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ABSTRACT
we study the multiplicity of solutions for semilinear elliptic systems as

well as Hamiltonian systems, in which the nonlinear terms are periodic in
certain variables. The cuplength for cohomology rings of the torus is used.
Our results generalize and unify several recent works by Conley-Zehnder,
Rabinowitz, Mawhin-Willem, Pucci=-Serrin etc. In particular, the resonance

problems and indefinite problems are studied.
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§1. Introduction

Inspired.by the work of anley and Zehnder [3] on the solution of the
Arnold conjecture, the author presented a different proof of their statement,
and noticed that the periodicity of the Hamlltonian functien i8 the essence of
the occurrence of multiple periodic solutions [1-2]. The main purpose of this
paper 18 to apply the following theorem obtained in [1] to varicus different
problems which are studied recently by many authors in dealing with periodic
nonlinearities.

Lot H be a real Hilbert space, and let A be a bounded self-adjoint
operator defined on H. According to its spectral decomposition,
A= H+ [ ] HD ® H_, where H,, B,, and H_ are invariant subspaces
corresponding to the positive, zero, aﬁd negative spectrum of A
teapectiyely.

Theorem 0. Suppose that A satisfles the following assumptions
(Hy) Ay 4 A]: has a bounded inverse on H,,
t2) v 8 aimti. e wy) < -,
Let V' be a 2 compact n-manifold without boundary, and let
[ Y 4 clir x v*,R'") be a function having a bounded and compact differential
dg(x). Agsume that

g(Pox,v) + = an IPuxl +w 1f Qdim By F O
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wvhere Po ig the orthogonal projection onto Hg« Then the function
£x,9) = 3 (Aex) + glx,v)
poesesses at least cuplength (VM) + 1 gistinct eritical points.

I further, we assume that g ¢ cZ(n x V,k'}, and that f 1s
nondegenerate, then f has at least E aitvnl critical points, where
84(V") 1is the 1N Betti number of 3:? 1=0,1,00.,n.

Remark. In the statement of Theorem 8.3 in {1], the function g was
assumed to be Cz, however, in the proof of the first conclusion, c! is

sufficient.

Most recent studles only concerned with the case where A lg positive

definite, we shall give more applications where A ia semidefinite, i.e., the

negative eigenspace as well as the null space are finite dimsnsional. They

are used to study semilinear elliptic systema and the periodic solution

problems for Z“d order ODE. Theorem 2 generalizes and unifies the results due

to Mawhin [7], Mawhin and Willem [B), Li f{6], Jiang (S5), Franks {4], Pucci and

Serrin [9,10] and Rabinowitz [11].

Periodic solution problems for Hamiltonian systeog reduca to case where
A is unbounded and indefinite. Theorem 4 is a generalization of Theorem 2.
It implies the early results due to Conley and Zehndar [3] as special cases.
In particular, the multiple periodic solutions of Hamiltonian systems with
resonance are studied, where the Hamiltonian functions are only periodic in
certain variables.

We thank Prof. P. H. Rabinowit:z for his invitation to the Center for the
Mathematical Sciences, Univeraity of Wisconsin-Madison, and for his very kind

conversations on his interesting preprint [11].
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§2. Semi-definite functionals

A direct consequence of Theorem 0, is the following:

Theorem 1. Suppese that A 18 a self—a&joint operator satisfying (H,)
and (Hz), defined on a Hilbert space H. Supposa that ¢ ¢ c'(H.R‘) ls a
function having a bounded and compact differential d¢, and satisfies the
following periodicity condition:
{r) 4 Rgianu,m, ¢ ker A, they are linearly indepcndent, and

ATy, 404,Ty) ¢ K such that

T
#x + jzi ByTiey) = olx),  ¥x ¢ H, ¥(my,.a0um) ¢ 25

and the resonance condition:
(LL) #(x) + == Lf Ixl + @ and x ¢ ker(A) N {eq, ..., }) .
Then the equation
Ax + dg(x) = ¢ {2.1)

possesses at least r + 1 distinct solutions.

If further, ¢ e c2(H,R') and all solutions of {2.1) are nondegenerate,
then {2.1) posmesses at least 2¥ solutions.
EEéSﬁ! We consider the following functional

J(x) = %-(Ax.x) + $(x) .

