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1. Introduction

In these notes we shall present a class of “"resonant®
nonlinear boundary value problems which possess an infinite number
of positive solutions. As it will be seen, these solutions appear
as a consequence of the specfal oscillatory nature of the branch
of positive solutions which bifurcates from infinity at the first
eigenvalue of the corresponding Tinear problem, when we deal with
honlinear perturbations which include certain types of bounded
domains R C‘m“ and periedic nonlinearities of zero mean,

The main results presented here are contained in the paper
[CJSS]. For more details, we refer the reader to that paper and
the related work ([SS], [LS], [5]. [«].

Let us consider the “resonant" problem

Au + A1u + g(u) h{x}) in @
{*)

0 on an

u

where § < RN is a bounded smooth domain and h:g + IR, g:IR + IR
are given Holder continuous functions. We are letting A denote
the first eigenvalue of the problem Au + Au =0 in R, u =0
en 3R, and ¢ an associated eigenfunction with ¢ > 0 in .
And we shall assume that the given h, g satisfy the following
conditions:

{h;) hé dx = 0,
: I
(9y) 1im 2(5) o,
§>4m
G(s) < G{(s_ ), 0 <5 <s
{97) - " T n
G(s) > G(tn). 0 <5 < t",

b, {t_} are monotone unbounded

s . -
where G(s) = J gl{T)dT and {s
0 n n

sequences.

In the ODE case (N=1) with g a periodic function of
Zero mean it was shown by Ward [M]. using variational arguments,
that (*} has a solution. Subsequently, Solimini Eﬂ and Lupo-
-Solimini [LS] extended Ward's method and result to the PDE case
(N> 2). On the other hand, using methods from global bifurcation
theory, Schaaf and Schmitt [SS] showed that («) has in fact
infinitely many positive and infinitely many negative solutions
under the hypotheses in [W]. And recently, extending the method
of [8S] to the PDE case, Costa-Jeggle-Schaaf-Schmitt [CJSS)
showed that this infinite myltiplicity result remains true in
dimensions N > 2 provided the domain § satisfies a suitable
geometric condition, which we here denote by (q+). For the time
being, Tet us only say that (q+) is a requirement on the
positivity of a certain quadratic form involving the eigenfunction
¢ and let us remark that

(i) The condition (q+) is satisfied in the following
situations: N=2 and 8 a disc of arbitrary radius; N > 2 and
R =1(x | a<|x| <bl an annular domain with {b-a) small in
regard to a.

(ii) The condition (q+) is not satisfied in dimension
N>3 when @ 45 a bhall.

(111) Numerical experiments (cf. {cass]) seem to indicate
that the infinite multiplicity result fails for balls in dimension
greater than three.

2. Motivation - The Linear Prohlem

Let us consider the following simple one parameter linear
problem
Au + Au = h(x} in B
(tt)A

0 on 3%,



where X € IR and we denote by 0 « kl < Az < L. the distinct
eigenvalues of the homogeneous problem Au + Ay =0 in Q, u=0
on 3Q. As is well-known, if X # Aj forzall J. then (»x),
has a unique solution for any givem h € L°(2)}; on the other
hand, if X = lk for some ¥, then (tt)hk has a solution if

and only if the givemn h s Lz—orthogonal to the lk—eigenspace
Nk; in this case (hJ.Nk), one obtains in fact a "continuum”

of solutions given by u = ug*tNp . with u L Nk' We can iTtustrate

these results by the following "bifurcation diagrams" where, for
our purpose here, we restrict A (the horizontal axis) to a

neighbarhood of Ay of the form (0,u1) with A, < uy < AZ’ and

1
let the vertical axis denote the sup norm U of u (say h
Hélder continuous). |
“max
l
r =
Case 1 J h¢ dx # 0 | Fig.
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Now, the “bifurcation apprbach" to our-original problem (*)

is the following: embed (%) inte the one parameter {nonlinear)
problem

i

Au + du #+ gfu) = hi{x) in 0

(),

is

1

2

and study the A]-section of the solution set S of (*)A' Since
the nonlinear problem (*}y {s a "perturbation" (by g) of the
linear problem (**)A’ it is natural to expect that the
"bifurcation diagrams" for (#)y in Cases 1 and 2 are
"perturbations" of the corresponding bifurcation diagrams for
the linear case. In fact, one ohtains a result on "bifurcation
from =" at » = A1. which we present next.

