{@7; INTERNATIONAL ATOMIC ENERGY AGENCTY

UNITED NATIONG EDUCATIONAL, BCIENTIFIC AND CULTURAL ORGANIZATION

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

34100 TRIESTE (ITALY) - F.0.B. s - MIRAMARE - STRADA COATIERA 11 - TELEPHONE: 83601
CABLE! CENTRATOM - TELEX 400892+ 1

SMR 281/22

COLLEGE ON VARIATIONAL PROBLEMS IN ANALYSIS
(11 January - 5 February 1988)

NONLINEAR SUBDIFFERENTIAL ANALYSIS
o PART 1T
Curves of Maximal Slope and Parabolic Variational
Inequalities on Non Convex Constraints

A. MARINO
Dipartimento di Matewatica
Universita deglt Studi di Pisa
PISA
______________________________________ 1TALY
These are preliminary lecture notes, intended

Missing or extra copies are available from the

for distribution to participants,
College secretary.

CURVES OF MAXIMAL SLOPE
_ AND
PARABOLIC VARIATIONAL INEQUALITIES
ON NON CONVEX CONSTRAINTS

ANTONIO MARING™®™) - CLAUDIOQ SACCON™ - MARIO TOSQUES(*™)

(*) Dipartimento di Matematica, Via Buonarroti, PISA
(**) Facolta’ di Ingegneria, Via delle Brecce Bianche, ANCONA

Lavoro inviaio a Annali delia Scucla Normale Superiore di Pisa



Introduction.

In this paper we deal with some classes of “evolution equations of variational type™; by this expression we
mean those equalions whose unknown may be secn as & curve, with values in a suitable space, along which &
iven funciion decreases as fast as possible.

In this work we have developed a theoretical framework proposed in the paper [6), where the “curves of
maximal slope™ for a fuaction f have been introduced,

We recall that duning these years, following the gencral ideas proposed in [6], the theory of @ - convex
functions has also becn developed (see (S) and [11]). In this theory the compaciness hypotheses, which are
required throughout this paper, are not assumed, but stronger conditions on the behaviour of the functions are

equation.wiﬂugivenimﬁaldau.andmeomunmdependﬂuonundam.
Onlhecmn'uylhehypoﬂ:csesnmdeinU!ispapetemblcloobujn,ingmal.uﬂymsmﬂwum.
It was also felt worthwhile 1o recall briefly, in section 7 below, some equations which have been solved
duringl!euym.fo!bvingmegmm idmot‘[G.andlo:lmelheymcwemdbylhermﬂuwved
in this paper.

In (7.1) we recall the evolution problem associated with “geodesics with respect 0 an obstacke”, This
subject was studied in [16) and a multiplicity result for such geodesics was obtained, by means of an existence
theorem for the curves of maximal slope which is proved in this paper.

In (7.2) the evolution problem associated with “eigenvalues of the Laplace operator with respect o an
chstacle"is presented, which was swdied in [3) and [4}.

In (7.3) another parabolic equation on a non convex coalraint is described.

Wcmﬂlﬂntwegmralize,usinglhenodonofcuweofmnimlslopelaaﬁmction].lhenmuevolu-
limequat.ionofvamﬁomllype:

{1 W' (8) + grady, F(U(e)) = 0

wherefisadiﬂemntiablefmctim.dcﬁned.rnrinslancc.mll-ﬁlbeuwﬂ.m“uwmmmint'v'hl
smocth submanifold of 2. The equation (1) has been the object of several extensions, having different goals,
llisus:l‘ulmmﬂmmkeyhmofmcumyor"mumummomopaﬂm‘,wmhawm
vuyhnpmantmframemdmsolvcmmydiﬂuendaleqmmdmboncrype.
lndﬁsdmymwinuudm.ﬁmofau.mcnouonor“subdifrenminl"ohofaconvexmncﬁmh.dcﬁmd
on a Hilben space H. Thea.ilf.lndﬁmlwofunctiomdcﬁnedonﬂsuchmalf.i.lconmmdbw
semicontinuous, fi € CY, if V is a closed and convex subset of A, inroducing the function I : H —

RU (+0o) defined by: fy(y) = {Em :;:Ez\v.rormhﬂcﬂ.lheequniom

¥)] ~U') € 3 + Iv) (U + grad fy(U(e))

generalizes (1) to the case where the “constraint” V is a closed and convex subsetof Hand f = f, + f. We
canalsnsayllm(Z)smndsforlheevolulbnequalionassocialcdwimmcfunaionf.+lp + f1, on the whole
space H.

in the context of this theory existence, uniqueness and regularity results hoid for the solution of the aquation
(2) satisfying & given initial condition.

We want 10 consider some cases where not convex contraints are involved, Thean, if f, and f; are of the
typemuionednbovcmdviusumuofH(poasiblynmmnm).wewdyfmilmwem;mblm:
(6] ~UO €Ut i+ I

1



having defined the “subdifferential” 3~ A of 5 generat A (see definition (1.6)) as & naial extension of the
subdifferential in the convea case.

With this goal, in this paper we prove and exiend some existence and regularity theorems which were
announced, without proofs, in [6} and we also prove some new result which entarge the framework given in [6],

We wish 1o point out that we consider two possibie extensions of the equation (1).

The definition {1.2) inroduces the “curves of maximal slope™ in a meiric space (using just the metric struc-
ture). This approach enables us Lo get existence Lheorems (see for instance (4.10)) by a sufficenily clementary
procedure which points out, in a natral way, some key hypotheses.

The definition (1.8) introduces the “strong evolution curves™ in a Hilbert space, by precising (3): in many
probiems such & definition gives easily the concrete expression of the equation that one solves.

In section 1 we also point out that a curve of maximal slope is a strong evolution curve, if the function
satisfies the key property (1.16) (the converse is always tnpe),

Some classes of functions which satisfy this property and also the the hypotheses of the existence theoresmns,
are introduced in section 5.

Tbcsecu'ons2,3andlmdewmdwdwmguhmymdmeexiswmmnsfathecmofmuhml
slope in metric spaces; wmsmﬁmmmmmfad:mmlmimmhmlhm
spaces.

We list now some of the main notations which will be used throughout this paper.
If X is & metric space, with metric d, if R > 0,4 € X, we set:

B(u,R}={ve X |dw,v} <R).

Iff:X = RU {+co0) isafuncl.ionweuyﬂmjis“loca!lyboundedfmbelowuu'.ifﬂmeexislsﬂ>0
such that £ is bounded from below on B(u, R); we say that £ is “locally bounded rom below on X, if it is
locally bounded from bejow at every u in X.

Let I'beanintervalin R and Uf ; [ — X be a map. We say that If is absolutely continuous on I, if it is
nbmlulclycgdnm(indwusmlm)mmy compact interval contained in [,

tel, weset

dilUie+ :), uyn 16U = tim sup (Uit + A), Uit))
fars A
d(Uce+ k), Uty
h

18.4()] = tim inf

' . U+ h), Uy .
L = fim =R ') = fim
If H is a Hilbert space and X C H, we set:

. Ut +h) - U@
0= iy =10

Ig: 1~ RU (+oo} is a function and g(f) < +oo, we set:

o glE+ A~ glt) ) olt + K) < g(t)
Dygit) = l!‘m_*ljl_lf . D*p(t) = II:n_ﬂP s

Finallywedumebyl!’uum{ren|r20}and.iI'A,BeR‘.byA\Blheul{zEAlsﬁB}.

§L. Corves of maximay tlape and strong evolution curves,

Let metric i ; .
of £ by Dw_{-exsrafc(ewlmmelncdandf.X—*Ry{m}heafuxﬁm.__“fethﬁmh“min'

(L) Dervmon
e €D(f)p>0, we ser:

Xu(P) = inf{ f{v) | d(u, v) <p)
and we define |V f] : D(f) - R* | {#o0} in the following way:

= = [im i XI(’)_X-(O)
[V itu) fim inf Pt

V91 wilt be calted the *stope of £ oz ¢~

Ble set E contained in ] such thay
R U is continuous on I
b) folt) c4e0 - f
foU(t)Sfotl(minI) ::::;Qg' fIIu.rlmuumn
.' :
[3] d
et Uer)) < £ 19110 ))&t Vi, tyin L with t) < t5;

"
» f’""’"”"“"s‘fﬁ (VAuOP & Votyin s\ Boith 1, <,

if in particular f o 4 ; i ; .
(16)of 161). L non increasing, we say that Uf iy o curve of mavimal slope for I (see definition

The proposition (1.4), which will be proved tacer. :
¥ . » CRsures the e .
i:)feplaceme upper and lower integrals, in ) and d), with the hml:z:qvn,u‘ therclore we



1.3} REMARK
( }lﬂl. : [a,b) = X and Uy : [b, ] — X are two curves of maximal slope almost everywhere for § such
that Uy (b = Us(b) and [ o U (8) > f o Uy (b) for aimost every t in [a,b] (for instance if [ o Uy is lower
semicontinuous), then the curve U : (a, ] — X, which is equai to U; on [a,b] and to Uj on [b, ], is @ curve
of maximal slope almost everywhere for [.

(1.4) ProrosmioN
Let U : I — X be a curve of maximal slope almost everywhere for f. Then:
a} {Vfiol is measurable and |V [f| o UR®) < +oo  almosteverywhere on I,

b) U isabsolutely continuous on I'\ {inf I} (on I if I has minimum and f o U(min ) < +o00j and:
'@ = |9 f) o Ult) almost everywhere on I,

€)  there exists a non increasing funceion g : I — R U {+oo}, which is almost everywhere equal to
f ol such that:
Fi == (IVfloli))’  almost everywhereon I.
If U is a curve of maximai slope for [, thenwe cantake g = fo Ul.
Proof ) )
Let E be as in definition (1.2) and g be any non increasing function which is equal 10 f o U outside of
E. Then we have:

#(t} < +o0 ¥t in J with ¢ > inf 1,
. _ .
glta) —git) < —f (I9f]e uu)]’ @ Y, hinlwih ¢ <8,
4
which implics g'(t) € — (|V /] o u(t))’ almost everywhere on I. Furthermore, by c) of (1.2), we ger
|8+ 4t} < |V /] o Uit) almost everywhere on 1.
Since, for almost every ¢ in 1, it is:

70 2 limsup L8O =1280 5 _ 4011, yey) s, e,
—t -t
s
we have, for almost every ¢ in I:

9O < - (Vo um)’ < — (19f] o U®) 5°UM] <
(Vs e uw) e UM < ¢'0).

Therefore, for almost every tin I:
Wl =19 eue |, §O=-(V/leUw®) .
4

a) and c) follow from the last equality. Since |V /| o U is square integrable on the compect subsets of
I\ (inf I} (by d} of (1.2) ) then U is abscluiely continuous on 1\, {inf I'} (by ¢) of (1.2) ); therefore b) is
proved,

The following proposition characterizes the curves of maximal slope.,

{1.5} Peorogmion
Let I be an interval in R wish [ F8and U : I — X be a contimuous curve. Then U is a curve of
maximal slope almost everywhere for | if and only if:

%) U isabsoluely continuous on I'\ {inf I} and
W <|VIol(e)  almosteverywhercon I;

b} there exists a non increasing function g ; I' — R U (+co} which is almost everywhere equal to
ol such thas:
#(t) < +oo Ytin I with ¢ > inf ],
gmin) < fol(minl) I has minimum,
PO < —([Vflelit))’ abmost everswhereon I.

