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This talk is an intreduction to the problems which arise in the theory of existence and
regularity for variational elliptic equations and (especially) systems. The point of view
we adopt is the minimization of functionals: thus, no Euler equation will be really
written, instead we will develop our theory for integral functionals.

A general energy functional has the form

]Af(z, u(z), Du(z), ..., D*u(z)) dx;

for the sake of simplicity we will confine ourselves to the case k = 1: then the funetional
takes the usual form

F{u)= f f(;r;,u(:c),Du(a:}) dz, 1)
A
and we want to solve the problemn
min{F{u)u € 5}, (2)

where § is the space of “admissible” functions. The starting point of the direct method of
the caleulus of variations is this well-known result:

if F: 5 — R is lower semicontinuous and coercive (i.e., {F < ¢} is compact) then problem
(2) has a solution.

Since the topology of the space § is not given a priori, it is customary to take a fairly
weak one, in order to have as many compact sets in § as possible. This cannot be done
casily if § is a “strong” space, e.g., a space of continuous functions, thus we choose to
enlarge §, to make the existence problem easier, but we create the problem of regularity.

1



Our scheme 1s then:
a) find $' 5 § in which problem (2) has a solution u*, via the result above;
I3} prove that in fact u* € 5.
Usually, we handle the coercivity of F' by the choice of §', and this leaves us with the

problems of scmicontinuity and regularity. In order to make the integral in (2) have sense,
we assume that

f{z,s,£) is measurable in z and continuous in (s, £); (3)

0= flz,s,8) < clalz) +[s]” + 1€]7), {4)
with a € L' and p > 1. In the case of equations, u : 4 C R” — R, we have the

Scalar semicontinuity theorem. Assume f satisfies (3),(4). Then the functional F is
lower semicontinuous in the weak topology of WY if and only if f is convex with respect

to £.

This result dates back to Lebesgue, Tonelli, ..., and more recently (necessity of the
ecomvexity) to Marcellini - Sbordone. When we deal with systems, v : 4 ¢ R®™ —+ R™,
some simple physical considerations (see a famous example by Ball) rule out convexity
as » reasonable assumption for existence theorems. Instead, its place is taken by the
quasiconvexity condition:

/f($0,30af+DSf’(-'~”})d$Zff(-TmSo,f)dI
A A

for every zg € A, 59 € R™, £ € R"™ and ¢ € C}(A4; R™). This means, roughly speaking,
that for a homogeneous portion of the body the linear deformation £z minimizes the energy
iutegral among all deformations which are linear at the boundary, With this definition
{(introduced by Morrey), we may state the

Vector-valued semicontinuity theorem. Assume f satisfies (3),(4). Then the func-
tional F is lower semicontinuous ir the weak topology of W':? if and only if f is quasicon-
vex with respect to £.

This resuit (due to Dacorogna and Acerbi - Fusco) contains the scalar case, because
for m = 1 quasiconvexity is equivalent to convexity; it is also a strong generalization:
an examnple of quasiconvex function is any convex fupction of the subdeterminants of the
matrix £, which of course need not be convex in £,

As for regularity, even in the sealar case we have to strengthen the assumptions on f;
moreover, for the sake of simplicity, we confine ourselves to the case independent of (z,u),
altliough the results would still hold (under less readable assumptions).

We begin with the case p > 2, and we assume that

[E1P < £(6) = 1+ [E7), (5)
f is twice continuously differentiable, with [fee(n)| < (1 + j7|?)#~2M2, (6}
32

f is uniformly strictly convex, i.e., fee(nup > (1 + |p|2)YE—=8/2| 42, (7)

We say that u is a local minimizer of F' if

] f(Du(z))dz < ] F(Dula) + D(x)) dr
B B

whenever spt(yp) C B. Giaguinta, Giaquinta - Modica and others proved a partial regu-
larity result, i.e., regularity in a subset of A:

Scalar regularity theorem. Assume f satisfies (5),(6),(7): then every local minimizer
of F is of class C1*{ A"), where A' is an open subset of A and meas{ A\ A') = 0.

When we pass to systems, the existence theorem above obliges us to modify assump-
tions (7), which implies convexity, and (6), since boundedness of the second derivatives is
somewhat natural if f is convex, but net if f is quasiconvex. Then we assume

f 1s twice continuously differentiable, (6"

[ 1€+ Dotz > [ 116 +c(Dl +1D1)] ()
A A
this condition is called uniform strict quasiconvexity. Then, always for p > 2, we have;

Vector-valued regularity theorem. Assume f satisfies (5},(6'),(7'): then every local
minimizer of F is of class C1*(A"), where A’ is an open subset of A and meas(A\ A") = 0.

This result has been proved by Evans, still with assumption (6), and by Acerbi -
Fusco.

Very little is known in the case p < 2: K. Uhlenbeck proved the everywhere regularity
of the local minimizers of [|Du|”dx, with p > 2, and this was later generalized to the
case p < 2, but essentially for the same kind of functional, by Di Benedetto, Manfredi and
Tolksdorff (scalar case) and by Hamburger and Acerbi - Fusco (vector-valued case).

Recently, a very interesting paper by Anzellotti - Giaquinta proved that in the scalar
case, under very general assumptions on f and for all p, a local minimizer u of F is regular
near the points where D # 0. This seetns to have been generalized (a last control of the
proof is due) by Acerbi - Fusco to the quasiconvex case, but only for p > 2: we examined
the lower exponents, but with no success at the moment.

Ancther important direction in which a theory of this type has been developed (by
Chang) is the study not of minimum points, but of seme saddle points of F,
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