3. On Bifurcation from Infinity

In this section we state an abstract result about
bifurcation from infinity and a corollary which we shall use in
our problem. For their proofs the reader is referred to fss]  and
(cdss] (see also [PS] and (Rl

Consider the equation
(1) u s K{(A}u + k(x,u}, u b X,

where X is a Banach space with norm .||, «K: [s,b] e’ -~ B(X)
is a differentiable family of compact linear operators on X and
k: @,b] X+ X is a completely continuous mapping satisfying

kAu) g as
lull

yniformly for X ¢ [h,ﬁ]. Then we have the following

lull + =,

Lemma 1. Let A1 6 (a,b) be such that

(1) ker(id - k(X)) = span ¢, fof =1,
(i1} X'(r)e 8 range(id-k(1,)),



and P« X be an open cone containing ¢. Then there exists
€y ” 0 and a continuum {i.e., a closed, connected set)

¢ = [a,b]xP of solutions of (1) with the property that for any
0 <e <€, wecan find a subcontinuum €. =C such that

Co S U s {(a,u) | |A‘A1l < es Jull »1/e1,

and €. connects (A1.m) to aue. Morepver, if (xn,un)sc n b,
is suth that Hun" + w, then

Corollary 2. Let the assumptions of temma ] hold and assume that
K{A}, k{A,.) map X continuously into a Banach space ¥ < X%
which is compactly embedded in X and that K:[a,b] + B(X,Y},
k: [a.,b]x X - Y are continuous with

Eiﬁiﬁl 0 in ¥ as lull > e,
u

uniformly on [a,b]. Then, if (Agoup) € € Ny, is such that

o
“un” > @, we get

u
A+ A, and “ no. N + 0.
n ] [fum ¢ ¥

In particular, if 5 <Y 1is any open cone containing ¢, then,

by decreasing eo if necessary, we obtain that C [h,b]xﬁ.

4. The Landesman-Lazer Situation

In 1970 Landesman and Lazer [LL] considered the resonant
problem (+) under the assuhptions that the limits gftw) = Tim g{s)
Srie

exist as finite numbers and 9, h satisfy

(2) g(-=) < 9(s) ¢ g{+=) for all s,
{3 (-=} | ¢dx < he dx < g(+=) [ #dx,
) 9 JQ X IQ X g JQ X

Then they proved the existence of at least one solution for (*)
This nice result can be understood, a posteriori, by inferring
that the Landesman-lLazer condition (3) causes the bifurcation
diagrams of Figs. 1 and 2 to deform into diagrams which roughly
have the shape in Figs. 1 and 2 below. In other words ,
condition (3} must imply that the branch which bifurcates from
infinity at Ay will cross the "hyperplane” i = A at least
onhce,

Umax |
J
Case 1 I he dx # 0 ! Fig.
2
I
0 )\] X
|
umax |
I
Lase 2 J hg dx = 0 Fig.
g I
0 Ay A



5. The Periodic Situvation

We now consider the resonant problem () with the
nonlimearity g satisfying the hypotheses

(4) g{s+T) = g(s) for all s,

.
{(5) IO g(s)ds = 0,

As already mentioned in the Introduction, Ward [}] in
the DDE case and Solimini, Lupo=-SoTimini [S,LS] in the PDE case
proved the existence of at least one solution for (*) by means
of variational methods, We shall now prove, following Schaaf-
-Schmitt [Ss] in the ODE case (cf. also Costa-Jeggle-Schaaf-
-Schmitt [CJSS] for the PDE case) that («) has in fact infinitely
many positive (and negative) solutions. The proof consists 1in
showing that conditions (4), (5) [er., more generally, conditions
{91), (gz) in the Introduction] cause the bifurcation diagram
of Fig. 2 to deform into a diagram which roughly has the shape
in Fig. 3 below. In other words, the branch of positive solutions
which bifurcates from infinity at » = 1] will be shown to
cross the 'hyperplane' A = 31 infinitely many times in this
case

max

[J he dx = GJ Fig. 3

0 )*] A

Indeed, let us consider the one-parameter problem

u" ¢+ Au +'g(u) = h(x), 0 < x <7
(*),
u(@) = u(nr) = 0,

and study the 11-section of its solution set. Here l] =1 and
h: [0,7] * R, g:R + R are continuous functions such that