According to (P},
v T
x.+ ] myTyeq) = Iix),  Wimpee..m) € 25
-
Bowaver, we have an orthogonal decomposition
H = ker A ® tker )}

~zo@Y® (ker A}
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where 2 = span{eq,...,e.}, and Y =~ 2l f ker{A). If we restrict ourselves

on the quotient space
" % (Y & (ker &)1}

where TF = T/ Ty, e, ), ZHUT e, To) o= {(m,T,..-.,mtTr)](m1,...,mr) €
ZzF};, the functiocnals .

fla,v) = J(x} ,
and

glu,v) = ¢ix) ,
ars well defined, where (v,u) ¢ TF x (Y @ (ker A)l) and x = u + v. The
critical point of f is a solution of (2.1). Since f and g satiafy all)
conditions in Theorem 0 with Hy =Y and Vv = TF, the conclusion follows
directly. We present here an application.

Theorem 2. let M be a compact manifold without boundary, let
(‘lj{x)) be a symmetric (N - r) matrix valued continuous function defined
on M, and let

ker{=-A « I, .+ (234(x)}e) = span{gqsess,qy)
) where 0 < r < N are integers. Assume that F € C‘(H x RN.R') satisfles the

following assumptions

T
(1) Foou+ | myTie) = Fu)  Vixou) e Mx B, Wimg,.oom) ¢ 2
1=1

where e, = (0""ilﬁ""u)' 1= 1,2.00,x, and (Ty,es.,T;) ¢ B is given,

£2) aF (x,a)n - <=,
¢ TR )
k k
(3} Ftx, | tye5x)) v+ as |t| = (§ tg,ﬂ/z . -,
=1 3=1

and that h ¢ C(M,KY), h = (hy,...,hy) satisfies
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[ hyix)ax = o, i=1,2,...,r,
M

.
and hj(x) =0, 3=r + 1,...,M. Then the elliptic system
=40 + A(x) « u - Fulx,u) + hix) =0 on M

has at least r + 1 golutions, where
AN

o
ax) = ) .
(2350} yun

Proof. Let H =W ' 2(M,®), A= 1, ¢ (-4)"%5(x), and

#u) = [ <Flx,u(x)) + <hlx) « ulxl>y .
L

Obviously,
ker A = apan{e‘,...,er, LTTEYRTE 1% I
and ¢ ¢ C1(H.R‘}, having a bounded and compact differential, saticfies the
conditicns (F) and (LL).
The conclusion follows immediately from Theorem 1.
Remark 2.1. In Theorem 2, we may replace the compact manifold M by a

&mooth bounded domain, f§ in K', 1in aadition to the Neumann boundary value

- condition
Ju
24 =0,
~ v a3

where v is the cutward peinting normal of the boundary 3q.
Example 2.1. M = s, r= N =1, This is just the periodic solution
problem for ODE
‘ S+ Fy(t,u) =h(e) (2.2)
where P ¢ CT(S1 x R‘.R‘) is periodic in u, and h ¢ c(s‘.n‘) satisfies

the zero mean condition f hit}dt = 0. Under these conditions, (2.2) has at

s1

least two solutions. It way shown by Mawhin and Willem {8], Ll [€] and Franks

[4}.
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Example 2.2. The case M = 51, and r = N. ‘The correaponding ODE
system was studied by Jiang (5] and Rabinowitz [11). In thls case, the
following systém posseggses at least N + t golutions

: 4+ lt,u) =hie) (2.3)
whe;e Peclts! x .2y 1 =
€ +R'} s periodic in o = (uy,...,uy}, and

h ¢ c(s', @), satisfies [ h(t)dt = 9.

s1

Example 2.3. The case M 8'y r <N, with (a3406))(yrynqneg)

positive definite. The ODE system was studied by Mawhin [7]. The system
4 - A(t)u + Fyt,u) =0

possesses at least r + 1 solutions, provided that F ¢ C‘(S1 x l”,h‘; is

periodic in the first r variables (Uqsevspupd, and lru{t,u)l - $ -

L
Exarple 2.4. The case M =T, r=aN= 1. The problem was atudied by

Puccl and Serrin {9,10]. The following equation .

bu + Fy(x,3) = 0 on T
possesses at least two sclutions, provided that F ¢ c‘(T“ x R‘,R‘l, and is
periodic in u.

