see a) in
(1.7)) and the fact tha foU(t) sfolU(D) <+m

b} follows from the general properties stated in (2.4),

c) To prOoOvVe C)’ it 1is nacessary to note that f {as of class C(p q)
»
and that on the compact set {U-f(') Sc] we have ‘I.IP P=p <+« and

8up ¢ = g<+e, The assertion then follows from a} in (2.5)

1f all the assumptions (4.1) hold, then from a) in (2.4) and (4.9)
it follows that U(e) ¢ D{A) and U'(s) = ACA(8),U(8)} for every s> 0.

The right-
" ght-continuity of l"U;_(.) and its boundedneas on [5,+«[ for
every 8> 0 follow from (2.5).//
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