9 satisifes conditiaons (4), (5) [or (g1), (92)] and h s
Lz—orthogonal to ¢(x} = sin x, 1i.e., h satisfies

™
{6) JO h{x)sin x dx = 0.

Now let K:C[0,7] » c[0,”] be the operator defined by
Kf = u if and only if u 15 the solution of u" + f =0,
6 <x <mw, w(0) = u(=) = 0. Clearly K is a bounded linear
operator from C[0,7] into cg[p,n] so that, in particular,
K:€{0,7] » c[0,7] is compact. Our problem («), above is then
equivalent to the operator equation

u = AKu + K{g{u) - h}

in the space X = Co[ﬂ,w] = {u 6 clO,7] | v(0) = u(n) = 0}. we
may hence apply YTemma 1 and corollary 2 with K(A) = K, k{x,u) =
f(g(u)—h) and letting ¥ = C;[D,n], P =1{u6X| fg up dx >01,
P={ué¥Y!lu>0 in (0,n), u'(0) > 0, u'(r) < 0}. We obtain
o > 0 and a continuum C c RxP of solutions of (*)1 such
that ¢ n uE #FP for any 0 < ¢ < and such that if (An,un)GC

with IAn-A][ < £, and HunH = maxlunt + =, then
Yn . 1
An d A-l and m ¢ = 5in x in Co[{).'ﬂ:].

In fact, by regularity we obtain that

u
(7) a6 in i,

max o
Now for a given (A,u) 1in the branch ¢ above we
obtain, multiplying equation (t)A by ¢ and integrating by
parts, that



w

m
{(1-1}) JO up dx = JO g{u}ddx.

Since u € P it follows that the right hand side of above
determines the sign of 1-k. Letting a = max u, G(s) = f; q
and integrating by parts we obtain

J“ g(u)pdx J" d [Glu{x)) - 6{a)] 2 dx
0 0 ax u'

R ¢'u'-¢u“ L
JO [B(u(x))'ﬁ(u)]——?;TY?— dx := [
Therefore, for (A,u) 6 C we have that

m
(8) sgn{1-A) = sgn J AQ dx.
0

and we shall now study the signs of A and 0,

In view of lemma 1, corollary 2 and keeping (7} in
mind, it follows that

sgn[¢'u'-gu"] = sgni]¢')2 + ¢zj
for a = max v sufficiently large, hence
{9) ¢ >0 if a is large.
Finally, we choose a sequence (an) with

Joe= u1 < az L

and solutions (kn,un) [N with

max u, = a
and
G(s) < G(a2n}, 0<s < a,.
G(s) > G(a2n+]), 0 ¢5 < % e

10.

(This can be done in view of (92)- which is implied by (4), (5)).
It then follows that '

(10} A alternates in sign infinitely often as o + =,

Therefore, combining (8}, {9), {10} we conclude that, for
{(A,u) 6 C, 1-a
a = max u +» =, Since

adlternates in sign infinitely often as
is a continuum there exists a sequence

u_ with max u, € max ﬁn < max u such that (A1.Gn) £ C.

n n+1

The proof is complete.
For the PDE case we obtain the following

Theorem ([CJSS]) Let h:R + IR, g:R + R be Hilder continuous
functions satisfying the conditions (h1). (g1), (g,). stated in
the introduction and suppose the domain o c R
"geometric condition"

verifies the

(a,) inf Q(¢) > 0
2

where Q($) = (Vo] -« o4 - 2(N-1)¢19¢|H  and H(x) denotes

the mean curvature at y = x of the level surface {yle(y) = ¢(x)}
with respect to the unit normal vectar -ve/|ve]. Then, the
problem {*) possesses an infinite number of solutions

{Un}C:C§+“(§) with uw >0 in 2, du /3v< 0 on 3N and such
that max u, + = and u /max u + ¢ in Ci*u(ﬁ) as n - e

6. Final Comments

As previously mentioned, the proofs in [W,5,LS] of
existence of one solution for (*) are variational ones.