The Neumann problem for the elliptic equation (in case r = N = 1) was
studied by Rabinowitz [11].

Rc;ark 2.2, All the above examples deal only with functionale bounded
from below, however, Theorem 2 implies more than that. The improvements are
in two directions:

{t} The functional is semi-definite, l.e., 1t is bounded from below
except on a Finite d}menuional subspace.

(2) The resonance case is studied, it only happens when r < n.

§3. 1Indefinite functionals

In this section, we shall extend the results of §2 ro indefinite
functionals. The saddle point reduction argument will be applied.

Let H be a Hilbert space, and let A be a self-adjcint operator with
domain D(A) C H {unbounded). Assume that F is a potential operator with
- 4 C‘(H,R'l, Fw=dé and $(6) = 0. The following assumptions are made
(A} % ¢ <0 <8 such that a,8 £ g{A}) and of(A} N [a,B] corsists of at
most finitely many eigenvalues of finite multiplicities.

(F) F is bounded and Gateaux differentiable, with

1ar(u) - &2 By B8, Vu ¢ H.
{D) For emall ¢ » 0, with -¢ ¢ o(A), let V¥ = D{|leX + a}}"2), assuma
that ¢ ¢ c2(v,R').

Thecrem 4. Suppose that
{P} 3 ey,...,e; € ker A, they are linearly independent, and jJ {(TyeeeasTe) €

K, such that

-

4
#lx + ] myTyes) = #(x),  Vimg,....m) € 2, VX € H.

=1
(LL) #(x) + ta if x| + = V¥x ¢ ker AN spﬂn[e,,...,er}ln
Then the eguation

Ax + #'ix) =0
has at least r + 1 distinct solutions.
Proof. A saddle point reduction procedure is applied. Let
B

to ]
pp=f ag, Ppo=f dE, P_=[ dF
a 8 -

where {E;} 18 the spectral resolution of A, and let

e



T r r r

Hy = PoH, M, = B.H az + 121 Tyes) = 3 (Ax(z + 321 Tiej), xiz + 121 Tyeg)) + olxiz + 3{‘ Tye,))
and for small ¢ > 0, -¢ £ olA), let
Vo = Mer + M7V 3y, v, = Jter + my|"V 2, | - 3 tax(z),x(2) + E Tyey) + dlx(z) + § Tyey)
For mach u ¢ H, we have the decomposition =t =
‘ueug b+ =3 (Ax(z1,x(2)) ¢+ etxtzn)
with Uy € Hy, Uy € Hyo Let x = X + xpg + x_ ¢V, vwhere = af{z) .
xg = et + ™2, k= [rer e m "V, L ' 3* a satisfies the (PS) condition on T x (Y 0 N(A)) 0 v, where ¥ = n(a)
We define a function on the finite dimensional space Vg as follows N spnn{e1,.--,er}1.
a(z) '% {Ax(z),x(z)) + #{x(z)) Claim: Suppose that ({zK} is a sequence along which
vhere x(z) = x (z) + x_{z) + 2, z = Xy € Vg, and x,(z} are the solutiens (a(zk)} is bounded, and la'tzk)l =o(1) .
of the equations According to Chang [?, p. 10S],
Xy = (eI + AT (el + Fiix, + x_ + 2) . 1ax(z*} + Fx (201, = o1 .
We shall prove that Let Q be the orthogonal projection onte ¥, which is considered as a

subspace of the Hilbert space H = Y @ N(A)l. Thus on the space H,

r
1e xt{z + X 'I‘jejl - x:(z)g ¥z r Vo- (I - Q)K(Zk) - _1-1‘1 - Q)F(X(Zk)) + o1},
=1
since F is bounded, 11(I - Q)x(zk)l is bounded. Noticing
In fact,
1
r $(oxtz*)) @ otx(zR)) - f (Fixy (2%0),(T - Qix(¥)iat
- Pulel + P)x, + x_+ z+ j{1 Tyeq) = Pplel + Flix, + x_ + z}) . ] -
' 1
= atz¥) = L ) x(K)) - [ Fexe (XD - oixtzEae
therefore 2 0

r whers
T mdn) ez e |oTie)
I=? . x(z) = {(1 - £}I + tQIx(z) ,
r and
2* a{z + I Tjej) - afz).
=1 (Rx (%), x(z¥)) = (Ax(z%), (I - QIx(z¥)) = (-Fix(2%)) + o(1),(1 - Q)x(zX}) ,
Claim: Q(Qx{zk)) pust be bounded. According to the condition {LL), Qx(zk) is

