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PRELMIVARY VERSIoN

PERIODIC BOUNCE TRAJECTORIES
WITH A LOW NUMEER OF BOUNCE POINTS ‘M

Vien i Benci — Fabio Giannoni

In this paper we study the existence of a periodic
trajectory with prescribed period, which bounces ;,SAinst the
boundary of an upen subsel of [RN » in presence of a polential
field. For evary T>0 we found a T-periodic Lonconstant

solution with at most N+1 bounce points.

1. Introduction.

Let 00 ¢ EF?N be an open bounded set with boundary &0 of
class 2.

A bounce tLrajeclory in {1 is a piecewise linear path with
corners at a0, for wich the usual leow of reflection is
satisfied, namely the segments make equal angles with Lhe
tangent plane. A bounce point is a corner peint for our
path.

The main result of this Paper is the following:

THEOPEM €1.1), Lot Q be a above. Then there gxists al least
— pinkad)

One pellochic nonconsLant Lirajoctory 1n {1 with at most N+1
= Rl lemhe —_ L M oAl

bounce pojints,
—_—

Sponsored by M.F.1. ¢40%, 1937y,
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Remark €1.2). The conclusion of Theorem (1.1) js optimal 1n
the sense that il is possible Lo construct a set 1 for wich
there are not trajectories with only N bounce puints. For
N=1 this i{s obvious. For N=Z we refer Lo [5,11]1 for such a

cotroexample.

Remark (1,33, The result of Theorem €1.1) is somewhat
surprising. In fact analougous problems exibit a more
complicated fFenomenclogy.

For example the Cauchy problem has a solution Cin
general non unique) provided Lhat Lhe concept, of solulion is
generalized teo include trajectories which spond some time
lying on the boundary (see [6,7,8, 13} and Remark (2.142),

The {llumination problem (¢i.e. existence of bounce
trajectaries with prescribed extreme points) may not have
any solution even in a generalized sense C(see (14,161 for

controexamples and [9,12] for some recent resylts),

We refer also to [10,12} where the existence of periodic
trajectaories of special type has been proved in some

particular cases.

Thecorem €1.12 can be obtained as a consequence of a more
general result. Perhaps now it is convenient to give some
rigorous definitions.

Let VeC'(H,R>, WWixd Lhe gradient of V at x and (30 the

exterior unit normal to & in xedq.

DEFINITION €1.42, A loop y from St to 1 is called a periodic

bounce trajectory with respect to the potential V if:

i3> recosts except for at most a finite number of
lnstants L1 e .Ll for wich r(LJ)eaﬂ;
Ciid YOIV (LI D=0 for every Ll.....tl;
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.
€iii) for every Lelt [ 3} there exist the limits

P2
Lim p*Cs3:=piCLs and
s+t” -

1.52 r;(t)~<r;Ct).uCrCL)))u(y(t))=

SPICLI-piCd . pCpCd Ll L),

Cl1.62> (r;CL).v(r(t))>='<rl(t).vCrCL)))SO;

1.....L1) is not empty.

Civ) the set (t

The instants tl.....Ll for wich €1.52 and (1.6 hold are

called bounce instanlts, while the points rCLJZ are called

bounce points.

Hotice that rCtJ3560 does nobt implies that rCLJ) is a
bounce point according to our definition. In fact it may
happen that <r;(t).v(rct))>=—<r:(b).v(r(t))>=0.

Using the above definition we can enunciate the followling

THEOREM C1.7). Let ﬂcPN be an open bounded set with boundary

2£ class ¢* and VeCzcﬁ.E). Then for every T>0 Lhere exists a

T-periodic nonconstant bounce trajectory having at most N+1

bounce poinls.

The proof is based on an approximation scheme introduced
in [2). A bounce trajectory is obtained as limit of regular
solutions of a Lagrangian system constrained in a potential
well. The approximating problem is studied with variational
methods. The number of the bounce points is related to the
Marse index of an approdimating trajectory. However for
technical reason it is convenicnt Lo use a geoneralization of
the Conley index (sewe L31) and a theorem related to it (see
[41>.
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2. The approximation scheme.