Furthermore U is a curve of maximal siope for fif and only if a) and b) hold withg = f o U

Proof

Clearly a) and b) are necessary, as we have seen in proposition (1.4). We prove now that they are
sufficent

b) of {1.2) follows immedissely from the first two conditions on .

Since U is continuous on T and absoluiely continuous on [\, {inf 7}, we have:

[ ] g
(U (), UCer)) < [‘ ey & < f IP7oU®d  Vi,tinl with & <1,
] h

which implies c) of (1.2).
Since g is monotone:

LY h
#E) = p(0)) € f" FOd< - L (Vo t@) &

Vi, tain] with t; <t3,
which implies d) of (1.2), being g(¢) = § » li(€) almost cverywhere on 1.

We want 10 show now the meaning of the definitions (1.1) and (1.2) in the case the space X has also a
veclorial structure. 'We shall consider, in this paper, only Hilbert spaces, since we think they piay a mean-
inglul role in this kind of problems. Analoguous definitions and stalements may be given in suitable classes
of Banach spaces (see §4 of [6]).

Let H be a Hilbert space. We dencke by (-, -} and || . || the inner product and the norm in H. Let W
be 8 subset of H and f : W —» R U {+00} be a function. We recall now the notions of subdifferential and
subgradient (see §4 of [6]).



1.6} Derntmion
If w € D(J), we call “subdifferential of f at " the set:

- . J(0) = flu) = {oy v —u)
& flu) = [aEH|h'm_:.l|f fio =l 20}.

1 is easy lo see that 3 f(u) is closed ond convex. If 8~ f(u) ¥ 9, we say thai [ is “subdifferentiable at v"
nd we denote by grad™ f(u) the element of minimal norm in 3~ f(u), whick will be called the “subgradiens
flaru”.

L.7) Romazk
a) ifuc D(fand 8 f(u) ¥ P, then:

(VHuw <+oo  and  |9f|(u) < al| Yaind~ {(u),
and, in pariicular, |V f|(u) < {jgrad™ f(u)].

b) If [ is lower semicontinuous and convex, or more generally ®-convex (see definition (1.16) of [11}),
then the following property holds:

YuinD(f):  |Vfi(u) < +o0 = 3 f(u) 7 and |V f|(u) = [|grad™ f(u)||
(see theorem (1.15) of [11] ).

c) If | is lower semiconsinuous, then the ser. {u € D(J} | 8~ J(u) o 8}
is densg in D(J) (see proposition (1.2) of [11]).

In §5 we consider another important class of functions which vesify the property stated in b) (see a)
o theorem (5.4) ). We will verify in theorem (1.11) that, if this propesty holds, then the curves of maximal
lope for f solve an evolution equation analogous to the classical one.

Fox this reason we introduce the following definition.

1.8) Dermvmon

Let T be an interval in R with | f B and U - I — W be a curve. We say that U is a strong evolution
‘wrve almost everywhere for [, if there exisis a negligible subset E in I such that;

] U is continuous on I and absolutely continuous on I\ {inf I},
) iiﬁﬁié}?u(mn ::::ngfhmm

) U ¥ and WO SUE) WinI\E;
) [ ol is nonincreasing on I'\ E.

f.in particular, f o U is non increasing on I, we say that U is a strong evolution curve for {.

6

Totally clementary examples, even in the case & = R and E = #. show that the conditions
€) do not ensure, in general, that d) holds. ). ) and

WeshallsecnowMevaysmgmlmimcmealmevuywluefmfisnmdmimﬂ

slope almost everywhere for f; the converse is true only under suitable assumptions, so that il
is more general than definition (1.8). o hat defiiion (12)

(19) Prorosmion
IfU:I -+ W isa swong evolution curve almost everywhere for f, then the following facis hold:

a) for almost every tin I it is:

FSUDFY , U'(e) = —grad” SR,

there is a non increasing function g : I — R {+00), almost everywhere equal
to f o U such thai;

9'(8) = —|lgrad™ f(U almost everywhere on I.
If U is o strong evolution curve for"f, wecaniakegwm fo ll,
b) U is a curve of maximal slape almost everywhere for f and:
VS0 liit) = [jgrad™ Jen almost everywhere om I
If U is a strorg evolution curve for f. then Ul is a curve of maximal slope for f.

Proof
Let E be as in (1.8). FirsmfallwccmenlargeEinmchnmylhuBisnillnegligiblemdIhallhe

desivative (£ o U|ng) (0 exists for every ¢ in T\ E.
Fortin I\ E we have

19110 4O IO S (£ Ulng) @ = -fucop?

where the last equality is a conscquence of the following lemma (1,10). Then:
'@l < [Pfiole) vYeinI\E.
Since —U'(¢) € &~ flli)).ift € I\ E, we have:
lw®l=I1vsete)y , W@ =gad fEE) Veins \E.
Therclore, by the first inequality written above, we obtain that:
’
(7°Ulne) = -lgmtswen?  weinr\E.

7



By means of proposition (1.5) we conclude the proof {taking as g any monotone extension of f o ll[,\,).

If at the point u = Uty it is:
The following lemma has been already used in (1) Vot the point u = Ui 7 o —

(LI0) Lemma then there exist Ufe UY,(t), and we Agve:
Supposerlm.DcR.leDandthmti:anaacunwh:ioupohuforD.Letll:D—-oWbeamap , _
which is differenciable a: t. Then, if Ui) € DUN. & f(U)} o B, we have: UL(e) = —prad™ f(l(E)),

o U),(t)= ~ IO
(o, ¥'©) € 3 (s o i)e) Yaind~ f(U(t)). Yo L6 = —lgnaa 1 i

‘Tl':;}?;;em{’;pf;;fﬂar foll udwmmuemmmummado.powfarpﬁmmmm g;"‘g._ (hER|t+h e DY anddetine Ve 71y
@ UG =L olY®)  Vainsfugy, vy U200
Proof o 1 ar = grad™ J(U(e)), then we have, by the hypotheses:
Let a € 3~ f(U(t)), from the inequality:
£ U+ R)~ £ 2U6) 2 (m,06+ ) - 200~ ol &) - ey, “RAPIVRA < 19110 Ut = o,

whe:e_liinozg'l =0, we get, Hforimmmetismmcumumupohuﬁunmeﬁmmﬁmdnleﬁﬁrb. Furthermore the following relation is evident
that DU o UX) £ (o, L) € Du(f 0 !1)(;); (L13) Jolle b 2 £ olit) v o, Ut + by - UGe)) - oqtice+ by uon
therefore (@, U'(¢)) € 8-(f o i)s). where lim # 2 g

Since D*(f o U)(t) < — 2, we get, by the h theses:
Nowwcwamwverifymat.iruisacunrcofmuimalslopcnlmostevuywhuefcrj.ticnmccmdition S ol o get. by YPo

IVSflelith = ilgrad™ £ ())]) atmost everywhere on I, which was found in (1.9), is also sufficent to ensure lim sup(a, Y(h)) < - llal?.
that ¥ is a strong evolution curve almost everywhere for I Plu:isclyﬂtrdlowingllmunholds. =
(L11) Trsorm ; By lemma ().14) which lollows, we have thas:

Let I be an interval in R with #landll:!-oWbeacurve. Then the following facts are . = —orad-
equivalent. Jim V(h) = - grad~ fiUg2),.

a) U isa srong evolution curve (aimost everywhere) for I Finaily, by (1.13), we in aiso that

b) Uisacurve of maximal slope {almost everywhere) for [ such that:

Dulf o Us(t) > —|far) lim sup [ V(| 2 -{laf?,
ISUEH## and Vst = ligmd™ fUED  almost everywhere on [,

and the proof is over,
Fu'lhepmof(see(l.lﬁ))weneedllwfoﬂwing two lemmas, _ (1.14)  Lavma
. : Suppo:ede.CI!,OE D.andﬂisauaccwula:ioupomﬁmmﬁghfarli..La'v D, = H
(L12) Lavma beamap.ainHwirhu#DmdbianrmcMhat:
Suppose that D ¢ lt.te'Dmdti:maccmuhtionpoimﬁommerigh:farb. LetU:D - W be
amap such thay: limsup [ V(W) < b v Lim sup{a, V(A)) < -bllaf.
Joly<+oo and & f(u(e)) ¥, v = |
) < 19/ o ute), Then we have - 5
D'(felllity < ~ (Iv7]e U(:))’. 5 Yy = el ™
8



Proof
It suffices to prove that, for an IR .
y sequence (hy); in D, such that .13."...5‘ = 0 and (Y{hs))y con

weakly in H to an clement v, in H, we have that
in fact, if this is the mse', we have: (V(ha))s converges strongly 10 v, and v, = ..'..!'a_

Hoall < Hminf [ VChu)) < tim sup [ VA < 8

and, by the hypotheses, it follows also {a, v,) < —8]|a]|, which together imply:
o =2 and {e,v,} = —[io,]lla]l.

Thcrel'ouv. = -'—:;Iaand( (h*)). i i
' converges strongly (o v,,
hh " ) )" " .H '] 21y 0w, slmeuwnvagesmklymu.mdmeover

(L.15} Prooror (1.11)

a) implies b) by propesition (1.9).Conversel curve of maximal
)4 ysupposc that ¥ : [ — W i imal slope
gil;ns;sl Ecv"e:}::;-‘ezhl;o: {[DBy (lI.4) U is absolutely continuous on I'\ {-i-l:fl } ::i there ::ISIS a negligible
= [\ E, then prions i
lemm(l'lz)memm“pmvu} the assum of lemma (1.12) hold for every t in D, By

To conclude this section we can sa istence
) ¥ that the problem of i
\a;r)no's; :erywmh:lm J. which verifies an ass:g:::: nuc::nal colnhed:en:n may ::;;l?:dg;vt:lows:;m ‘
ow exists i nhnosteveryw. :
o ! acurve U of maximal slope ( here) for £, vexitying the initial
b) to venfy that I isumgemlulbnmm(ﬂmtevuywbuc)fuf.bymdm(l 11}
For what concems step a), we give in (4.4 i
y .4) a constructi i
almols:t evct;‘yawhere for [, verifying a given initial condition, e procedure 1o 6ad a curvs of meximal ope
or what concems b), i i pe i
’ slep )m§5wemn'oduc¢somnulab!echmofﬁmcumwhidlvuifyme
1. i :
(1.16) Yuin B(J}: IVil(w} < +c0 m 3 f(u) ¥ and [V £1(w) = [|grad™ f(u)]].

For such functions any curve of maximal i
rveepiar) b o slope (almost everywhere) fox £ is a strong evolution curve (almast
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$2.Some classes of functions defined in metric spaces.

Aswesaidind\einu-oducﬁm.inmispapetwcwnmmgivelmnnibuﬁmlodcvehpﬂwwellhmwn
theory of the evolution equations associaled with functions of the type f, + fi. where [, is convex and
h e c‘-'.insuchawaymgumt.nsmmhaspossible.fmmmnvuityomdium For instance we
minmstcdinsmdying[umﬁumdﬂlcpmviwslcindresuttadmmlmmnmoummc such a
situation docs not fit anymore in the previous framework. In some other cases the function itself is far from

. mctyp‘fo"’!lv

Problems of this type, which arc recalled in §7, are considered , for instance in [16), [3]. [21} and [22].
Thcyarefacedbythemememptovedindﬁspaper.wh'u:hwuepaniallymnmmui.wimnpmo&.in
[6).

With lhisgoalweinuoducemwmchwofﬁmﬁomwhicbcmnindnﬁmcﬁmimolvedinme
previous papers.