The variational approach to problem (*} is the following.
One considers the Sobolev space [E = HO(Q) and the functional
I:E = R defined by



1.

1{u) = [n(% lvu| 2 - 7 Mu% + hu - Glu))dx = J(u) + N(u),

where

1 2 1 2
Ji{u) = J {5 19ut® ~ S 2 u+hu)dx, u 6 E,
o 2 2

It can be easily shown (under the hypotheses (4), (5) on g) that
16 C1(E,m} with derivative I'{u) 6 E* = H’l(n) given by

I'(u)-v = Jﬂ(vu.vv - k1uv + hv - gf{u)v)dx

for u,v 6 E. So, u € E {is a critical point of I if and only
if u 1is a weak solution of {*). And, therefore, one looks for
the critical points of the functional I.

Now, assuming (as we are) that h is orthogonal to ¢,
we obtain that J is bounded from below on E and, hence, that
the functional I is also bounded from below on E (as G s
T-periodic by (4), (5)}. In the DDE case, Ward [W] shows that
either the functional I attains its infimum m* = infeI{u), or
else there must still exist a critical point at a higher level
c>m*. This critical level is obtained by using a Saddle Point
Theorem of Rabinowit:z [Rz] and, to that end, it is shown in [W]
that I satisfies the Palais-Smale condition {PS} at the level ¢
{i.e, wheneyer fun] = E is a sequence satisfying I(u") * ¢,
I'(un) + 0, then {un} has a convergent subsequence). On the
other hand, for the PDE case {and under more general conditions),
S5e1imini and Lupo-Solimint [(5,LS] also show the existence of a
critical point for 1 by means of a suitable version of the
Saddie Point Theorem of Rabinowitz. And it is explicitly noted
in [S,LS] that I does not satisfy completely the Palais-Smale
condition: mare precisely, I satisfies the (PS) condition at
levels ¢ € R\J(u) where G is a solution of Bu 4 Ju = 4
in Q, u=0 on 30 (recall that h € ¢l); and, moreover, it
satisfies the following condition

12,

PS)' Every sequence {u } < £ such that (v ,6)}. is bounded
n n E

and I'(un) + 0 has a converging subsequence.

It would be very nice (and certainly not an easy task)
to find a2 proof for the infinfte multiplicity result of Schaaf-
-Schmitt [SS] (DDE case} by means of variational methads, Such
a proof, aside from its own interest, might help to decide
whether a geometric condition like (q+) on the domain & s
indeed necessary for the infinite multiplicity result to hold
true in the PDE case. OFf course, besides the main difficulty
elready mentioned that the functional I does not satisfy
completely the condition (PS), one would also have to deal with
the fact that, under conditions (4}, (5}, the eventual critical
levels of 1 belong necessarily to a bounded interval {although
the critical points themselves do not remain bounded). Indeed,
since

I(u} = J(u)+N(u) = J{uy)+N(u)

where Uy = Qu is the orthogonal projection of u onto ¢J‘.

and since N{u} s uniformty bounded, we have that [({u) becomes
unbounded if and only so does J(u1) or, equivalently, if the
projection uy become unbounded (Note that J 1is coercive on
¢J'). On the other hand, if u 6 E s a critical point of I

we obtain

0= I'(u)‘u'l = Ilu'l"é = A]'"}EEZ + (h'g(u}il-'])LZ)

L 5
from which (using that |[lu,||¢ > A lu |2 ¥Yu, 6 ¢ ) we obtain
Ve - 72000 2 1
"u1”E < €, for some constant C independent of u. Therefore,

the critical levels of I remain bounded.
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