In this seclion we show how the existence of a bounce
trajectory (in a generalized sense} can be obtained as limit
of regular solutions of a Lagrangian system.

Let ncrM be an open bounded set with boundary 0 of class
¢® and v the exterior unit normal to (1. Let heC{D be a

function having the following properties:

Cid hGO=distCx,. D if distlx,<d_;
€1i>  hGxd>d ) if distlx, am>d ;
Ciii? h(x221 for every xeil};

cz2.12 1 Civd IVhCx) |51 for every xel, h(x=1 far from &0,
vl lim ﬂVth)=vi°) for every xaean;
XX
Cvi> h_:=sup <E.£fl¥é¥i_ <
L ° »ef, y»0 Iyt

where do is a constant sufficlently small.

Let. UeC’C,R*Y be defined as follows:

z2.a Ulxo= -1,

RS

Cthe term -1 has been added so that UCx) =0 for any x far
from 90 this will semplify the notation)? and let
veC (T, RS,

Now we shall prove a proposition which shows that a
bounce solution can be obtained by a suitable approximation
scheme. The proposition is somewhat more general of what we
need. It uses a ‘*concepl™ of generalized solutiom used in
[6,7.8.9,13] which allows solutions which may spend some

time lying on an.

€2.3) PROPOSITION. Let T30 and ¢:0. Let y eC’cro,T), a

T-periodic solution of tLhe Lugrangian system:
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ca. 4> ,‘;HVW,yE) +&VUCy £) =Q
such Lhat:
1 2 [+
c=b et - <
2.8 ECrs). c’.‘lrc' +VCr‘:) 5U(7£) K

where K is a real caonstant independent ci £,

Then v, has a subsequence convergent in H's', D to

curve yeH'cs! . satisfying the following properties:

2.62 ¥ is Lipschitz continuous;

there is a positive finite real HBorel measure 4 on [0,T]

with supt j1 € Clpd: =CiLel0,T): p(LIcan such that

FUEoNVERD 0wy in Lthe distributions sense, l.e,

T T
2.7 I (7'.v‘>dt—j <VVCr),v>dL=I <LCpd, vrdu
- 0 0 CC3d

for every veC®10.T1.B™ such Lhat vCOI =vCTY;

¥ has left and right derivative in every Lel0.Tl and

1 z 1 z
& =y CL =¥ C = -
Ca. 8 shicl o Elrict ol VErCE D -VCpCt >
for every L ,t «l0,T);
—— oy -4

2. @ r;Ct)-(y;CL),u(y(t.)))u(y(l‘)')=
SO <L wCp eI bl O L)

for every teClyd;

€210 CPLOLD L LCpELIo ==L p CL) 1l pE LI Y5

for every bLeCCpl.

Proof. By €2.4) we have

2 . |
”Not.].ce that E(rc) s a constant of the motion, i.e. the
onar gy,

PHoro W'CS' ) =(qeAcc0, T, 0 4’ L0, T; &M qeor =qe s .
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T T T
c2.11> J‘Oqc.v )dL-IO<.VVCr£).v)dL—sfo(VUCre).v}dL=0
for every veH‘CS';lRN).
Let v£=—VhCr€). By (2.9 r‘e is bounded in L® because we

have supposed U(x>20, V(320 for every xe(i. Morgover by
’ a

C2.12Cvid v“=—h"Cr‘)y; is bounded in L". Since also
<VVCr_2.v,_> is bounded in L™, by (2.11) we get that
T : Tioncy 512
sf <vUCr 3.v >dt=Re [ ¥l gy
£ £ 3
0 0 hicy >

is bounded independently of «. By (2.12Cwv) IVthlelg in a
nelghbourhocod of a0, therefore there exists Mo independent
of € such that

T 2
cz2.12 L dezM .
0 hicy > @
Th _meeWhOy D < . [}
en c(VUCr‘_)-—-—a—c- is bounded in L', hence, by (2.4),
h Cch

y; 18 bounded in L‘.