Luxuammwimmdm;:x-.nu{m}m.rm
(2.1) Dervmion

Ifu,v € D(N,|\V]|(u) < +oo, we set:

R s(u, )= f(9) - [f(w) ~ [V f{w)d(u, 0)].
Let v and & be two numbers such that:

0<r<+o0 , 1<s<+o9,
We define the class K(X; v, 8) in the following way:
a) f0<r <400,1 < a.wcsaythafle K(X;r, 0), if the following inequality holds:
R(,v) 2 =F(u,v, |f}, [J0)D (1 +QV S J))) (@(u,v)y Y, in D{) with [V /](u) < 400

where ¥ : (DU x (R*Y — R* is a function which is non decreasing in its real argumencs and such
that (u, v} — ¥(u, v, C, Ca) is continuous on {w | |[fw)| < CY for every 01, Crand Cin R®;

B) if0 < v < 00,1 = 8, we say that f € K(Kir, 1), ¥ the incquality of case a) holds with o = 1 and ¥
has the additional properiy:
Yu,u,C,C)=0  Yuin D(NYC, G in .

¢} if r= 400,1 < 8, we say that f € K(X. oo, 8), if the following inequality holds:
Rylu,0) 2 —D(u, v, [f)], /()] |V lu))dls, ) Yuwin D(f)ywith |V1|(6) < +oo
where ® : (DUP x (RM)} — R* is a function which is non decreasing in its real arguments and suck
that (u, v} ~ (u, »,C1, Gz, p} is continuous on {w | |f(w)| < C) for every C1, o, pand C in R

11




d} ifr = +00,1 = &, we say thar ; if the i i
the addiliomlePeﬂy.? 1€ KX:00,1),  the inequalityof case c) hotds with o = 1 and © has

4,0, CLp) =m0  Wuin DUNLYC,, O, pin R,

(2.2) Remarx
Let X be a Hilbert ipace and f be a lower Semicontinuous function.

@) If f is convex, thea R > 0.

LI f = [+ f) where f,

1 € K(X;0, 1)), is convex and f, € C% with ¢ > 0 (or O

) then f € K(X;0,1 +¢) (or

c) if fis(p.q)-convex (see definition (1.1)and theorem (25} of 7] and see 19), 110)).then f € X (X:

1,2).
d} If | € Cip, q) (see definition (1.6)of (3] ), then £ € K (X; 1,2,

¢) if ] is $-convex of order r (see definition (A1) of [15]), then | € K(X:r,2)
in2).

N I £ is g-convex (see definition (1.16) of [11}), then J E K(X; 00,2).

lnfacl.,foralllhescfunclions. b) of (1.7} holds,

ons of the previous classes are invol
propezties of such functions. e
(2.3) Prorosmmon
) If 1 € K(X; 00, 1), then;
(2.4) lims
msup  flo)< flw)  Yuin DN, VO
Horsov fierco DYonR

b} :,:j_e K(x;m, DfYCXandiffy: v =+ RU (+o0
MUCONInUOUS (with respect to the metric induced
locallyboundcdfmmbelawau we Aave, X

2.5

) (defined by fy(v) = f(u) Yvin Y} is lower
).lﬁenforauyuin\’np(f)mhlhafﬁ

liminf |V '
*3?:.“}“’ N2V vYoim

S Iffe K(X:r, 8} with» < &, then:

2.6 i

2.6) l;'(:' TS."P IS /W) WinDU),VCinR.
W<

WIKUH-U.‘:)—-O
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Proof :

a) and c) are evidenL Let us prove b). Let (uy)s be a sequence in P} N Y which converges 10 u with
J{u) < C and |V f|{us) < p, for any fixed C,p in R. Since [y is lower semicontinuous, we can suppose
that | f(us )] < C. By hypotheses we have thar:

1(2) 2 J{us) — pdlus, v) — Dus, v, C, |/ (v}, p)d(u, v)
Yvin D(),¥kin N

(using the notation of definition (2.1} b) ). 111ercfnre for all v in P(f):
!(”) 2 !(“) - Pd("l v) - °(ul v, GI II(V)!vP)d(.l v)l

since fy is lower semicontinuous. The result follows by the properties of @ , since f is locally bounded
from below at u.

§3. Some regularity properties for the curves of maximal slope.

As weil known, if X is a Hilben space and if f = f, + f, where [, is a convex lower semicontinuous
function and f; € "', then the solutidns ¥ : T ~+ X of the equation:

~U') € o Fluan

are such that:
J o U is continuous, cven if, in general, f is not continuous;

8- f(U(®) # #forall ¢ > inf [, even if, in general, 8 f(u) may be empty for the «'s in a dense subse

ULty = —grad™ fUQY) Ve>iml];
grad™ F(l(-)) is right continuous and its norm verifies some a priori estimates.

These properties arc very impertant, for instance, in many cvolution problems for partial differential
equations: there, usually, X is a space of functions (for instance L?(£2)) and the fact that 8~ f(u) ¥ # for
some u means that u s regular (for instance u € H2((2) Jand [jgrad™ f(u)]| is & “strong noem™ of u (for
instance the norm in H3({Y)).

Therefore the second property written above means that the solution Y(#) “regularizes™ a3 soon as ¢ is
bigger than the initial ime.

In this section we try (o point out the properties of f that ensure that the statements writlen above hold
for any curve of maximal siope for £, from the metric point of view. We shall show that such properties are
verified by a class of functions sufficenly large, which includes those introduced in §2, and therefore the
functions involved in the problems described in §7. On the other hand it is clear that the functions considered
in §7 are not the sum of a convex function and a regular onc, since the “constraint™ {u | f{u)} < +o0}. is
neither convex nor locally convex.

From the vector spaces point of view, this analysis is carried out in §6.
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Asbdmtlqueamcnicspace.wilhme&icdand!:x—oltu{m} be a given function.
The main theorems stated in this section are the following ones,

(A1) Taxoxem

Letll : I — X be a curve of maximal siope aimost everywhere for §. Suppose that £ is locally bounded
from below on X and that [ o U is lower semicontinuous.

a) If f € K(X:r,s), with ¢ < », then:
al) U is a curve of maximal slope for f:
a2) J ol is continuous and non increasing;

ai) lv,flou:'.:!owcrsemicominwu.ranl\[inl’!} fon I'if 1 has minimum and f o ti{min I) < +o00)
and:

therefore almost everywhere on I (see (1 4)),

{ L] = 1V ) o tice) Ve in I with |V f| o Ut} < +oo,
1.2)
o, =-(I9stotie)® wveinl.

D) IFfe KOra)withr < sand s > 1, then, in addition to al).a2).a3) the following properties hold:

n
b1 Jolits)~ foliit))= "f' (lv.fl"u(f))I & Vi, Ll
52) |Vfjo U(®) < 400 Yein I\ (in{I} and
fV]|olli:rightcom:‘nuouronI\(ian}(oan’fIhasnﬁninmand]oU(minl)(+ou);

b3, TIC ITwith t < T.if fo li(f) < +00 and if [V f| o Uit) < +oo, then |V flo U is bounded on
It, T) therefore U and [ o U are Lipschitz contimuous on I¢, T

The proof is in (3.20).

13 Twzonem

Let ubeacwofmu'malslopenlnwnmrywhcrefar!. Suppose that [ is locally bounded from
velow on X and that f o U is lower semicontinuous. Suppose tha f € K(X; 00,8) withs > 1.

Then for every ty in I'\ {sup I} with f o Uit,) < +00, |V£| o Ult.) < +oo and with f « U(t) < [ o U(2,)
o almost every t > 8, there exist § > O such that the following properties hold on [¢t,, t, + 8]

a) U isacurve of maxmal slope for f;

14

b) U and f o U are Lipschitz continuous and:
t .
Jol(t) - folit) = -f (19 U(f))z dt ¥, tain(t, t,+8)
L)

¢) |V £| o U is lower semicontinuous, right continuous, bounded and we have:

B4 WO =Vilet<so0 , Yol =-(TSloUm)’ Wirlttedl

The proof is in (3.23). )
Some elementary counterexamples are presented in (3.24) e (3.25).

The lollowing stalement may be useful.
(3.5) ProrosimioN

Suppose that § is locally bounded fram below on X, [ € K{X; 00, D). Let¥: I =+ Xbeacwveof
maximal siope for f. such that f o U is lower sem:‘conn'nuofu. B )
Then |V f| ¢ U is lower semicontinuous o I\, {inf I} {on I if I has mirimum and { o U(minJ) < +oo0), and
(3.2)hold.

The proof is in (3.8).

For sake of completeness we recall a result, proved in [18) (see (1.3) and 2.4) of [18]), which will be
used in the following.

(3.6) Prorosrrion

Letll : I — X be acurve of maximal slope for §. Suppose rhat_thlou isrighlawermniconﬁmu.
Then for every tin I\ {inf I} (in I if I has minimum and | o U{min 1) < +00) we have:

vh
Ul < im % [| T 0AeUE te= Vol and
a.n |UL ] = [V 1] o UiE), VS| e U(t) < +oo;

h 2
Gowno=-Jim 1 [ (VSloue)’ tre— (9N UeY .

(3.8) Prooror (3.5)
it ied wi - that [T f{o il is lower
By the hypotheses and by b} of propesition (2.3), applied with ¥ U(chhve is} .
scmic::lt'muous on every ¢ in T such that U() € D(Jf). Then the assumptions of (3.6) hold and this imply
(3.2).
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(3.9) Livima
FU:-1—-X Bncwofmdml:lopealmnnerywhemfar]. then:

a) IVflel € LX) for any interval J contained in I such that f o U € L™(D);
. 1 '
b Jim = /" IV S1oU(r) d(U(t), Uir))dr = O forality in I\{inf I} (andalsofort, = min ],
if I has minimum and [ o U(t,) < +oo);

€} i U is a curve of maximal slope for {, then for any tin { (in I —
J o U(min [} < +oo} we have: " Y inI\ (swpl} ¥ minimum and

. 5 1 th
18U < h:n_;up i f. (V1o Utr)dr < [V 1] o Uh),

. 1 +h
~timsup ¢ f' (/10 Uer))? dr > Dys 0 X0 2 ~ (V1] 0 U0
Proof
2) is a trivial consequence of definition (1.2).
To prove b), set h(t) = [ |V o U(r) dr. Fort > t, we have:

4
j IV 1] o Uir) dli(r), Uit,)) dr < [ ‘ll'(r)Mr) dr=
& t

MO f'v um)* dr.
FFOS36-0) | (IV/]eUm) dr.

For ¢ < ¢, we have the opposite inequality, Then the conclusion follows from a).
To prove ¢}, we remark that:

i 1 b 1
lim sup f‘ (IPfle )’ dr < ~Du(f o Uixe) <

b
IVsl=u@® lin _::p-;- j: (VSjelir)dr<

b i
V1ot (hﬂ?p% _[ (Ivsl 0 un)’ "') .

Now the conclusion follows casily.

(3.10) Lemma
LetlQ : I« X be acurve

of maximal slope almost everywhere for f such that U is lower semicon-
finuous. Let I be a negligible Fpaiiintd . *

subset of I and suppose that the following property holds:
Y, in I¥(ty), in I\ E such that .l'll'll tymt, and
@) Sm V1] o Ulta) dii(ea), U(ts)) = 0
then li:n supfoli(ty) < foli(t,)

16

Then U is a curve of maximal slope for [ and f o U is continuous.

