\$ 4	\$ P
50	20

INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, RCIENTIFIC AND CULTURAL ORGANIZATION

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS 34100 TRIESTE (ITALY) - P.O B. 586 - MIRAMARE - STRADA CONTIERA II - TELEPHONE: 2240-1 CADLE: CENTRATOM - TELEX 460392-1

SMR 281/28

COLLEGE ON VARIATIONAL PROBLEMS IN ANALYSIS
(11 January - 5 February 1988)

QUASILINEAR ELLIPTIC EQUATIONS WITH DISCONTINUOUS COEFFICIENTS

G. BUTTAZZO Scuola Normale Superiore Piazza dei Cavalieri 7 56100 PISA ITALY

These are preliminary lecture notes, intended for distribution to participants. Missing or extra copies are available from the College secretary.

QUASILINEAR ELLIPTIC EQUATIONS WITH DISCONTINUOUS COEFFICIENTS

Lucio BOCCARDO

Giuseppe BUTTAZZO

Università Roma I Piazzale Aldo Moro, 2 00185 ROMA (ITALY)

Scuola Normale Superiore Piazza dei Cavalieri, 7 56100 PISA (ITALY)

1. Introduction

In this paper we consider quasilinear elliptic equations of the form

(1.1)
$$\begin{cases} -D_i(a_{ij}(x,u)D_ju) = f & \text{in } \Omega \\ u \in H_0^1(\Omega) \end{cases}$$

(the summation convention over repeated indices is adopted) where Ω is a bounded open subset of \mathbb{R}^n , $f \in H^{-1}(\Omega)$ is given, and the coefficients $a_{ij}(x,s)$ satisfy the standard ellipticity and boundedness condition

(1.2)
$$\begin{cases} \lambda |z|^2 \le a_{ij}(x,s)z_iz_j \\ |a_{ij}(x,s)| \le \Lambda \end{cases}$$
 (0<\lambda \le \Lambda \le \Lambda

for almost all $x \in \Omega$, $s \in \mathbb{R}$, $z \in \mathbb{R}^n$.

Existence results for problem (1.1) are well-known in the literature (see for instance [6], [7]) when the coefficients $a_{ij}(x,s)$ are functions of Carathéodory type (i.e., measurable in x and continuous in s). However, equations of the form (1.1) with discontinuous (with respect to s) coefficients $a_{ij}(x,s)$ occur in many problems of physics. For example, if Ω is seen as a thermically conducting body, u its temperature, and f the density of heat source, the equation (1.1) governs the heat conduction in Ω , and the $a_{ij}(x,s)$ are the conductivity coefficients which may depend discontinuously on the temperature (for instance, in liquid-solid phase transition).

A simple case of discontinuous coefficients for which the existence of a solution of problem (1.1) holds, is when (see [3])

$$a_{ij}(x,s) = \alpha_{ij}(x) b(s)$$

where $\alpha_{ij}(x)$ and b(s) are measurable functions satisfying (1.2). In fact, setting

$$B(s) = \int_{0}^{s} b(t) dt$$

and recalling the chain-rule for derivation (see [8],[10])

$$D(B(u)) = B'(u) Du$$
 for every $u \in H^1(\Omega)$.

it is enough to take $u_{\mathbf{z}}B^{-1}(v)$, where v is the solution of the linear elliptic problem

$$\left\{ \begin{array}{ll} -D_i \Big(\alpha_{ij}(x) D_j v \Big) = f & \text{ in } \Omega \\ v \in H_0^1(\Omega) \end{array} \right. .$$

Unfortunately, this simple argument cannot be applied to general equations of the form (1.1); thus, our approach is based on two steps: the first one consists in (Section 2) proving that, under some mild assumptions on $a_{ij}(x,s)$, the operator

$$u \to D_i(a_{ij}(x,u)D_{j}u)$$

is weakly continuous between $H^1(\Omega)$ and $H^{-1}(\Omega)$, and the second consists in (Section 3) proving that this weak continuity implies the surjectivity.

In the last section, we give a simple one-dimensional example to show that the sole hypothesis (1.2) is not sufficient to get the existence result for problem (1.1).