Since for every 1<pe+m W', T2 ;IRN) is compactly
embedded in LP, up to a subsequence, there exists
}'EH‘( st H IRNJ such that ¥ o in H' ¢ and uniformly). Obviousl ¥
YCLIE? WLel 0. T, pC0I=pCTY and Y is Lipchitz continuous,

By (2.12>, Lthe sequence of positive real functions 325
h™Cyg D

- £
converges (up to a subsequence) in  L*-weak™. Since

(LS Rt c®cs R 1™ Cwhore [ 1% denotes Lhe dual spacad
we get that
ce
3
h Cys)

— wet s BN weakly.

By well known theorems, # is a positive finite Borel
measure. Moreover if fﬂCCr) we have that cUCrs)—oO uniformly
in a neighbourhocod of T, Lherefore suplt pcCCpd,

Since (2.13Cv) holds, when & tends to O by (2.117 we get
2,73,

By (2.7) 3 eBVCSY,E™M™ ang c2. o holds,

To prove (2.8 we shall need Lhe following property:
€2.133 lim &'UC}‘gCL))-’—’O a.e. in [G,T1,

—_——
“"Lhan ¥ has left and right derivative in every tesS' which

are left continuous and right continuous rospectivel y,
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up to a subsequence.

Since y;—or‘ in Lz. up to a subsegquence, y;—oy' a.a. in
{0, T). Since £UC:D20 ¥xel), the real number ECyé-_) defined at
(2.%8> is bounded indepently of &£, therefocre there exists
wel.® 10, T1;R"> such that

cUCr‘:CL)D—»w(L) ae in (0, T,

We claim that wli)=0 a.e. Indeed

3
hicy cu

£

eUCy (L=

and
cVU(r&_C!.))‘"—-—cthcr -cﬂeuq <Ly,
hCp 13D
Therefore if wit)#0 on a set E«(0.T) having positive
Lebesgue measure, we have |¢:VUEr£(t.))|—-o+aa YieE, hernce, by
Fatou Lemma,
lim inf _|' 19UCr L) Jdt =+
40
in contradiction with the boundness of zVU(r €43y in LY.
By (2.13) and (2.5

§|y t )I ——|r [ 8 )| -V(rCL b} V(r(t. >
for almost every t. L e[O T). fince t.he left derivat.ive of p
is left contxnuous and the right derivative ia right
continuous we get C2.8)>.
By (2.8> with L‘=Lz we get lr;CL)Izly’_(tjl YtelO, T1.
Then, since (2.9) holds, it must be
}(r;(t).u(r(t.)))|=|<y'_(L3,va(t)))I
for every teClyd, Ir CPLCL il > =0 it must, be
Criftl, p(plidd>==(p ' CLI, v pCLID> because rCtlefll WL,  Then

(2.10) is proved. a

(2.14) Remark. For every couple Cr +P, )eﬂxl}? the Cauchy
—_ o R

problem has at least one solution, i.e. there exists a curve
¥ with initial conditicns

rCt D=y
219 e o
oL ) =B,

which satisfies C2.7)-L2.10).
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Proof. It is easy to check that the equation (2.4> has
alwals a unique sclution r, satisfying (2.15) for evary LdR
and its energy is

%p:+V(yo)+cU(ro)..

For any T>0 by (2.4) we have
T
J' Sy IOy D eV ¥ 2, v>=0

for every veM'CI-T,T] ;ERN). Therefore
T

T T
j riav >dt—f <VVCy 3, vadt-ef <VUCr 3, vrde=
=T

=<r;(T’).vCT)>—(y;C—T).vC-TJ>
for every veHlCl-T.T] -,D?.N).
At this point, since r; is bounbed in L® independently of

& as in the proof of Proposition (2.3 we get the

conclusion. -

3. The existence of a solution of the approximating problem.

To enunciale the abstract Lheorem which we use to study
the approximating problem we recall the Palais-Samale
condition, the notion of linking, and the definitian of
Morse ndex.