Proof ) ) )
We can suppose (see definition (1.2)) that f o U is monotone on I\ E. Since I'\, E is a dease subsel
of I it suffices 1o prove that V¢, in [ :

lim £ 0 Uty = £ o (k)
¥t

1f¢, in I, since f o U is Jower scmicontinuous, it suffices 1o prove that

lim sup § o Y() < f o Ult).
—t,
e
Now if ¢, > inf J, we show that:
lim fol(®) < folit,).
et}
Y]
Arguil traddiction, if
P by con lim foU(f) > fo Ult)
-t
- i
Then, by the hypotheses, we should have:

lip\_cinl (V1] o Uge) AU, U,)) > O,
W
and this conraddicts b) of (3.9).
‘We show now that
lim /o l(e) < f o Ult,)
-1
[¥7

Ift, > inf I, this is a consequence of the monotonicity of £ o U on I\ E, and of what we have proved just
now: if t, = min J this follows from b) of definition (1.2).

(3.12) Lowma

Let li : I — X be a curve of maximal slope for | such f o U is continuous, |V J| o U is right lower
semicontinuous and |V f| o U(t) < +o0  Yein I\ {inf I}. Then:

ﬁ I
foliit)— folit)= —L (|V}'|uuil(t)):l @& W,hisl

Proof } ) ]
By G.1) (o Y, (&) = — {|V S} o Ut)* > —oo ¥ in I'\ {inf I}. Since f o U is continuous we get
(see 10z of {14] at page 186) that :

L1
!°u(fz)-l°u('1)2]‘| Goll®d Vi ginlwihf S 6
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which implies the result.
(3.13) Lzmma

mrwu:f—-xuaa&rwofmma:lopefor!. Suppose that |V f o U is lower semicontinuous and

1 { J) 2 f(v) = [V fi(w) dlu, v) [1 + 1V f](u) d(u, 0))] — d(x;, v}id(n, ))
3.14)
Yu, v in U(I) with |V fl(u) < +oo.

vhere 4, w : R* — R* are two continuoxs, non decreasing functions suck that

(e
. e 7O . T E’-E’—’ are integrabie in a right neighborhood of 0.

"hen the following facts hold:

a) |V fieU is right continuous on I and bounded on any

vinimum, £ o U(min ) < +o0 and [V /] compact subset of I\ (inl I} (of I § I has

o U(minI) < +oo). Furthermore the  Jollowing inequalities hold:
ol 1,4 ol .
M9 [VfeUw< { [Llptaam , potn vt do] exp (f 01003 ) &), {etat)>0
o,

. V‘(‘-.‘)*o
Véo tin I witht, <t where Uite,t) = [ [V 1] o U(r) dr (5 (‘-‘-)"‘(hU(t.)-Jou(:))lﬂ),

IVelo ) < [lvn o Utt) {1+ 17 f] o UKL, £1) + tlte, 8) + fo o ) d,] x

1.1
® o 110l
P (./; e "')
Vi, tin I\ (inf ]} with . ] - mi . .
ivllou(l.}iuloai.w t, € t(and int, mmI.#‘Iimmmand]oU{g,) < 400,

b) lf.inpardcular.1-w-U.fheulvﬂ°"hmtucmn:adrherefom!oubm
Proof

_ It suffices to prove a). Let ¢, in f with J o li(t,) < +o00, and - i
:nfylhatwemayassumcl(t.,t))DVtianilh t>t,. ' wk {fEII‘E‘-}- isessyto

By a) of theorem (3.5) of {18] we have that there cxists an i i ictly increasi
) _ interval J in R and a strictly i i
;hlconunummruncuonp:J-+I..mcl:mn:,irwesewahp.weguwn-u?f:)mdz e

AL RN LY (R R T PR LV TAP

v.]l #2 in J with n <

18

(¥ is a curve of maximal skope for f of unit speed, according to the definition (3.1) of [18]). Funhermore
we have that 0 = min J and V(£(t,, £)) = U(E) \:l in I,.
If we sct p(s) = |V f] o V{(s) and h(s) = [ ple) do. we get, by (3.14:

A{s2) — M) € plar)oz — #11 + 7(p(e1}oz — 81))) + (92 = o1 )z — 2}
@17 Yoy, 82 in J with & < o1, p(s1) < +o0.
Fix o' in J, then for almost ¢very 4 in J we have:
M) — h(a) € K (o)’ — sX1 # 7(Mo) ~ K(a)) + (o' — s - 8)

(in fact, ifA'(a)(# —8) < h(o')—h(n).weusememmowlﬁcilyotquhemisthehnmlityiﬂﬁvill.sime

4 and w are positive functions).
Thercfore for almost every » < o'
by = h(o)\' _ w(d ~8)  Be) - Ma) J(M")-Nl})]_
( o )S i e PO he

Then, if we set T(s) = f3 21 do, we have:

- M@ M) = o) e’ = 0)
(HD=2OY', (roner - mea) K50 s

By integrating between 0 and s, (using the integrating factor exp (T(h(s") — h(s))) ) we get that for all # in

Jwiths <o
M) - by M), 7 wle) g, el m.,,)_
(__T-_;_)S[ ¢ +L-. v “r fam—w: 4

Going 10 the limit, as o — » we have:

his) , [* wio) ki ()] )
(.18 pls) € DMo) < [—;— + L - dv] exp ( L d).

(the first inequality holds because p is lower semicontinuous). Using (3.17) we get

. s} .,(,)
019 s [p0K1 a0 +ute)+ [ 42 w] e ([ w).

By (3.18) and (3.19) we cbtain (3.15) and (3.16), by scuing: a = {(t,, £}, since:
pilita, 1)) = [Vf] o V., ) = [V o UH)

Ml ) € [0 V(O) = [ 0 Vllte, ) = [0 Ut) — [ o U®
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(3.20) Puooror (3.1)

a) Since f € K(X:r, ) with ¢ < 4, the hypothesis (3.11) of lemma (3.10) is verified, then al) and a2)
hold, therefore U is a curve of maximal slope for f.

Since J € K(X; 0o, 1) and { is locally bounded from below on X, we obtain a3), by proposition (3,5),

b) Clearly we may suppose r = a > 1. Lett and T in J witht < T and foll{(t) < +oo, [V f[oli{t) < +oo.
Since U({t, 1) is compact and f o U is bounded on [t, T) (by part a1) ), then there exists C > 0 such
that:

1) — [f(u) = [V f()dln, v)] 2 -CQ + (|V7|(w))* Nd(u, v))*

Yu, vin U([t, TT) with |V f|(u) < 400
Then, setting y(e) = w(o) = Ce*! (s > 1), the hypothesis (3.14) holds. Morcover |PSellis
lower semicontinucus (by a3) ) and U is a curve of maximal slope for f(by al}). Then the hypotheses
of lemma (3.13) are verified, therefore {7 f] o U is right continuous and bounded on {t,T]. Then
b2) is proved, since {V f} o U(t) < +co for almost every tinJ (i ¢ = minl, f o li{t) < +oo0 and
[V ] o U(t) = +o0 we use the lower semicontinuity of |91 e ).
bl) follows immediately by lemma (3.12).
Since |V f| o U is bounded on {t, T], by the previous result, it follows that i and J o U are Lipschitz
continuous on [¢, ) and therefore b3) is completely proved.

We need the following lemma for the proof of theorem (3.3).

(3.21) Lemma
Let U = I — X be a curve of maximal slope almost everywhere for | Suppose that there exists
7 (R*P ~ R* with the following properties:
prnip,r) is non decreasing for every « ;
v~ nip,6) is continuous for every p;

7 'n(,: L iniegrable in a right neighborhood of 0 for every p

) > f(a) ~ |V f)(u) dlu, v} — 9|V f|(w), d(u, v)) du, v}

(.22 Yu,vin BT\ F)with f(u) < +00,|¥ f|(u) < +o0
where Fis a negligible subset of I.
Lett, € I with the properties:
Jolit)<+o0 and |Vffel(t,) < +on
Joll() € foll(t) Jor almost every ¢ in.I with ¢ > &,
Then there exists & > O such that:

Vil €L™(t,,8,+6]) , flimsup|VS|ali(t) < VS0 Ut)
—t;
el

0

where I' is a subset of [ such that INT' is negligible.

oy I|t, <t <supl}and, foralltin L, &, 1) = J; |9/ |olGr)dr. Byayof 3.9) w;:‘n:;

Sal=lie Vl;n—i since f o if € L™((t.,tD Vtin L, (n fact fot{(r_) < foll(ty) < +o0 o
o }m oll is.r'non increasing on [, with the exception of 2 negligible subsei and ;() ls;pe I y
evcry_;whe;cw::m;t! r £(t,, 1) is absolutely continuous and non decreasing 0n I, Se J = (#{ty, o}

we have 0 = min J. Put:

LUt 0 <o) fse J\ {supJ}
wie)= {m{;(f)llle J\(supJ}}, Memsplel

If we define V = Uov.iliscasyloseelhal:
i, w@) =aind and Vlts, m=l@)inl,
Furthermore (use the change of variable » = £(f,, £) ) we have:
AV, V) Sa—n  VYe,enintwih s Se,

i ] E. i3
and iIE.dumtesamgligiblcmbsctoH,_smhl!mIou l‘snmnotoncnnf.\E.(weunmppose ¢ E.)
irE', = (#{t,,0) | t € B}, we get thal B, is negligible and:

Jo V@ s fo VO Yein T\ B
foVie)—fe Vi) S - [, |V|eVa)ds Yo, inJ\Ewith s S#

Set Fy = {ft, Dt E an,}mdtakclmdl’in.l\ﬂ with0<s<d. By (3.22). applied
u = Va),v= Vit follows that:

£ V(e - £ o V() 2 - [plo) + nlple), A(V(N, V)] V(s V)
where p= [Vf] o V. If As) = [ ple) de. we deduce tha:

h(s) < +00 YainJ, ( Sil'lccfo'vel."(ﬂ.l)v'inn‘.

h is absolutely continuous ob J; '

M‘Cp@)'bq(p(a),l'—l) ¥a,# in J\ (R U E|) with D<a<s
’S—5 7

Thea sinwh’spalnmstevuywhue.mdqiuuondecmingfumﬁonﬁlhmpectulhemﬂp.w
have: M =B _ (h(-’j:l:(l)",_')
L)
i M) — hee) monolonicity of 1, otherwise
for almost every #,ain J with & < ¢ if M(s) < ——!,T—.wemme
the inequality is Wrivial, since n > (). For any given o' in J we set
h — his) N - !,
k,(n)=-£"-7)—_—.--— YainIwith 0<s <
2




Clearly k,(a) > 0 and:

k(< 19-‘%?2 for almost all s with 0 < s < &

{k,(m -,

Nwwemnarkdmlimsup”TJ) < p(0), since, for every o' in J\ E, it is:
7—ol*

’ L -
%fo 19f] o V(e) da t_cf_.w < Vil e V@ ‘(V(O).."V(l'))‘_

+ L0V < 19710 v 42,

where lim =) « 0. Then for every ¢ > 0 there exists 4 such that:

O <SpO+e Vi with 0< s’ <
This implies

h(»)sm+¢+L'ﬁ*M

dr Vawith 0<o<d <
T 7

Now il # > 0 verifies also the property:

L

'
j ’I(P(O)-F?&,r)dr(
] r
then we have:

’ -—
l/n ’I(P(o):iﬁ"‘ .)b<¢ Yo' with 0“:{53-

We claim that:

k) <p0)+42 Vi awith0<scd<i.
In fact, if for some #' in 10, #] it were:

Ay =3up{a[0< s <o kole) < pl0) 4 2e Ve in[0,s]) <4,
we should have:

" -
k,(,\,)gp(m+¢+[. lt’Lﬁ_‘LLL’a < plO)+ e

’ -
.,f M&<ﬂ0}+h,
(1] ¥-s
which contraddicis the definition of), since k, is continuous.
Therefore, Ve > 0 Jiin J with 4 > 0 such that:

h—("g_:"'"h(_')sp(o)‘*?( Vl,l'il‘lll"iﬂlos..(.'q_:'_

n

1t follows that, Tor almost every & in [0, i) ple) = #(s) < p(0) + 22.
Now set t, +§ = p(5) and:

P ={te ] pilit, ) =0 or KL, 1) = plits, D).