2. Weak continuity of quasilinear operators

In this section we consider operators $A{:}H^1(\Omega){\to}L^2(\Omega)$ of the form

(2.1)
$$Au = a(x,u)D_iu$$

where Ω is a bounded open subset of \mathbb{R}^n , $j \in \{1,...,n\}$ is an integer, and $a: \Omega \times \mathbb{R} \to \mathbb{R}$ is a function. We denote by \mathbb{R}_k and \mathbb{L}_k the Borel and Lebesgue σ -algebras in \mathbb{R}^k respectively; if $E \in \mathbb{L}_k$ we denote by |E| the Lebesgue measure of E. Our main result is the following.

THEOREM 2.1. Assume that:

- (2.2) the function a(x,s) is bounded and L Signaturable;
- (2.3) for every $\varepsilon > 0$ there exists a compact set $K_{\varepsilon} \subset \Omega$ such that $|\Omega K_{\varepsilon}| < \varepsilon$, and for every R > 0 the family of functions $\{a(\cdot,s)\}_{s \in R}$ is equiconstinuous on K_{ε} .

Then, the operator A defined in (2.1) is sequentially weakly continuous between $H^1(\Omega)$ and $L^2(\Omega)$.

<u>Proof.</u> Arguing as in [2] we may assume that a(x,s) is a Borel function, so that the operator A is well-defined between $H^1(\Omega)$ and $L^2(\Omega)$. It remains to show that for every $v \in L^2(\Omega)$

Since a(x,s) is bounded, we may restrict ourselves to the case $v \in \mathfrak{D}(\Omega)$; moreover, changing a(x,s) into -a(x,s), it is enough to prove that for every $v \in \mathfrak{D}(\Omega)$ the functional

$$F(u,\Omega) = \int_{\Omega} v(x) \, a(x,u) D_j u \, dx$$

is sequentially weakly lower semicontinuous on $H^1(\Omega)$. Fix $v \in \mathfrak{G}(\Omega)$ and set for every m > 0

$$f_{m}(x,s,z) = \{v(x) a(x,s)z_{i}\} \vee (-m)$$

$$F_{m}(u,\Omega) = \int_{\Omega} f_{m}(x,u,Du) dx .$$

By Theorem 4.15 of [1] the functionals F_{m} are sequentially weakly lower semicontinuous on

4

 $H^1(\Omega)$; moreover, if $u_h \rightharpoonup u$ in $H^1(\Omega)$ we have denoting by c an arbitrary constant

$$(2.4) F_{m}(u_{h},\Omega) \leq F(u_{h},A_{m,h}) \leq F(u_{h},\Omega) + c \int_{\Omega-A_{m,h}} |v| |Du_{h}| dx \leq \\ \leq F(u_{h},\Omega) + c \Big[\int_{\Omega-A_{m,h}} |Du_{h}|^{2} dx\Big]^{1/2} \leq F(u_{h},\Omega) + c |\Omega-A_{m,h}|^{1/2}$$

where $A_{m,h}=\{x\in\Omega: v(x) \ a(x,u_h(x))D_ju_h(x)\geq -m\}$. We have

$$|\Omega - A_{m,h}| \leq \left|\left\{c |v(x)| |Du_h(x)| > m\right\}\right| \leq \frac{c}{m} \int\limits_{\Omega} |v| |Du_h| \, dx \leq \frac{c}{m} \ ,$$

so that, by (2.4)

$$F(u,\Omega) \, \leq \, F_m(u,\Omega) \, \leq \, \liminf_{h \to \infty} F_m(u_h,\Omega) \, \leq \, \liminf_{h \to \infty} F(u_h,\Omega) + c \, \, m^{-1/2} \ ,$$

and this achieves the proof.

REMARK 2.2. Note that hypothesis (2.3) is satisfied for instance in the following cases:

- (i) a(x,s) is measurable in x and continuous in s;
- (ii) $a(x,s)=\alpha(x)b(s)$ with α and b measurable functions.

REMARK 2.3. By Theorem 2.1 every operator of the form

$$\mathsf{A}\mathsf{u} = -\mathsf{D}_\mathsf{i}(\mathsf{a}_\mathsf{ij}(\mathsf{x},\mathsf{u})\mathsf{D}_\mathsf{j}\mathsf{u})$$

is sequentially weakly continuous between $H^1(\Omega)$ and $H^{-1}(\Omega)$ provided that the coefficient: $a_{ij}(x,s)$ satisfy hypotheses (2.2) and (2.3).