Let ¥ be a real Hill.;verl., space with norm N Il and scalar
product < , > and let A be an open set in X. If
JeC'CA.RY, J'will dencte its FrechelL deriWative which can be
identified, by virtue of < , > with a function from A to X.

C3.1> DEFINITION, ¥e say that J satisfies the Palais-Smale

condition (P, 5. on A if every sequerce r, such that JCr 2

is bounded and J'Cy 30 has a subsequence which concerges
—————— rerrate] "] m———

to yeA.

(2.2 DEFINITION. Let S bu a closed sel in X and let QcX an

Hilbert manifolds with boundary #Q. We say that S and 4Q
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Ciid if h:QUAQ-X is a continucus map such that htul=u for

every ued(l, then h(QDNS = @,

€3.3) DEFINITION. Let JeCzCA,[R) and yeA such that J Cpd=0.

We call Morse index of 3 the dimension of the space spanned

by Lhe eigenvectors of J*Cyd corresponding to the strictly

negative eigenvalues,

Wo denole by m(}) the morse index of Y-

space X. Let 1eCiC AL RY , e, JC 0o 0. Assume tLhat:

C3. 42 LEMMA. L.et. A be an open subset of Lhe raal Hilbert

(al
—
(A%

i_l:- Zn—)r €FA then JCp D -

|

CJ 2 J salisfies C(P.S.) on A
—— e -

CF 3 there exists an N-dimensional space E = CN212 such that:
—— —_ =N

i J <
Cid EEN"V\ 0

Ciid there exist 0,000 such that Bp: =(reX: lyll<pdcA and

inf J 5 a,
s

whure S=dB nEi&- and El=¢veX:<{v,w> =0 WweE 3.
e N N

€iii) there exists eeEﬁ\(O} such that the set
= . >
Q= (y+re: ye_EN.r‘MO)r‘u\
is bounded

Then if K +w i1s such that

sup J < 73,
25
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as a critical point r"'" such that;

J
al JCpiepn
and

mpIEN L,

The existence of a critical Point ¥ such that adJCpd<s3
can be obtained by a slight variant of the linking thecrems
(5'1.\‘_ ?.._J‘. [1.15]) and its proof can be carried
out in a similar way,
Indeed if we put JCpd=-w ¥reX- A, because of (J 3 (13)(1')
and CJ DCiLi) there exists R>0O such Lhat
QACQ: ={y+re:; yeEN. HyHsR,Osr=<R>,

sup J £ 0 and sup J < .
a0 Q
Morecover S and 4Q link Csee Proposition €2.2) of (112, so

using CJx) and Csz we are able to prove Lhe existence of a
critical point yeA such Lhat alJCpl{f,

To get the estimate on the Morse index of the critical
point y, we Use a generalization of the Mor se-Conley
index Csee (31). Iln {act Lemma (3.42 can be obtained as
Corollary of Theorem C(32.14) of [4). We nmust only pay
attention to the fact that in Theorem (3.14) of (4] J is

defined on X while here J is defined in an open subset of X.

Now we are able to prove Lhe esistence of a solution for
the approximating problem. The approximation scheme which we
use has been introduced in (2]). Here the situation 1is
simpler because J satisfies CP.S) on A and JCy 2 tends to -wm
when ¥, 4@Pproaches JA. By [Lemma (3.4) we gel also an
est,l.mat.e of the Morse imndex of the our sclution of the
approximating problem. This estimate will be used to glve

the estimate of the bounce points of the solution.