We claim that T\ J' is & negligible set. In fact, since p(£(t,, ) (= |Vflolit)) = £4(t,, t) for slmost every
t, it suffices (o show that the set

A= {t€ 1] $l00 D> 0N (Kt 0) ¥ llte )}

is negligible: the set Ay = (s € J | K'(s) ¥ pla)} is negligible and the foliowing relation holds

Lds:f‘%!(l.,t)dt.

Finally we have scen that Ve > 036 > OsuchlhnllVﬂoU(t)5p(0)+¢*el'n[t.,l.+ﬂ.whichpmvu
the lemma.

(323 Prooror (3.3)

Let ¢, € J\ {supl} with [ oil(t,) < +9n,|v;|ougt.)_< +ooand T € Twith T > ¢,. Since
J € K(X; 00, 0) and s > 1, then (3.22) holds, wih F = @, sciting:

ap ) =c'" sup (O (UER,UE), S o UG]S o Ul p)}
0.5€(L,.T)

is the function given by c) of definition (2.1). B
whel:mm@ M utv flo glls lower semicontinuous, by b) of proposition (2.:}). Thna;::.ylemm(?o.zl). there
exists § > O such that |V f| e U is bounded on [t.,t.+61.a‘ncll is right continuous ;nddmuwum-
Moreover f o U is continuous on {t,, £, + §] because it is lower semicontinuous

- continuous, by a) of (2.3): we have proved just now that [V /] e U is bounded on [te te + 6] Then U isa

curve of maximal slope for f, namely a).holds. -
In particular we get that, for any fgin Jt,, t, + 6L, itis:

Joli®) < fo i) Vein(E,t, +4].

Since |Vf] o U(E,) < +o0, we obiain, as before, that [V /] o U is right continuous at f,. Furthermore, by
proposition (3.6), (3.4) holds and <) is completely proved.
Finally b) follows directly by lemma {3.12).

UNTEREXAMPLE TO THEOREM (3.1) . ) _
{SMI?% Sl:w now that, if | € K(X;r, ) with ¢ > a. it is possible thai there exists a curve U of maximal
such that f o U is not continuous. ) .
;’zgeeﬁ:yfr,a with 1 < a < r and & < 2 take the function § : [0,1] — R defined by:

. ¥3>0
I(z)-{fl, Al

px}




where e = | — X - : .
e < 3/r. Then [ € K((0,1]:1,8), since. for a suitable constant C > 0 the Jollowing inequality
IO 2 /@) - V@~ 3| - C (WA@Y [y -2 Vs,yinio, 1),
0"_ the other hand, if z, € [0, 11, the curve §f - [0, +oof~+ [0, 1) defined by:
) = { (-2~ a9, F0<tgs, =3
0, t>t, <3
is a curve of matimal siope for f. Nevertheless f o Ui is ot continuous, if 5, > 0

(3.25) COUNTEREXAMPLE TO b) OF THEOREM (3.1) v TO LEMMA (3.13)

We show ihat, if f € K(X;0, 1), it ;

y 20, 1), it may happen that there exists a curve Uf .

Jor [ such that |9 1] o U is unbounded on the wmclsubut:d'f?’maig U: '~ X of mazimal slope
may exist, also if f verifies the inequality (3.14), \ precistly we show that such a U

e with 4y = 0, and with i
is not m:esrfblle on any right neighborhood of 0. an w such :haj:ﬂw(.) = 0 bu Hit
LetX = [-},}] and define [ : X — R by:

J(z)= {——sln|ln|z"' fzy0
o, fz=0.

1tis easy 1o see thar:

I®) 2 @) = IV S|y - 3| - wly — =ply — sl VayinX,

where:

U(‘)- {-Ez:l '..f’ >0
0, ife=(,
W .
ercmarhhaz'lgno'w(v)=0, bute v ¥ is not insegrable.
On the other hand it is clear thas there exi

<] : - .
U0) < Oand ¥(T) > 0. Farsuchau]\;}zr,;f,"::bt , IIO.rTl = X of maximal slope for [ such that

§4. A constructive procedure and some existence theorems.

In this section wecoosidﬂavaysimplepocedm.whichalbwslomnsumucuweo(mxinulsbpe.
In such a procedure we use in an essential way the variational characer of the evolution problem we are
dealing with. We deduce the existence theorem (4.10), where we point out the minimal hypotheses nceded
for the exisience. We deduce also theorem (4.2), which, using the class K(X; 0o, 1} has the advaniage o
have more sinthetic assumptions.

Let, as usual, X be p metric space, with metric d and f ; X — R U {+oo} be a function.

{4.1) Drrnvimion

Let Y be a subset of X. We say that [ is “coercive on X", if for any C in R the set {u | f(u) € C}NY
is compaci.
Let u, in D). We say that f is “coercive at u,”, if there exists R > 0 such thai [ is coercive on:

{u | dlw,u0) < R, f(w) € ful)}-

(4.2) THrOREM
Suppose § € K(X;00,1) (see d) of definition (2.1) ) and iet uqy in D{J) be such that [ ix coercive at

Uy
Then there exisi T > 0 and an absolusely continuovs curve {f : {0,T] — X, such that U is a curve of
maximal slope almost everywhere for f with:

UO=w, , [olU®Sf(w) Win(GT),
fol,|V]| ol arelower semicontinuous on [0, T).

In particular we recall that (see(1.4) ):
ey = V1l o i) almost everywhere on (0, T1,
@3 g =- (Ve um)’ almost everywhere on [0, T,

where g : [0, T] ~ R U {+00} is @ suitable non increasing function
such that g(t) = [ o U(t) aimoss everywhere on [0, T].

The proof is caeried out in (4.11).

ProaLzM
Does a curve U of maximal slope for f exist, with #4(0) = u,, under the assumptions of (4.2) 1

{(4.4) A CONSTRUCTIVE PROCEDURE ,

[fueX,p)O.wemﬂMFiu,piisdwsu{vEx|d(u,v)5p}.Anisn-.inDU')mdB>0.
We say that the E-uple 7 = (8,,.....,8) (k in N) isa pantition of [0, RL, if 0= 8, <y < <y = R The
numhﬂ&(}’)sm{& — 8;_} will be called the amplitnde of P.
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4.5) Fosrsmer
Suppose 1hal there exists a sequence (P,), of partiti ith i
any Py = (8,,...,8,) there exist the mini . -partwn:of[O.R]wh‘h_‘m“l(P.)-owsuhm,for
o the minimum poinis Va(s), for 0 < 8 < R, with the properties:

M(0) = u, and¥im ... ks, Yain 81, 8]

Va(#) is a minimum point forf in BOR(,_1), & — 8..1).
In such a way we have defined, for all A in N, a curve Y, : [0, R] = X wirk the properties:
a) W), W) S | — 01| ¢ 25(R) VYo, ;in(0,R)

e
b) Je o)~ foVpa) < "[.‘ (IV/1e 'Vn(l))z 4 Va,80:in [0, Rl with #; < 0.

Proof
The first inequality is clear.
To prove the second one we recall the definition:
Xu() =inf{f(v) |dn,v) <6} VuinX,Ve>0
andlunark'thu.ifu.iumhtimumpoinlfotlinﬁ(u,ni.mmhisusywseeml:
D.xu(s) € Dy, (0) = |V f](u,).
Smcex.isnmincmasm&wernvemat.ifus ns<n<hk

_ L] L]
Xx(92) = Xul®1) € f., AT B '-f“ ¥ £l(u,} de.
This implies b),

(4.6) Seconn sTer

Ler the hypotheses of (4 }
. ! poiheses of (43) be verified and suppose that, for any & in [0, R1. the set {Vy(a} | hin N} is
Then it is easy io verify that there exists ¥ - [0, R) — X and a sequence (hi) such that V() = u, and:

2) (V); converges to V uniformiy on (0, R);

b
) d(V(e2), Vim)} < |I3 - ,"I Vo, 87in [0, R}

{4.) TwrbsTer
Let the hypotheses of (4.6) be verified. Suppose that:

By={vinX|d(v, %) SR flv) S J(w.))} is closed,

[ is lower semdcontinuous and bounded from below on B,;
limsup f{v) < J(u) Yu in B, ¥Yecin R,

ven, [V1inso

Then there exists a negligible subset F of [0, R] such that:

a) JfoV(@<fiu) Vsinl0,R]

b) feVied—foVim)< -]"u;nmnvne Va(e)ds Ver,02in[0,RI\ Fwith o < .
» ——ta

Proof
By the lower semicontinuity of / in B, a) follows. Tbgetb).wmmarkm.byFm'slemma.w

have, for #, < #2in {0, R]:

[ tmionwsie o de s umint " 19110 Yate) do <
o - == Jn

“E.Lnf {(FeW(s) =70 Va(92)) <€ flus) — 'iga!(ﬂ-
Thercfore there exists a negligible set I contained in [0, R) such that
tminf|Vf]o W) <vo0  Vein(0,R].

Nw.ﬂl1¢F.ﬂmeﬂnnmm(kkMamcmm
Jo V() S J(w) [Vile WSO VinN

Then, by hypotheses:
'.li_fg! o Y (n) = Jo ¥(a)

Sinceliﬂlff o Vi, (#2) 2 f o V(n) for all a2 in [0, R), then b) holds, by b) of (4.5).

(4.8) FoumtusTEP
Let the hypotheses of (4.7} be verified. Then there exisiT > Oanacurve Ul 2 [0, T} — Xowhich is

absolutely continkous and such that U(0) = we, o U(E)  fng)} Y in [0,T) and.

