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ABSTRACT

The existence and partial regularity of the Nash point equilibria for a

pair of multiple integrals

J(u,v) = [ Fix,u,v,%u,v)dx ,
Q

K(u,v} =  Glx,u,v,Vu,¥vidx ,
Q

are studied.

The conditions as well as the results are similar to those for local

minima obtained by Acerbi, Pusco and Giaguinta, Giusti.
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§1. Introduction

The problems of the existence and the reqularity of the local minima are
of fundamental importance in the theory of the calculus of variations.
Although there has been a long history, several remarkable contributions
appeared in recent years. Among them, I would like to mention two results in
thege directions.

(1) The existence of a local minimum of the variational integral

J(u} = [ fx,ulx),Vulx))ax for u e worF(a,RY)
Q

where Q C B! is a boundad open gét, 1 dr < w, and N is an integer. The
function f is assumed satisfying

I. £:0x gl R‘, 15 a Caratheodory function, with the growth
condition

|fix,p.P)| < atx) + ctlp| + |[PDT ,

where a 18 nonnegative, and is in L‘(n}, and € > 0 1is a constant.

IX. ({Coerciveness) 3 constants Cq, X 2 0 such that
cy|P{¥ - x < £(x,p.P).

Under these conditione, a minimizing sequence exists, and possesses a
weakly convergent subsegquence. If we know that J i3 sequentially weakly
lower gemjcontinuous (swisc in short), then the local minimum exists. The

following result due to Acerbl and Fusco [1] gives an answer to the swisc.
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Theorem 0.1 {Acerhi, Fuscol. If f 1is a nonnegative function satisfying
(1} and

T11. (Qu&éiconvex1ty in the Mocrey sense) For a.e. x ¢ 1, Vp ¢ W,.
V) C 01, bounded open subset, WVw ¢ C:lﬂ,RN)

fix,p,PImest0) < | f{x,p,F + Vwly)lay vp ¢ BN |
0

Then J is swisc.

(Actually, (III) is also a nmecessary condition for swisc.)

Therefore J possesses a local minimum, if (I), {II) and (III) hold.

(2} Regularity. The following results were obtained by Glaguinta and
Giusti [4]. '

Theorem 0.2. If £ ;atlsfies (1) and (II), and if uy 13 a loeal
minimum of J, then ug ¢ wf;z(n,lnl for some & > r.

Theorem 0.3. Assume that {hﬁa[x,p), 1,3 = Y ..0pn, hyk = 1,..4,8}) are
bounded continuous functions in I x RN. with léa = Agé, satisfying

A0 pIEgEyntink > ALE)2[nl2 wiem) e R < RY, A0,
and
[6]2 - x < ttxop,) = ML, piehel ¢ clpf? ¢ x,

VP = {PE} ¢ "N,  for some constants C, K> 0. Let u ¢ w{gg(n.lﬂl be &
local minimum of J, then T an open set Ry € Q@ such that u ¢ c°'“(no,n")
for every o < 1. Moreover, the Hausdorff measure H“'q(n\no) =0 for soms
qr 2.

The purpose of this paper is to extend all these results to Nash point
equilibria for variational integrals.

Let EqEyssveEy ba m Bets, and let f,,fz,....fm t By x E3 =»¢ x Ep

' m

+ R be m functions. A polnt x = (x1.x2,...,xn) € M E; is called a

i=1
Bash point equilibrium, if

-2~

Pi(xqiXas000,Xp) 3 £4{YqX2 00000} ,

Eal(XqeXgreaneXp) 2 £alXqa¥aesnesxg) &

T XyeX2s0eesnhp) ? fmlx‘.xz,...,y‘)

="
VY eYoroaoe¥p) € 1 Ej-
iwt

The concept of Nash point equilibria is a natural extension of the local
ninim; fm =1, f =-f4), and of the saddle points (m = 2, £ = -f, £5 = [},
In order tc simplify the notations, we only consider wm = 2.