€3.5) PROPOSITION. Let T>O, QCIPN be an open bounded set with

B e, I'Cpr=0.
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boundary 90 of class G2, veCX(H,R* and Uecicn.®b be the

funclion defined at 2,2,

Then there exists E LE',a.3eR*~(0} and mel €03 such Lhat

for @very £>0 there exists l:cec“cu?.m. Ts/m-periodic solution

of the Lagrangian systom (2.4), verifying Lhe following

properties:

- +
Ci> O<E SECye;)SEI
where the energy EC(p 3 is defined ab (2. 5,
——— s e =, e e D ———

€iid Ocaty Cr 55
wheit o J ec? CA.R) is the fUl]CLlO[lal

Tm— z Tom T m
(is) J€Cy3:§ 1 1%L - V{y)dt—cf UCpaat.,

¢] ¢} 0
and

A=cysH‘c0.T/m;mN>;ycoa=yCT/m3.yCL>en Yiel O, T m1>;
1 “m 2z o Tom
. - .
Ciiid §j Pl dt_a>§aj <VVC7€).r€>dt,
. o} o

Ciwvd m(rs)SN+1.

In order to prove Proposition €3.%) applying Lemma C3. 4),
we need some preliminary notations and results, Let
X=Cre’co, Tom ®RMY : pcor =y Tomds
with inner product
Tom Tsm T/m
(v.w)x=I CviLwiodie( [y dt. [ w ode>
o] O Q N
where ¢ , > is the standard inner product in R,
Let AbrXat the statement of Proposition (3, 8), that is
A=CpeX: pCt2e0l Yiel O, Tom] .
It is wasy te check that ‘
Ts/m T.“m ) o T m
J'Cr)v=J rrLviodi-f CVV(y).vzdL-z[ CRUCyD . vrdt
€ el "o "o

for every peA,for every wveX.

As known if Y, is a critical point Ffor J Cthat is
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J'C?’C)V=0 YveX3 then ¥, 1s the restriction to the interval
[0, T'm] of a T/m-periodic solution of (2.4).

(3.7 LEMMA. Let. Cr )r‘A bo such that ¥, ¢cenverges ta v
weakly in H™. H'. Assume that reaf\ Then

T m
lim _r -—-—-—.dt. +00.
n++w 0 h Cr Ctad

Proof. Since jpedA, Lhere exists t. (0, T m] such that

Yot )edﬂ Obvicusly we can suppose L —0 We have
1-2
N 1-2 R 2. .
Ir CLd -y C0)|<I tr; ldsst [J' Irhl ds] SNy iy
Since (2.13Civ) holds and Hrnllxsc for some C>0Q, we have

1.2 1-2
-— < - -7 ] I
IhCy CLID-hCy COII =]y Ct2 7 COY <L "%y 0= -4 o

Since ¥, “onverges to y weakly in H, ¥, <onverges Lo y also
in L™ In articular y CO>—pCOYed. Then hCy CO3>—0. Let
=

b -hC',v CO)>. We have
172

bty CLdsb +t'%c,
Then
1 s 1 :% 1
hoCp CLad b+t 3% “{pl.c?y

hence

T-m T+m

— wgf  iategle logr ST
0 hiy ctd> o bi+c t ;

Since bn—pO we gel the Lhesis.

C3.8) LEMMA. LeL Cr ')x:A such that J {y Z i bounded from

above and J* Cy )_,n

Then there exu,ts A subseguence Y. —sreA. In particul ar
, —

J_: salisfies (P.%5.) on f\__

Proof. Since
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lim <VUC) , ~Ih0 > =+ point by standard argument. we can easily prove that the
5 - . N —
XX U subsequence rn is strongly convergent in H* Lo peAl -
o

xe() +
for every xoem. for every &>0 there exists aéeﬂ? such that
€3.e0 U3 £84TUC , ~FhC0> +a Proof of Proposition €3.5). By Lemma C3.7) and Lomma C3.8)
for every xafl. J

satisfies C(J 2 and CJ)D),.
& 1 2

Since J'Cy 3—0 we have Obviously we can suppose Oefl. Let us pose

T-m T~m Tom

: E =(reX:» is constant),
€3.100 [ <proviorde-f  <wvey dowrdt-ef  <VUCy 3,v>dts N CYERY 2
o n o n o " T/m
Eﬁ-=(re)(:‘r ¥ diL=0>,
=a_livil Q
n X
and
for every veX, where an—bO.
S =(yeEL: Iyl =p>
Because of (2.12Cvid -Vh(y JeX, then by (3.9). (3.10), o~ (TEE: Iyl =p
n where p>0.