- AUCE), Uet) < [ 91T o Uct) dt ) iy, b2 in [0, T) with t S 82,
“ [!°U(¢z)—!°ll(h)s-f:’(IV_![oU(t)) dt for almost allty bz in [0, T] with 1 < b,

where:
¥7l(e) = liminf [V f}(w).
wEB,
n




Furthermare { o Ul is lower semicontinuous in B,,

Proof

We remark l.ha.l. qul is lower mimuﬂmﬂl on lv fi‘u.' = m the mlﬂ,lm ry-
B.. If 'y i [} ]
ial. lf]v!ku.))0,“Cﬂﬂ’mmi°!l°v(‘)>C)om[o,Rl. M“ﬂ‘“mﬂl)t

P a— -1
5 (971- V)™ de. ¥ is an absolutely continuous and strictly increasing function o [0, )
on [0, B] with

¢(0)=0.LﬂT=¢(R)w-¢"‘[0Tl i Lo Increasing
y s [0, T] - 10, R). i strictly i i
tion. Setlf = Yoo, To1xove(4.9)itsufﬁceslochm[ec'\mr‘:,a;:le‘?xgt-da.('au)| inthc,;nwmh. fonc-

® "
[ "Aeuma [ (F7euw)’ &
andlnmnuklhmtmpsnegligiblcminlomgligiblembdngmaholmdyomﬁmf i
unctica,

- . .
mmwmmmwmmmm.mrmmmgmm

(4.10) Tueorem
Let u, ir D(f) and suppose that there exists R > O such thas:

2 1 iscoerciveon B, = (v € X
. .= dv,u) < R, f(v) < .
b) lim sup fn < ] h - f("-)).
Py /W W i
e win B, YC in R,

Th:nlhcnexj.sl?‘>0mdmabml’ ) ;
vyt m?cmmn.s:c@eu:lﬂ,ﬂ =+ X such that U(0) =
flu) ';lidd;ilzljimdjou"bwrummmu O tettys

0 .
hﬁlﬂ' IV 1w} > IV fHw) Yuin B,

thenll isa ¢ 7
hen urve ofmmdopcdmacwwmfar LVf]e ﬂuhwmmuwﬂi)

Proof

The conclusion follows clear] . —
¢} holds,and by using pm:::r({:;u“ (4.8) by remarking that [V /(u) = |9 1|(u) foc every win B,, if

(“.11) Prooror (4.2)

Since / is coercive at u,, there exists R > 0 —_
f!gm':;)l}';;; particular fz, is lower semicontinuous ?.dhm'h"m’d ed from bt ﬁ:h; {v]dv,w)< R, f(0) <
supposs ulalf?:,l'mn;lrll {'t:oj dv,u.) < R, f(v) < f(u,)). Therefore, decreas; g;;#‘olmallybomded
(23), applied with ¥ = 5, lﬁd from below at any win B, Since /'€ K(X; oo, 1) b,n:f':}‘m' o
100. Then the thesis follows by e 0™ (4.10) holds. Finally, by a) of (2.3), b of i oo

Yy theorem {4.10). 3 (4.10) is verified

{4.12) THEOREM

Suppose that X is a subspace of a complese meiric space X, f is lower semiconlinuous and for every
w in D(f) there exist T > Oand a cwrve U : (0, T) — X of mazimal slope (almost everywhere) for | such
that U} = u
Then for any u, in D(J) there exist T > 0 and § : {0, T(— X such that U is a curve of maximal slope

(almost everywhere) for § with §(0) = u, and at leasi one of the following properties holds:

Tadtoo , %ﬂ'z’l{’“u“)}g_m . '!i‘?_(t)li¢x.

Proof
Clearly, if f : [0, T[— X is a curve of maximal slope aimost everywhere for £, thea:

dQU(E), B0} < (2 — 02 (flwa) — essint{f o Bt} | £ € 10,70))'”
¥iy, 4 in [0, TEwith ¢, < 1.

Applying this property the conclusion follows casily.

§5. Some classes of functions defined in Hilbert spaces.

To study the strong evolution curves associated with functions defined on a Hilbert space i (see defi-
nition (1.8)), we introduce now some classes of functions, analogous to those considered, in metric spaces,
in §2. The goal is always that of considering evolution problems also when noa convex contraints, of the
type described in §7, are involved. In this section we deal with a Hilben space H Asubsct Wof Hana
function f : W — R U {+c0}. We recalf that D(J) = (v € W | f(v) < +o0}. We shali use the concepts of

subdifferential and subgradient introduced in {1,6).

(5.1) DermmoN
Ifu,v € PD(ywith 3~ f{u) # 8, we ser:

Ry(u,v) = f(v) = {f(u} + {grad™ flu),w — u}).

Let r and s be two numbers such that:

0<r<+mm , 1< s<+oo.

We define the class X(W; v, &) in the following way:
a) f0< r < +00,1 < &, we say that | € N(W;r, ), f the following inequality holds:

Ry(u,v) 2 ~¥(u, v, [ S, [f @D + |gred JeiNe—ull*  Yu,win D) with 3~ f(u) o B,

where W DU % (R*): = R* is a function which is non decreasing in its real arguments and such
that {u,v) — W(u, v, 0, Cz) is continuoxs on {w € W | |f(w)| € C}* for any C,C1,C in R*;

b ifo<r < +00, 1 = o, we say thai | € N(W:1, 1), if the inequality of case o} holds with ¢ = 1, and
p-]



¥ has the additional property:

‘y(ululchoi)’o WI'HDU).VG.G)!'RR':

c) if r = +c0,1 < 8, we say that § € N(W; 0, 8), if the following inequality holds:
Rylu,v) 2 —@fw, 0, [£(u)l, [£0)], lprad fu)iDllw ~ u]* Yo, win D(S) with 3~ f(w) ¥,

where @ : D(f)? x (R'Y — R* is a function which is non decreasing in its real arguments and such
that (u, v) — W{u, v, 0y, Cs, p) is continuows {w € W | |f(w)| € C}* for any O, CpinR*;

d) ifr = +00,1 = o, we say that £ € NGW; 00, 1), if the inequality of case c) holds with s = | and
@ has the additional property: .

B, 0,0,C,p)=0  VYuin D(N,YC,Co,pin R*.

(5.2) REManx

Suppose thar f is lower semicontinuous It is clear that:
a} if [ is convex, then Ry > 0;

b)ifJ = fo+ . where f, is convex and f, € C\* with 0 (or 1}, ;

{f € X(H:0,1)); ! (™ €> 0(orC' ) then f € N(H;0,]4+¢)
¢) if f is (p, g)—convex (see definition (1.1) and theorem (2.5) of {7} and 91, 110} ),

(see definition (1.6) of {3] ). then € N(H;1,2); o7 and e 91,110 ). or § § € Clpr0)
d) gf 1 is d—convex of order v (see definition (4.1) of [15]), then f € N(H: n2);
e} if [ is g—convex (see definition (1.16) of [11], or also [5] and {15]), ther f € ¥(H; 00, 2).

Wcstnllpmve.hthisseclim.unuunderuﬁublcuompunmmmm' if f belongs o
the classes introduced above, then the following property holds: ! oot

(5.3) VainD(f):  |Vf|(u) < +00 = 8 f(u) ¥ § and [V f|(u) = [lgrad™ f(u),

whosehnponmhasbeenlhudypoiﬂedoﬂllhemdof#l.omheoﬂuhndi' clear if
verifies (5.3), then (sce definition (2.1} ): ! i

TEXW ra)m f€ KW:r,5)  VYrin 0,400, Vain [1,+eo{

:l'hmearefncl:!ofbasic importance 10 obtain existence theorems for strong evolution carves for functions
in the classes introduced before, by using the theorems proved in §4.

(5.4 Tueomem

a) SnpposuhatfeNGV;m.l)andIiscoem’vecla intuin D definiti i
0T ] & Moo Ppoint u in D(f) (see definition (4.1)). Then, if

FJw)#8  and  |V]|(u) = {|grad” flu)]).
3

b) If J € N(W:r, 8) with ¥ € (0, +00], 8 € (1, +00l and if | is coercive at every win D(f). then (5.3)
holds and f € KW :r,2).

The proof is carried out in (5.9).

1et us remark, first of all, that for the classes ¥(W;r, o) wemunl'ypmvepopuua
stated in proposition (2.3) for the corresponding classes K(X:r, s): it suffices o replace, in those stalements

|V £l{w) by llgrad™ f(w)i.
We point out now some important facts.

(5.5) Lemma
Letuw € D).

a) Iffe NW;o0,1), [ is locally bounded from below at w, then:
for every sequence (un)a in D(J), for every ain H such that:
limuy=sw , sop{f(us)}<+o0 , Ii:nin.f!(u;) > f(w) and
(S.‘) Ao »EN _ —C .
3 fun) ¥ 8, (grd™ f{un)la converges weaklylo o then:
a€d f(w) , [Lm flu)= Jlw).

b) If(5.6) holds and { is lower semicontinuous, then:

k) limiof lgrad™ /()] 2 flgrad™f(w)fl  VOUR,
Jor<0

with the convention that, if w € D(J), 3~ J{w) = &, f_”ﬂl Herad™ f _('}" = +00.
¢) If(5.7)holds, at least for C = J(u), and if the following property is verified:

for any ¢ > 0 there exist p > 0, g > 0 such that the function:
(5.8) v+ f{v)+plle— ]

has minimum on B(u, p) for any i 2 e
(this is the case if, for instance, [ is coercive at u), then:

|V1)(u) < 400 = & f(v) 7 Band |V fl(u) = [lgrad™ f(s)].

a) muhesis follows clearly by the inequality:
Jw) 2 flua) + (grad™ f{ur), ¥ — ua} - ﬂw.".ﬂ:l’{lf(un)l},lf(v)l- ferad™ f(ua)Dllw — wall
Yo in D), Yhin N,
ki




wheze @ is given by d) of definition (5.1).
b) The thesis follows immediaiely from (5.6),
weak convergence.
¢) Ife > Oisgiven, there exist p > 0, p, > Omhmufisloullyboundedﬁmbelowmmu,pim
such that there exises the minimum point u,, of the function v — J()+ pllv — wf** Jor every y > 4,.
Then we have;
Too+pllu, ol S fu) Va2,

Therefun‘lim.u, = u. Since | - || is differeatiable, we have clearly:

bylhelowermicommmyoﬁhem.wilhmqln

0€ & f(u,) + pa, namely — so, €37 f(u,)

where _
oy = (H Oy, ~ w2t v fu,¥s , a,=0, ifu, =
fluy - ol
Thercfore:
1602 Fw+ iy =l > feuy e Wy, _ oy
which implies that

-

timsup payf| < (1+€)|9/|(u).
Bt

By (5.7). since f{u,) < f(u} foc tvery s > . we have thay, if |V1|(u) < +oo, then - f(u) ¥ §

and |lgrad” ()| < (1 +)|V|(u). Since e is arbitrary, and since |V f](u) < [lgrad~ FEw)j (see (1.7)
). then we coocude that |V 7|(w) = flgrad™ £ (w)].

(5.9) ProororhrorzM (5.4)
a) Since f & )I(W;oo,I).w]i:kxallybumdedﬁmnbelowuu(be.ingcoucivenu),thm(S.G)hoHs.
Furthermare, by the cocrciveness of f at u, we have that (5.8) holds and f is lower semicontinuous at

u, ther (5.7) holds too. Now ¢) of lemma (5.5) gives the resuit.
b) It is an immediate consequence of a),

§6. Existence and regularity theorems in Hilbert Spaces,

m:nsmmdmguhityummstawdinmissectionntpmvedbypinghuckmhembgms
thearems for the metric case.

AsinﬁS.Wdeml:aamhselofnl-[ilbenspaceHmdl:W—-llu{m}iuﬁmlion.
We shall prove the following theorems,

(6.1) Twrorem ExIsTENCE)

Suppose that § € N{W:00,1) (see d) of definition (5.1) }, ue € D(J) and 1 iz coercive ai u, fzee
definition (4.1)) ). Then there exist T > 0 and an absolutely continuous curve U : 10, T — W such that Ul

2

: i ith U(0) = uy and foU(t) < [(vs)

1 lution curve almost everywhere for § (see definition (1.8) ) with U(0) = u, f
:t‘::lzg?g{v?:ﬂb; (1.9} ) we have that; @~ f(U(£)) # § almost everywhere on [0,T7) and:

() = —grad™ f{U(E) almost everywhere on {0, T,

g'(£) = —||grad™ F(UEDI?  aimost everywhere on [0, T, ) -

: - i increasing function such that g(¢) = f o U{t ) almost everyw,

‘[‘(‘Jkt;']e 'A‘fcg(r)e.g:]tr I ?I:Jjnaoﬁil'l:dﬁ;‘;;(-))ll are lower semicontinuous on [0, T {with the convention that,
ifw € DUJ) and 8- f(w) = 8, then we set [grad™ f(w)]| = +oo).