-g- -9=



-bounded., The compactness of z¥ now follows from the boundedness of x{zX)

~

= (Fgetereoebpls G = lggyqe---.qp)

and the finiteness of the dimension of Vor . .
p= (pT+1l'vv'P‘,‘)l q= (qT"'"”"qN, .

4* If we decompose Vg into span{eq,-.0,e. )} 8 (Y © N(;\)l) n vy,
1

We assume

2=v+w, {v,w]l ¢ span{eq,....e.} ® (Y & R(M)" )NV

o’ (1} &A(r}, B(t‘} C{t) and DIit) are symmetric contlnucus matrix function

A Ay
and let on s, of order (5 - 1) x (5 - r), {(T=-8)x (T=-8), {N=-T)x (N -T)

1
glw,v) 5 (RE(W + v),Edw + v)) + d{x(w + ¥)) and (M= T) x (N -T) respectively. Let A = [ Alt), and B = j B(t) be

vhere s‘I sl

Elz} = x.(z) + x_(z) invertible.

R 2. gt { =
then g is well defined on T x (Y @ N(AJl) N vy, and (11) B ¢ c2({s? x R, RY) is periodic in the following variables B,q.p.q,

dglw,v) = Por(x(w + v)) and H* is bounded.

which is bounded and then is compact on finite dimensional manifold. The (111) let span(yy,....ep) = ker(-J at " (Clt) 8 D(E))) where
function z i : M ° “Tyr
a{z) now is written in the following form Ju N , and gy ...,py are linearly independent. And
a{w,v) = %—lnw.w) + giw,v) . N-r °
Hoticing that ¥ 1is bounded, 1 . o T
g & bounded, 1£(z)1 is always bounded. If wa denote .y B(t, Z Tj’j) + ta as |Tl - (r% 4 eee 4 15)1/2 ..
3=

the projection of w conto Y we have

1.7 -
gly.v} --% (RE(Y + w) 6y + v)) + 8(y) + {QUE(y + ¥) + ¥y + ¥v) = §(y)] . (XV) c.d e CISLRY), with <= (oy,..peq)y @ m {dq,.e0.dg) and
The first term and the third term are bounded, tharefore I1 cylt) = IT dyith = 0,
1} s
gi{y.v) + to am tyl + = .

The function al{w,v) satisfies all assumptions of Theorem 0. Thecrem 4 is 1= Yaeoor, 84+ 1,0..,T, J»t,...,8.

proved. We define a Hamiltonian function as fcllows

-~

T R I 1 . . . .
Now we study the periodic solutions of the Hamiltonian systems, in which Ble,pa) % 5 ALIp » p+ 5 BI)G » G+ 5 (CIEIP + p + D(L)T + q)

the Ramiltonian functions are pericdic in some of the variables. T o
e ¥ + 1 (eg(tipy + da(t)qy) + Hit,p.q} -
We use the following notations: p,q ¢ RV, =1
P = (Prceesbuls T = (qyreeeeagls lcrcactcn, Theorem 5. Under conditions (I)-(IV), the Hamiltonian system
d

- - — - 1
p™- (P|;--.apr)p q™ (Q1,-o.,qr) . (us) =J dat z “z(tlz'l te8B

bad e - “l
P = (pryqe---1Pgls 9= {Qryqerersag) » has at least r + T + 1 periodic molutions, where z (p/q) ¢ ®?