C2.12Cvi) and (2.13C1v) we get

1. T Since O€l we can Suppose Lhat there exists po')O such that
m m .
sJ' U(yn)'dtsésf <VUCrn),-VhCrn)dt,+(T/mJaés the function h defined at ¢2.1) is equal to 1 for every x
© Q such that |x|$p . Then we have
Tsm o
Sé[hm[ Iyl‘_llzdl-+CT/mDsup|VV|+ c3.12> UCx) =0 Wx: |x]S.pD.
(¢} a Mor ecver
- T m 2 1-2
. & <
+|an|[ho [_[O 170 dt] +(T/m)]]+CT/m)aé. J_€0>%0 and T |k =0
Then there exists M‘ independent of n such that 1r reEﬁ we have
T~m Tom 2 Tom
«f U(yn)dtsd[ahu‘f trd dL+MI]+C'I‘/m)a6= e =f  )p )as
0 o] o]
T-m T m
=6[4h Hr 2+an [ Ver ddtean of  ucy )dt+M]+(T/m)a . for every tel0,T/ml, therefore
o n o n [} n 1 -]
Q o} T m 1-2
Since J¢C yn) is bounded from above there exists Mz IlrIILuusCT/m_)Vz [f \r |zd5] vres'{{.
independent of n such that °
T/m T m and vz
<
5_[0 U(rn)dt-6[4hocfo UCrn)dL+Mz]+(T/m)a6. C3.13> I!yIchnS(T/m) ) VreSp.
) 1
I =
Then if 4b 6= we have Let p=1. m such that CT/m*"<p . and S+5,. By (3.12> and
L Tm €313 ?
€3.11> J' UCy ddt=M . 2. we have
Z o n

UCyCtdd =0 Yiel 0, T m) , ¥resS.

where M is a constant independent of n. Then for every yes

Now JCr"D is bounded from above, therefore, by (3.11>

Tom e 2 T m 1
= . - > e .
I lrl'_llzd(, is bounded. Then, up to a subsequence, r, is T2 zfo Ir* 1I"ar .[0 Verddizs—CT m)s%p\'
o]
. 1 -
kl t .
vea i con_vergen tm M Cana strongly in Lm) te reX such Therefore if m is such tLhat l§—CT/m)sup\;" > }T we get
that y{Ldel]l for every telO, Tonml. o]

1

- P 1= <

By €3.11) and Lemma (3.7 7Cl0en VLel0,T/ml. At this (3.14 J o2z i=a Wres.
Moreaver we can choose m such that
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g %—’CT/m)(suplWCx) |)Csup|x|)
el xell
50 we get

m
€3.15> ' ‘c;_zj' <TIVCPd,p>dt  VWyeA.
0

Lot eerM with llell=1 and
Q,=¢E} +rsinc‘3"r'ﬂwe i rZ0XMA.

Obviously Q is bounded in X. Moreover If }’EQA
r= y+rsxnc—1.—t)e € ] YLelO, T/md,
where ydR Therefore

I¥)<d, r<z2d, where d=sup|x].

xefd
Then
T m 2z 2
1 2 4d™n
< 4 .=
€3.16) Jccyn_éj‘o \r |dt.<.-T/-ﬁ_. 1]

for every reQA.

o

Then by Lemma (3.43 J‘ has a critical point rc such

that

€317 ey ¢ r o€
and
€3.18) mCy DEN+1.