The proof is in (6.5).

(6-2}1‘"1'::!?;!:{;!; a sirong cvolution curve almosi everywhere for f suck :Jw ] o U is lower semicon-
tinuous. Su;upose that [ is locally bounded from below on W, Then :hc Jollowing facts hold.

a) Suppose that f € N(W v, s} withr < & (see a)and b} ofd;cﬁnuwn (5.1}). sion (18) ) and
Then [ o U is continuous, therefore U is a strong ewluqan cunffor 1 (see dcﬁ::iwn () D) e
grad™ F(U ()] is lower semicontinuous (with the convention that if w € D(f) and 8~ f(w) = 8,

~ f(w)|] = +o0). .
:(:J:::)\lrlegr‘}:r {m)' luws'lh 3 J(U(0)} F @ (therefore almast everywhere on I) we have:
U, () = —grad™ fUE)
€3 (f o UY, @) = —[jgrad™ SQUEN?
and (f e UY, ()= —o0, 3~ fUGEN =8
Moreover we have that

WeinI:  [Vf|ali@) <+ & SUNFY and |jgnd JQUEH =IV/] o L.

Suppose that € X(Wir, sy withr < sands > 1. . .
Y Then, in addition 10 the properties stated in a), the following ones hold:

] e T
64) follitd— folitt)=~ L lgrad FUENPd Ve taink:

- fU®)FE  VeinI\ (infI}, which implies thar (6.3) hold¥t in I'\ {inf I}
(and also for t = min I §f I has minimum { o U(8) < +00,8™ f(UE) ¥ 8);

grad™ f(U()) is right continuous as ¢ ¥t in I\ {inf I} and bounded on t,T] YT >t
therefore U and { o U are Lipschitz-continuous on [¢, T
(and aiso for t = min I if I has minimum § o U{t) < +oo, & F(U) ¥ ).

¢) Suppose that | € N(Wico,#) withs > 1.

- U, = foli@®)
o in f I} such thar [ o U(t,) < +c0.8 f(ll(!.))#_.ﬂndf° e
}o’f :lﬂ::vreyr; :'; t.\. }::rt c?u'.m § > 0 such that 1he following properties hold on [, 8 + 8):

U is a strong evolution curve for f,

FfUBse W and (6.3), (6.4} hold. o -
grad™ f(U()) is bounded and right continuous, therefore U and [ o U are Lipschitz-continuous
ligrad™ FQUCI] is lower semicontinuous.
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The proof is carried out in (5.8).
(6.5) Prooror (6.1)

Since f is coercive at w,, there is B > 0 such

R, 1) € f(u,)). Since 1 € N(W:
B S e de e
indaoed b ot r u is clear that |V fi, |(w) = IV £1(w) for any w in W, if . .
y  and fw, : W, —+ R U {+00} is o If we take in W, the metric

Jw, € K(W,; o0, 1) and it is, of course, coercive at u,,
o 00, )
B ied wi ‘
y theorem (4.2) (applied with X = .)wehavelhatumcuiuT>0mdmabaolmelywn&n
uous

curve U : [0, T — W,, such that U i "
£oUBS ) WHinl0.T), 1 U wd [V 1 e lomes smbompenn o /i 1O = .,

On the other hand it is clear that, for what
usual convention), and then. for almest eve ¢ rean e CCLorS: |V fi, () = lgrad- FU@))| (with
that 3~ J(li(e)) o B. or almost every ¢ (precisely for all ¢'s such that [V £] o Ut) < (4-2!')(“ bave

Consequentely, by theorem i .
completes the proot. (1.11), U s a strong evolution curve almost everywhere for {. 8) of (1.9)

We need the {ollowing lemma to prove thsorem (6.2).

(6.6) L
LﬂU:I—.Wbeamngequﬁoncurveforlmhdm:

6. L
“n lim i prad™ FUEDN 2 Nrad U] Ve, in

(with the convention thot, if w € D) and 3~
Then |V f] o U(t) = ||grad~ pU@Y| for mr)!- ?2 I." them we st g )] = 4oo).

Proof
Leatel. :
€ 1. By (6.7), since [V /] o U(t) = lgrad~ /() for almost any ¢in I (soe (19) ), we get
- L] e
Nerat™ S0 < tinint 5 [ g s o <

tim 1 h
S tmep g f, IV 110 Urydr < |V 1|0 U),

where the last inequality is a conssquence
Hlgrad™ FQU@EN] (see (1.7)). of lemma (3.9) part c). On the other hand [V£] o U(t) <

(6.8) Pwooror ruzonzm (6.2)

a) By the hypotheses, and (1.9), f is a crve i
anegugibuesubscwou;uaf.i..)éum of maximal slope almost everywhere for £, and there exists

AT JUR) o Band [V f] o Lift) = ligrad™= UGN Yein I\E.
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dmfiscoucivenanyuofW.-{sI flu - <
th |V fi(u) < +e0

the function defined by Jw,v)} = f(v). It follows that

L)

On the other hand, since f € N(W;r,»), with r < s, the following property is true:
Vi, in 7,¥(t)s in 7 such that 8 f(U(ts)) ¥/ 8 ¥k in N and

Jim £, = to, .li_u.l.llsnd'f(ﬂ(t.))llllu(h) ~ U =0 them:
fim sup f o U(ty) < f o Uilta).

hcnce().ll)‘un-uewhueEisﬂnsetmuoducedjustnow. Bylemm(S.lO)]elliswnlimmnmdu\cn

U is a strong evolution curve for J.
Since f € N(W:r,8) C HW: o0, 1), feoll is!owumiconﬁnmmdlocallybmnded&mbdow

on W, we have, by a) and b) of lemma (5.5), that (6.7) of lemma (6.6) holds. Thercfore:
(V110 U® = llgrsd FUEN| a0d Gmint [Vf] o UG@) 2 [VS] 0t WinT.

Then (3.7) are verified, which imply, by lemma {1.12), that the equations (6.3) hold and (f o UY, (t) = —co,
if 8 J(U()) = B, since in such a case [V o U(t) = +o0.

b) Since s > 1, we have that (see 8) of definition [6R) )

1) = fu} + {grad™ flu),v — u} = Flu,9, 1 G, [FIDCL + figrad™f W e - =i’

Vu,vin D(f) with 3™ f(w) 78,
and we have seen in &) that |7 £](w) = [|grad™ f(u)|| for cvery v in U(T). Therefore the assumptions of (3.13)
hold, on any given interval [¢, T contained in I, withw(g) = 4{g) » Ce*!, where Cisa suitable constant

(clearly we can Suppose r = 8}

It follows that {V f]e U is right continuous and bounded on ¢, T1. i |V flollit) < +oc0. Since we have,
for almost every £, that |V fioli{t) < +o0 and by step a), we gel that 3~ F({U(#)) ¥ Blorevery t in I\{inf I},
and furthermore [|grad™ F{U ()| is right-continuous st every ¢ in 1 \ {inf I} with 8- JU() ¥ ¥.

On the other hand, by kemma (5.5), for any given ¢ with 3~ F(U()) ¥ 8, we have that for every se-
quence (ty)s converging to ¢ from the right, and such that (grad ™ f(U(2)))s converges weakly toan clement
ain H. it tumns out that cither o = grad™ J{U(t)) or [lafl > [lerad™ f(U(©)}]. By the right continuity of
flgvad~ S G it foliows that & = grad- F(U(£)), and then grad~ fU()) is right continuous.

Now (6.4) follows immediately from (4.12).

c) Since f € X(W;co,8) withs > 1, we have that (see ¢} of (5.1) ):
f(v) 2 J(u)+ (grad™ f(w),» — u) — O(w, v, |fW)], [f(w)le {lgad™ f Dl — ull’
Yu, v in D(f) with 8~ f(u) #40.
Since I is a strong evolution curve almost cverywhert for f, we can find a negligible subset F of I such

that:
2 () ¥ S and [V o U(E) = [[grad™ S ey veinI\F
Then, if t, verifies the given hypotheses and T € I withT > &,, then the assumptions of lemma (3.21) hold
on [t., T). Tt follows that ||grad™ f(UCH € L=(t, ta + §) fora suitsble § > 0 and there exisis & subset '
of I such that I\ I is negligible and
li:ﬂ up {lgrad™ FCUGDI < |V 1] o UL,)-

el
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Since f € ¥(W;00, 1), f o U is lower semicontinuous and

2 M ' locally bounded from below

2) of lemma (5.6), that |[grad™ f(U(-)] is lower semiconti 4 elow on W, we get, by
tinit, ¢, + 6] and ||grad” FQUCD| iltlalmndedm (&, o + 8], m(:lo:&- 7SN ¥ B fox overy

llerad™ felice )l < limc inf [jgrad (U(ON| < Yim sup [jgrad™ fUEeN) <
- =

“::_;,rm llgrad™ S UM < IV 1] o UGte) < [igrad™ FUEIN.

Then ||grad™ f(U(t,)H] = [V /] o Ut.) and [lgrad™ f{ECD)] isri

| o) _ | is right continuous

Ilgmdliu}a(g)(()foﬂuconnnuousm[t.,t,+6]becausehiluppamiculi?l:usm[t. i

o -)||ubommaonu..z.+ﬂm1eycw;oo,l).lnrouommuuis.me'vtn+'ﬂ'mm
.on[t.,t.f&].mercfaefouisnonilueasingon[t.,t.+6].mlhnpliuihu o

previous reasoning, made at the point ¢,, for any other ¢ of [t,, ¢, + §). Then: e can fepest the

Ve = - H ~
V410 U) = lgrad™ fQU®N| 80 lim grad™ U())| = lgrad™ SUEN Ve in [8,2, + 5.

It follows that |V £| o Y is right conti
. iuon(3.6)andIanm(l.lz;‘.mmwm{‘““+nM'“M“w(ﬁ)m
(6.4} follows by lemma (3.12).

To prove the right continuity of grad™ f((-)) we reason as in b).
Itis easy to prove the following result, analogous (o (4.12),

(6.9) Turorem
Suppose that § is lower semicontinuous and every
PpO: : thai for in D : !
?’hen‘}:rcﬁ: ; ﬁng;(v;)lu;: curve j(.abm.rr everywhere) for',‘fm m({a)me(‘l;{ru? Oondli: (071 ~
/3 there exist I > O and § : [0, T{~ W, suck i i
(almost everywhere) for { with U(0) = u, and af least one of the ft;lmbmng‘ Mpmpcru u;am‘mm o

Tusoo , gs.glofﬂ{!oﬂ(t)}--oo . ._Ii'r;l_ﬂ(t)-iﬁw.

§7. Some applications.

We illustrate here some problems which can be studied using the theory developed so far.
The problem of “geodesics with respect 10 an ocbstacie”, trated below in (7.1}, has been stwdied in (16}
makinguscofprecisclyuwmsulusmndin[b].fonhecurvesofmxinmlslopeinnwuicspmu.whose

proofs are given in this paper.

The problem treated in {1.2), conceming the “eigenvalues of the Laplace operatr with respect 10 an
obstacle”, has been studied in [17} and (3], using the theory developed in [11], which takes inio account
cases wilh kack of coercivencss conditions, bul requires stronger eslimales for the function. As we shall see,
such problem can be as well treated with the theory developed in this paper.