«{=
-tl=



Proof. Let

Alt)

cit}
A(t) = 0

Bit}
bt}

and let [the subscripts on J coincide with those on p)

4
A= (= at Alt)h)

) i ACE) A ° v cit}
“(a5) e (-J « ( a)) ’ (-J = -( Bm)) ) (-J o -( D“’))'

We have
a Alt)
(Bod) € ker|-F vl ’
t [¢]

q = A(t)p
oy h
p=~0,
~ t )
=/ Mslds - T+ 3, with J(2n =30 ,
- many 0
5 =3 ’

(i.e., with X « € = p). According to the assumption I, & = §. Wa have

(=%

kex[-F =- - = {{g,d)|d ¢ B*"F) ¥ BT
dat o

Similarly,

ker(is

e

0
-( )) - (1&,0)]|8 ¢ RT°8} = gT-3 |
B(t)

Thuse

kertA} = B2¥ @ BT @ W75 & apan{ey,... e} -

-12-

olz) = [ [H(t,z(e)} + ‘E e (£)psE) + ag(tiquee)l}at .
s1 i=1

Then all the assumptions (A}, (F), (D), (P) and (LL) are satisfied. The proof
is complete. N

Example 3.1. If the Hamiltonian function H ¢ cz(s‘ x RzH,h1) is
periodic in each variable, then (HS) has at least 2N + 1 periodic solutions.

This is the case r =3 = T = N,

This result related to the Arnold conjecture, was first obtained by
Conley and Zehnder {3], see also Chang [2].

Example 3.2. If H ¢ c?is! x RZN,R1), where M is periodic in the
components of g, and that there is an R > @ such that for |p| » R,

H{t,p.q) -%Hp +ptasp

where a ¢ B, and M 15 a symmetric nonsingular time independent matrix,
then the corresponding (HS) possesses at least N + 1 distinct periodic
solutions.

This ie the cage r = 0, 5= Ts=N.

This is8 a reault obtained by Conley and Zehnder [3), see also P. H.
Rabinowitz [11].

Example 3.3, ILet H ¢ c2(s? x ri,R1) be periedic in (py.,qq)+ Assume
that T R > ¢ sach that

1 / 2 2
H(E,py.P2,q109p) ~ 3 tcp? + aad) ¢ a/p; + q

for /p§ + q: > R, whera cd = x2 > 0 for some X ¢ 2, and A > 0. Then

the correaponding (HS) possesses at least 3 perlodic sslutions.

13-



1 2 /
In fact, H(t.Py,p2.q1,q2) = 3 costp; + A/1 4 pl

2
c 0 . for ‘lpzl ? R, where A > 0 is a constant, then the corresponding (HS)
ker{ ~J EE - = span{ (- / g-sinkt,coskt),( v % coskt,sinkt]]
0 d poesesses at least 4 periodic solutions.
it tollows In fact, .
‘ d 2 2 ! 2 2 ' a - / 2
max[> 1HAT 4 23) > T (-Aysinkt + djcoskt)? + (A coskt + Xpminkt) HIE,PyeP,s9,,q) = s W1 +c” v ta, a8 [c| + =,
d 2 2 .
> wmin[ 1lg + a9 . '
Therefore
- /3 .
H(t,0, - (—l1slnkt + Azcoskt),o,(x1coskt + Aysinkt) )
> minf{/ % ,T]Jlf + Ag + 4=, Or + -= ,
as Jlf + Ag + @,
Remark. In the assumption (I}, if the operators A and B are
singular, then
(ed) ¢ ker|-J - - <==> P ¢ ker X, g~ A(s}sp+d. .
2] Q
.
Thua, ’
a Ate) - -t T ~
ker -EE‘ - {8, &)|d ¢ B°T) @ {(c,[ Ais)ds €)|C ¢ ker A},
o] 0
Similarly,
“a ° t L. .
kex| - = - = {(2.0)]|2 ¢ ®75} @ ((] B(n)dsd,d)|d ¢ ker B).
dt
B(t) 0
" In order to apply Theorem 5, the assumption YII is replaced by g
n - t - . t ~ ~ m ‘.
H(t,c + [ A(s)dsc + [ Bleldsd +d+ ] Tieylt}) » tm ,
[ 0 4=1 .
Ld - o~ ’ A - -
as 2] + |d] + |1] + », where T ¢ ker A, A c ker B, and 1 ¢ . The same
theorem holds,
Example 3.4. Let H ¢ ¢2(5' x 8%, k") be periodic in (Pys91,92)
Assume that 3 R > 0 sguch that
-1d- .
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