Since VOO20mH>020 ¥xel, by £3.17) we have
T m

Bt taza,

hence by (3.15), ¢1iid or Proposition €¢3.5) follows.

It remains to prove the estimale for E(r 2. Now EC}’EJ is

a constant of the motion, therefore
Tm T/m T/m
€3.19) (T mdECy )-E_[' o dL+J‘ VCy )dL+o_f UCy 2dt.

Since VCx)>0M:lU(x)>O ¥xenl, by c3 17 and ca 19) we get
asSCT-mIECy )‘~'(3+::.'CT/m)supVCx)+ j UCyJ)dL.
Q

x&]
ﬂm—qyu' as in the proof of Lemma ¢3.8) we get that

[
which is the restriction to (0,T ml of a T/m—periodic

solution of elass ¢ of 2. 45,
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Tm : :
c_[ Uty 3dt  is bounded from above by a constant M
[a)

independent of £. Then Proposition €3.5) holds with
-, a +_ 0 aM
E r— and E N Gai:%\'( > *T_/m . -

4. Ppoof of the maln result.

Now we want to find a bounce trajectory with at most N+i
bounce paints (where N iz Lhe dimension of the spaced, using
the approximation scheme introduced in section 2 and the
Lemma (3. 4>.

To prove Theorem ¢t,7) obviously we can suppose V{x)>0
Y],

Far every &0 let r, the curve found in 'PP-"PJ\ hoown @5) By
Proposition €2.3), up t.o a subsequence, r, is convergent in
H'¢S', ™ Lo a curve Pi{0.T/ml=sfl which verify C2.8), c2. 7,
C2.83, (2.9 and €2.10> and which is the restriction to
[0, Tsm] of a T/m—periodic curve.

By (ii> of Proposition €3.5) ¥ is not constant Checause V
and U are positive on M.

To prove thal p has al most N+l bounce points it jis
useful to introduce the foligwing notions of "“nonregul ar
potnt for » ™.

“nonregul ar instant f‘or r" 1:‘ there exists 3)0 such that t‘or

svery 60,53 the weak equation

T+6
<r'.v'>dt— (OO, vrdL =0 VveH‘(t-—é.f+6;lRN)
¥ . A
t-5 -5

is not verified.

¥e call “nonregular points for r the points r¢ D edt such

that t is a monregular instants for ¥.

Remark (4.8>. Notice that if weo prove that y has at most N+i
Pl i S 1P - S
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nonregular points, by Proposition (2.3 we get t

1@. b/varlf;as C12,Ciid and Cii1i) of Delfinition (1. 4) with 1

" bouce powmly
hat ey .\v\/

EN+1,

To prove Theorem €1.7) we need also the following Lemmas.

c4. & LEMMA. Let pCLD be a nonregular point for p and
£é=[t-é.t+6] with &eC0Q,T..2md. Then
liminf f —t—at > o
£40 I, K%y >
) F3
Proof. Since r, salisfies (2. 4) and UCx) is defined by C2.2)
we have

Trm Trm

T
J;Cre)v=fo (y;.v')dt—fo <WCyc).v>dt+ae_[

for every veH'Cs!, [RN) .

If, up to a subsequence, lim &

&40 1

6!‘\(}')

the limit in £ we get
I Cpeaviydt-f  <PVEpI ,vD>dL=0
Is Is

for every va-I;CIé.IRN). which contradicts the hypothesi

4.5 LEMMA.
that

Let. B-={xe:: distlx,aD<r >

dist.(x.dﬂ)(ro implies thCx)Iz«}-

If yCt Jedl Lhare exist 50‘»0 and éo>0 such that:

Y6<b , Wede , Whelt -&,L +63, ry CtoeB
[ o o a &€
Proof. Let €y be such that
distCrSCLo).rCL )'JSI'O/E Vc(su

By Cid) of Proposition ¢3. 53 3|y;|zss+

Tz

it suffices to chouse & ;[E-U—]
2 L4t

——

L]

notice that ro exists because of (2.13Civy,

where r is
-0

T Wtel0, T ml, ¥e30,

~m
<Vh§r v 2> e
S hCy 53

-—-——dt. =0, going to

5.

such

Lhen
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Proof of Theorem (1.7). Assume, by contradiclion, thal there

exist LICLE<...<LN+BGIO.T/m] such that y(LJ). cj=1, . N+2D

are distinct nonregular polnts for p.