REMARK 2.4. If a(x,s) is only measurable in s and continuous in x, the operator A in (2.1 may be not sequentially weakly continuous. For a counterexample we refer to [1], Section 5 Example 6.

3. A surjectivity result

In this section X denotes a Hilbert space and $T:X \rightarrow X$ is a mapping. Our surjectivity result is the following.

THEOREM 3.1. Assume that

- (i) T is sequentially weakly continuous (i.e., $x_h \rightarrow x \Rightarrow T(x_h) \rightarrow T(x)$);
- (ii) there exist a>0 and b≥0 such that

$$\langle T(x), x \rangle \ge a||x||^2 - b$$
 for every $x \in X$:

(iii) there exists c>0 such that

$$||T(x)|| \le c(1+||x||)$$
 for every $x \in X$.

Then T is surjective.

<u>Proof.</u> We use an idea of Stampacchia (see [9]). Let $y \in X$; we want to solve the equation T(x)=y or, equivalently, the equation

$$(3.1) x + t(y - T(x)) = x$$

for some t>0. Denote by S:X -> X the mapping

$$S(x) = x + t(y - T(x)).$$

Then, we are looking for a fixed point of S. We have for every x∈ X

$$||S(x)||^2 = ||x||^2 + t^2 ||y||^2 + t^2 ||T(x)||^2 + 2t\langle x, y \rangle - 2t\langle x, T(x) \rangle - 2t\langle y, T(x) \rangle \le$$

$$\leq ||x||^2 (1 + t^2 c^2 - 2at) + K(t)(1 + ||x||)$$

where K(t) is a suitable constant depending on t. Taking $t=\frac{a}{c^2}$ we get

$$||S(x)||^2 \le ||x||^2 \left(1 - \frac{a^2}{c^2}\right) + K(a/c^2) \left(1 + ||x||\right)$$

so that

(3.2)
$$||S(x)|| \le c_1 ||x|| + c_2$$

for suitable constants c_1 and c_2 with c_1 <1. By (3.2), there exists R>0 such that

$$||x|| \le R \implies ||S(x)|| \le R$$
.

6

Set $B_R = \{x \in X : ||x|| \le R\}$; by hypothesis (i) the mapping $S: B_R \to B_R$ is weakly continuous, so that by the Schauder-Tychonoff fixed point theorem (see [4], page 74) it admits a fixed point $x_0 \in B_R$ which is a solution of equation (3.1).

REMARK 3.2. A result similar to Theorem 3.1 holds for mappings $T:X\to X'$ where X' is the dual space of X. In fact, if $J:X\to X'$ denotes the Riesz isomorphism, it is enough to apply Theorem 3.1 to the mapping $J\cdot T$.

4. The existence result

Let Ω be a bounded open subset of \mathbb{R}^n and let $f \in H^{-1}(\Omega)$; consider the problem

(4.1)
$$\qquad \qquad \left\{ \begin{array}{ll} -D_i \left(a_{ij}(x,u) D_j u \right) = f & \text{in } \Omega \\ u \in H_0^1(\Omega) \ . \end{array} \right.$$

On the coefficients $a_{ij}(x,s)$ we assume that:

- (4.2) every $a_{ij}(x,s)$ is measurable in (x,s) and satisfies property (2.3);
- (4.3) the ellipticity and boundedness condition (1.2) is satisfied.

By using Theorem 2.1, Theorem 3.1 and Remark 3.2, we obtain immediately the fellowing existence result.

THEOREM 4.1. Assume (4.2) and (4.3). Then, for every $f \in H^{-1}(\Omega)$ problem (4.1) admits d least a solution.

REMARK 4.2. Problems with lower order terms and non-zero boundary condition, like

8

$$\begin{cases} -D_i \Big(a_{ij}(x,u) D_j u \Big) + D_i \Big(a_i(x,u) \Big) + b_i(x,u) D_i u + a(x,u) = 0 & \text{in } \Omega \\ u - \varphi \in H_0^1(\Omega) \end{cases}$$

(with $\phi \in H^1(\Omega)$), can be treated in a similar way provided the coefficients $b_i(x,s)$ are measurable in (x,s) and satisfy property (2.3), $a_i(x,s)$ and a(x,s) are Carathéodory functions, and the usual bounds on b_i, a_i, a are satisfied (see for instance [6]).