The problem treaicd in (7.3) concemns the "heat squation”, perurbed by & mercly continuous term, on
a C! non convex constraint. Owing 10 the lack of regularity of both the perturbation and the coastraint. the
theory developed in (11] does not apply, nevertheless one can use the theorems proved in this paper.

We remark that, if the constraint were maore regular (C™ for instance), thea such & problem could be

also studied by the results of the paper [20).

(7.1} GEODESICS WITH RESPECT TO AN OBSTACLE (see [21, {16), (23], [24])
Let K be a smooth compact submanifold of IR*, of dimension n (K B, DK is an hypersurface).
We say that a curve -y : [D.H#R‘\Ifisa“gwdesbwimmpeﬂmmmklf'.if

- and 4 are absolutely continuous,

there exists A : [0, 1) = (0, +oo( such that, denoting by v{x) the exterior normal
wKazindk:
“ay=0 for almost every & with (s} € K
4 = Mawly(s) for almost every s with (e} € K.
in [16] it is proved that:

if A and B are “owside of K “(that is if are in the unbounded connecied component of ™\, K), shen
there exist infinisely many geodesics witk respeci 10 K joining A and B.

For this goal one considers the Hilbent space H = L*(0, 1;R™) with the usual inner product:
1
0= [ s ss  visnd

where (-, -) denotes the inner product in R® and i 4,8 € R*\ K are given , the function f : H —
RU (+o0} defined by:

1 plye 2 :

[P ds, iy e DD

o {ﬂ:g otherwise

where: .
D(J) = {1 € B0, LR | 700} = A, (1) = B, 160} ¢ K Vo in [0, 1}

n



'l'hepmol’.givenin[lﬁ].iswriedoulmrough three sieps:
1) lhegnodsics\dmmspectlonoiningAmBm“crilicalpoinufrunbdnﬂm!:
2) ¥, in D(J) there exist a strong evolution crve {f :

goal an existence theorem is stated (soe (2.3 of [16]
of (6.1)(6.2); furthermore , ¥C in R, If depends

[0, +oo[— H for £ such that U(D) = ~,; for this
) with no proof: such theorem is a particular case
continuously on -, a3, varies in {4} f(v) < C);

3) by means of the flow of the strong evolution curves for

7. one geis the result, adjusting in & svitable
way Ljustemik Schnirelmann's techniques to a class of

We illustrate now in 2 more detailed fashion how step 2) is carried out.
a) Letye D(). From theorems {1.6) and (2.4) step a) of [16] it follows

L) 78 » 7e HY(0, 1, RY);
L) grad™ f() =~ [§~ (F,v 0 ) Ippy(v o 7]

where Iowy 2 [0,1] — R has valuc 1 on the set C() = {s€0,1]|vs) e OK} and value 0
elsewhc:e;ifuell.ﬂma’denuullzposiﬁvemnof-.

lnparﬁquaroe‘a‘](-,)irunduﬂyifqislaeodmicwim:espectln!fjdningAIndB.

b} Lety € D(f)and @~ f(v) y 8. From theorem (2.1) of [16] it follows:

[}
Ja+8 2000+ fo (d™ FEyXe), 5(s)) doe

1
- CUe? fo G@Fds  YsinA.

for a suitable constant C. Then f € ¥(H:0,2).

¢} 1t follows, by theorems (6.1}, (6.2) and (6.9) of this paper, that, for every 4, in D(f) there exists an
absolutely continuous strong evolution curve for

S U : [0, +0o[— D(f) with U(0) = “fo. Such that for
cvery ¢ > 0 there exists U} (1), U(t} € H-(0, 1; R®) and:

) )

@) a) = %,ll(t)(c) for almost any s with Utt)(e) ¢K,
2 H +

i) > 7 iee) - ( Lt u(u(t)(:))) WU

for almost any # with Y(¢)(s) in 3K

h pl
Foll@ts)—~ follft)) = — f‘ jo WX dadt Vi), in [0, +ool.

8

Furthermore all the properties listed in (6.2) hold. In [16] ilisals_iy?tnvedlhau is unique and depends
continuotsly of (Y, J{7.)), using in a standard way the inequality:

{grad f(ma) - grad~ {12 = ) 2 —C (U + Uen)P) I - i
which follows immediately from the one writien in b).
- . the
A sligthlydiﬂaempmblunmm@n@yofmm;l:ml:[giﬁ:nm tom
cmdilionllmmeendpoimsarefomedwlmnamvmmbmd shown
if DUSY is replaced by: .
DU = {7 € H2O, ;RY) | 70) € M, 1(1) € M,7(s) ¢ K Yo in 0,1},

i H in this case, multiplicity results are proved.
the function f belongs to N(H,z.‘z)._A.lso'm _ ! -
then Finall;ymepmblcmofclosedgeodestsmlhrcmeufwedmm]

Ly EJGENVALUES OF THE LAPLACE OPERATOR WITH RESPECT TO AN OBSTACLE (see [31, (43, 17D)
bounded : —+ R i & Carstheodory function,
subset of R®, Suppose that g : (3 x R . <
nml;fg‘(lh-e)i.swujmmﬂnmwmsmdg(-.a)hmemablefaeveryc.m,m.n-o are

measurable functions with 4 Smalmostevuywhueina.ulp:vo.
We make the following hypotheses:

| w [ oz e)de 2 —aln) b} VsinQVainR,
(789 Glz, ) L gz, e)
for suitable @ in L' (), bin R;

) #(z, #2) - g(z, 01) >-C VYzinQVe,minR;
" ”n—n

for & suitable C in R

(%) ClLHel') VYsihR.

Set H = L¥(Q2) with the usual inner product, and:
ldzmpl,
K-{ueﬂ|msu5m|tnmevuywhuemﬂ) ' 8,-{-&8[/;-6: p}
K, ={ue HQNK|G(,v) €L'@).
lﬂusconsidu‘tbefuncﬁonf:}l-sllu{m}.deﬁnedby:

2 G(x,v)ds, ife€ K, NS,
I(u)'{ic{:,ml 4 a0 otberwise,

We remark that the “constraint”K,is neither convex nor regular. It aums out that:

39



a) DU)sK,nS,.Iishwerscmioominmmdlheseu{u[f(u)SC}mcunpac:fu‘lnyC:
b} for every u in D{f) such thar:

mcas({z&ﬂlpn(z)(U(s)<0}U{xeﬂ|w:(:)>u(:)>0})>0

(see the following point d) ) we have thar-
bl) if & € M, then:

20, v) LK)

« €3 f(u) & { A in R such thar
JaDuD(v —u)dx + Jo oz, Wiy — u) dz+

+;\fnu(u-|s)dza ao(v—v)ds Yvin X,

(see(3.13)0f [3));if0 € 9™ f{u), we say thatu is an i
with respect 10, and o, with cigenvalue A;

b2) there exists a neigbochood W of u such that f € N(W; l,2)(seell)ol(3.l3)mddeﬁniﬁnn(l.6)
of [3]);

€} by theorems (6.1) and (6.2) it follows that, for any u, in D(f) such thar:

genfunction of the operstor v —+ Av—g(, v)

mcas({:enlm(:)<u.(z)<O}U{zeﬂlm(=)>u.(z)>0})>0

there existT > 0,U = {0, T) — L*(CY), with It is absolutely continuous,
suchthat ()€ D(f) ¥t in [0, T and for almost every ¢ in [0, T):

o, U@ e LY,
f U)o ~ L) ds + [ DUED(y - U(t)) ds+
Jao a

UQ) = woandA: [0,T] -+ R,

+/ o(=, U(th(v — U(e)) dx + A(t)f UeMv - U(t)dz>0 Yein K,
*] a

(from the variationai inequality above, by usual techniques, it is possible 10 deduce the unicity of ¥
and its continuous dependence on (uq, S(u,));

d) the hypothesis made on u, in b), implies that X and 8, “are not langent al x”, in a suitable sense (see
(3.12) of {3)) and this fact ensures, by theorem (3.13) of [3], that b2) holds, In {4] some assumptions
on 1, v and p are considered, which ensure lhalKandS,mnouangentn:nyuinDU).

Under some additional Symmeiry assumpLions a multiplicity results for cigenfunctions of v =+ Ay —
#(-,v) with Fespect W o, and o, is proved in [4).
(7.3)  HzatgquaTion wrn O Now convex CONSTRAINTS  (s¢e [21])

Let £2 be a bounded open set of R* withn 2 3 Letg, h: QxR -RbelwoCuameodu-yl'umkm
and p > 0,

We make the following hypotheses.

@1 theze exist a, in LY(Q), b, in R, p, < 24 4/n such that
G(z.a)-[o o5,0) 0 2 ~a,a) ~ bfaf*  VzinGQ,VeinR:

40

®2) there exist a; in L3(Q), by in R, py 52--2+4/(nn-2) such that:
‘ o(x, 82) — (3, 1) Z —ay(2) — billm) + |82
Yz inf}, Ve, 02 in R with &) < #;

e3) G(-, ) is integrable on £ forevery » in R;
)] there exist ¢ in L?(€2), d in R such that: .
|h(z,2)| S e(z}+dle] VYzin(VainR,

. . by:
Let H = L3({2), with the usuat inner product, and consider the constraint V), defined by:

V,-{vEHlL(];mMs,o)d-) d:-p}.

Let fi, f : H = R U {+00} be the functions defined by:

. , HueV,
folDuf ds ¢ oG wds, HueH(@) !(u)-{f'o(:) itu gV,
+00, othery

fl(‘l)'{

The following facts hold:

a) D) = (v € BYQ) | G(-,u) €LNED}, DU} = DUOINY,.
b) /) and J lower semicontinuous and the sets;
fifwsc) , {v]fW<C)
arc compact in H forevay CinR.
©) f1 € N(H:0, 1) (sce definition (5.1)} and, if u € D(f1),a € H:

) EL'Q) I
a€d filn) & [ ﬁ(., :),(.,..) =a (in the distributional sense).

i i such that f €
d) For every u, in P(f) such that (., u.) 1om&@.m:@wmw.au
¥(W,: 1, 1) and if w € D)MW, a € H, we have

a €9 fu) & 32 iaR,3a ind” fi(u) such that & = oy — Ab(:, 8),
in panticular, if 9~ f(w) ¥ #, we have that

gL WELNQ) , Au-g(,w) ELNQ)
grd™ f(u) = —Au + g(, ) — Ah(:, u),
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where
. Jo(—=au + g(z, u)h(z, u) dx
" Jalh(z,u)) dz
sing the theory developed in this paper we obiain the following result:

€) If assumptions (g.1), (g.2), (g.3) and () hold, i
1 M el .ifpER, [ ]
Iﬁﬂ:ﬁ&ﬁ?ﬂ,ﬁld’ = £} Al ue) 70, then thereexia T g%?u : E&' ;1 1_-[..‘(;1)‘1 .‘f((,"") €
[0, 71 we have: utely continuous U(0) = u,, U(t) € D(f) ¥t in [0, T) and for mﬁm'eué.? tin
v('-.u) €L
[ Ue) — AUE) + g(-, U () + MDA, U = 0

(in the distributional sense.)
Furthermore:;
Alt) = Jo(—AUG) + o=, U@z, U () dx
Jath(z, U©))P dx,,
the functions:

€ /‘; [DUBPds |, tre j; Gz, Uit)) d=

are continuous and their sum is non increasing.
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