For every | let & be as in Lemma (4.5) and such that

€4.3> is not verified for every <6 with T=t .

Let ¢SDS min(él.. .. '6N+2') such that V6<¢5 . wa  have
LJ+1—t.J>Bc5 for every j=1,...,N+l, and CT/m)+t.1 N+2>26

Let I

=lt ~6,t +8] d I*=
3 j 1<) J an IJ

Moreover for

& & .
[LJ E'Lj+§] with 66(0.603.

every j let & be as in Lemma (4.5,

J

£ fmin(e } and £<¢
o o

LN+2 1t pJec'cto.T/ml.[o.un such that

PRI N
For every j=1,...

pJCLJ =0 VLe[O.T/m]\Ij
(D=1 Yiel” .
i J
Let V‘JCt)=—pJCL)VhC7£(L)). We havae

T-m z T-m
e s '] - ,r,
<J€Cr‘)v‘J.v£j> J‘O |ch.| du fo 'Y (ycl)vc‘j,v“j>dlt+

To/m 2
+2‘J. M h ‘Cy )v J—-o:_j—dl. _ Gc_r {Vhiy D, v _j->—dt..
' h? Crg 2 o h‘Cre)
T/m
Since J' Iy'clzdt. is bounded from above by a constant
o}

T-m

independent of &£, by (2.13Cvi) also J' Iv;:J IzdL is. Vadtrour
’ ]
T m

hypotheses VeCT.R). therefore J vy dv_..v_o>de s
o € Ej" €j

bounded independently of &. By €2.12¢vi) and €2.12) also

T-m
EcI Sh_C_Z‘)v J‘—c_;—dt is bounded by a constant independent
Q h? C}‘ J
of £, Moreover we have
T/m
<Vh v bl Vh
ef _M) hd _j._.dt,>gj‘ £; .Ii.}.{Ldtch Jl_._._?:cldt)
Q h* Cy b} hCy 2 1° h* Cy 2
€
z(by Lemma C4. 5))1-6.5_[‘ —-—dt>
n? Cr >
- 1 1 1-3 1 4.3
> & » : — k. =
Cby Holder lnaqualityﬁw[s] [_[‘I' R k]
J £
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R <8
w0 )

Now by Lemma €2.7) and H&lder inequality
; 1
lim _r -—3-—-dt,=+cn,
£40 :[J Ry >
therefore, since th.J) is a nonregular point for ¥. by Lemma
4. 4

Iim <J"Cy dv v >=—a.
£40 € g £) £}
- L AL e <_
Let £ be such that <J€Cr£)v£j.v€‘l>_ 1 for every &£<¢ and
for every j=1.. .. WN+2,
Since the curves vsj are mutually orthogonal 1in X the
bilinear form J;(rs) is negalive in a linear subspace of X

having dimension aL least N+2. Consequently J;Crc) has at
least MN+2 strictly nagative eigenvalues, hence

oy 3EN+2  Wesxg,
and this contradicts Civ) of Proposition €3.5). Then ¥ has

at most N+1 nonregul ar poinLs,

Because of Remark C-I..g) it remains Lo prove that ¥ has at
least a bounce poinl. By contradiction if ¥ has nol bounce
points, yeCS',fD and

FUAIVC IS0 wiest.
Then <y +9V¥(p3,3>=0 Yiel O, Trml and since ¥ is T m-periodic
1 T#m 2 T~m
EI I Pav=]  <oveyd, pran
o o)
and Lhis contradicts Ciiid of Propostition (3.5,
Thecrem C1.73 is =o completely proved.
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