REMARK 4.3. In [5] it is proved that the quasilinear structure $-D_i(a_{ij}(x,u)D_ju)$ is a necessary condition for the sequential weak continuity of Leray-Lions operators.

When condition (2.3) is not satisfied, in general the existence for problem (4.1) may fail, as the following example shows.

EXAMPLE 4.4. Let n=1, $\Omega=]0,1[$, and

$$a(x,s) = \begin{cases} 1+x & \text{if } s=x \\ 1 & \text{if } s\neq x \end{cases}.$$

The function a(x,s) is a Borel function which does not satisfy property (2.3). Consider the problem

(4.4)
$$\begin{cases} (a(x,u)u')' = 0 \\ u(0)=0 \quad u(1)= \end{cases}$$

and assume by contradiction that a solution u exists. Setting

$$A = \{x \in \Omega : u(x) = x\},$$

by (4.4) we obtain

(4.5)
$$(1+x)1_{A}(x) + 1_{\Omega-A}(x)u'(x) = c$$
 a.e. in Ω

where c is a suitable constant and 1_A , $1_{\Omega-A}$ are the characteristic functions of A, Ω -A respectively. By (4.5) we have

$$1+x=c$$
 a.e. in A,

so that A is negligeable, and so

$$u'(x) = c$$
 a.e. in Ω .

The boundary conditions in (4.4) then imply that u(x)=x, which contradicts the fact that A i negligeable.

If instead of equations we deal with elliptic systems, the existence result of Theorem 4. may fail, even if the coefficients do not depend on the x variable. In fact, the following exam ple holds.

EXAMPLE 4.5. Let n=1, N=2, $\Omega=]0,1[$. Consider the problem

$$\begin{cases} (a(u,v) \ v')' = 0 \\ (b(u,v) \ u')' = 0 \end{cases}$$

with the boundary conditions

$$u(0)=0$$
, $u(1)=1$, $v(0)=0$, $v(1)=1$.

Take

$$b(u,v) \equiv 1$$

$$a(u,v) = \begin{cases} 1+|u| & \text{if } v=u \\ 1 & \text{if } v\neq u \end{cases}.$$

Then we have u(x)=x, and v must satisfy the equation

$$(a(x,v) v')' = 0$$
 with $v(0)=0$, $v(1)=1$,

which, by Example 4.4 has no solution.

References

[1] L.AMBROSIO: New lower semicontinuity results for integral functionals. Rend.Accad. Naz.Sci.XL Mem.Mat.Sci.Fis.Natur., (to appear).

- [2] L.AMBROSIO & G.BUTTAZZO & A.LEACI: Continuous operators of the form $T_f(u)=f(x,u,Du)$. Preprint Scuola Normale Superiore di Pisa, Pisa (1986).
- L.BOCCARDO & F.MURAT: Remarques sur l'homogénéisation de certains problèmes quasi-linéaires. Portugal. Math., 41 (1982), 535-562.
- [4] J.DUGUNDJI & A.GRANAS: Fixed Point Theory, Polish Scientific Publishers, Warszawa (1982).
- [5] D.GIACHETTI: Controllo ottimale in problemi vincolati. Boll.Un.Mat.Ital., 2-B (1983), 445-468.
- [6] O.A.LADYZHENSKAYA & N.N.URALTSEVA: Linear and Quasilinear Elliptic Equations, Academic Press, New York (1968).
- [7] J.LERAY & J.L.LIONS: Quelques résultats de Visik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France, 23 (1965), 97-107.
- [8] M.MARCUS & V.J.MIZEL: Absolute continuity on tracks and mappings of Sobolev spaces. Arch.Rational Mech.Anal., 45 (1972), 294-320.
- [9] G.STAMPACCHIA: Formes bilinéaires coercitives sur les ensembles convexes. C.R. Acad.Sci.Paris, 258 (1964), 4413-4416.
- [10] G.STAMPACCHIA: Equations elliptiques du second ordre à coefficients discontinus. Séminaire de Mathématiques Supérieures n° 16, Les Presses de l'Université de Montréal, Montréal (1966).