In the following, we assume both the functions F,G : I x I(N+H’{‘+”)

+ l‘ satisfying
{I) "%hey are Caratheodory functions, with the growth conditions:
|Ptx,p.q, 2.0}, |Gtx,p.q,P,0] < atx) + ctlp| + |q| + [2) + 2% .,
Vix,pra,P, ) e A x B x B x BN x BM, for t < < -
And we define

Jla,v) = = [ Plx,ulx),vi{x),Yalx),Pvix))dx ,
!

Klu,v) = = [ Gix,ulx),vi{x),Palx),Prix))dx
]

for (u,v) ¢ wg"(n,n3+"). We introduce a new fuuction H : § x RZ(N#H)(1n)
as follows
R(x,p.q,P,Q1 p.3,P,Q) 1= F(x,p,q,P,Q} + G(x,p,q,P,Q)
- Fix.Psq.P.Q) = Gix.p, T PsQ) ©
Zome assumptions similar to khole for local minima are pade:
(I1) (Coerciveness) 1 constants C,,C3,C3 > ¢ and scme 0 < ; <K,

such that

Bix,peq Pr Qi $.3,5.3) > Cyt[p] + [T - cyt|F] + 180T -

eytt + Iol + lal + [B] + [§DF

-3-



_(III) (Quasi-convexity in the Morrey sense) For a.a. x ¢ ft, and ¥
(PP, 5, 2.0 ¢ REZMINMY - ope function (P,Q) — H(x.p.q,P,0Q: 5,§.F,0)
is quasi-convex in the Morrey sense.

The main'feaults in this paper read as follows.

Theorem I. In addition to assumptiona (1), (II) and {I11), we agsume

{IV} The functions

(P/P) b= Fix,p,q,P,Q)  ¥ix,q.Q) ¢ f x RETIM
(4,Q) F— G{x,p,q,P,Q)  ¥(x,p,P) ¢ § x R{VAIN
are convex.

The functional pair (J,K} possesses & Wash point equilibrium
(ugs9p) « H&'r(n,l"+"}.

Theorem II. Under the assumptions (I) and (II), if (ug,vy) 13 a Nash
point equilibrium of (J,K), then (ug,vg) ¢ W (@, B"™) for some &> r.

The partial regularity result is also extended. We restrict curselves to
perturbed quadratic functionals. Let

P = apdexp, RS + Bl p,a)Po) ¢ cidtxp.aioled + £x,pr0 200

6 = apdtx,p,)P}P} + bitx.p,arehol + cpdtxp,10f0] + gix,p.a,P.0) ,
wvhere Aia, Bﬁi, Ct%, nga, bﬁl, cia 1, = 1,000, Bk = 1,...,N,

L= 1,...,M), are bounded and uniformly continuous functions in
o x ", apa f, g are Caratheodory functions.

We assume

) A - Adh afd = odhe cif = Bl ob - ok

{b) a is independent of g, and C is independent of |- 1

(e} T A >0 much that

Aﬁi(x,p,q)P?Pﬁ » 1|p!2

VP, Q) ¢ W),
ciglx.p.qlnfa? > ajel?

-

and 4 L' < 2% such that

i piant | i pan <ty wgin .
L L

(d) TV <Krc2, 2<r+mc2+ 3% such that
[£l. sl < cqltlel + 1222 4 (|p| + lq)18()p| + [o]i7) .

Theorem III. Under the above assumptions (a)-{d), let
{u,v) ¢ w;agtn,ly*") be a Nash point equilibrium of the pair (J,K}., ‘Then
4 an open set Q5 C Q0 such that (u,v) ¢ c°'“(n°,nﬂ*") for every a < 1.
Moreover, H“'q(n\no) =0 for some q > 2,

The same problems have bean studied by Bensoussan and Frehse {2]. In
their work, the differentiability of the functions F and G with reaspect
to (p.q.P,Q), as well as the growth conditions in these derivatives are
assumed. However, these kinds of assumptions are not natural in the theory of
calculus of variations.

The main difference from theirs, ia an agsumption of the quasiconvexity
of the function H (Assumption III)}, which replaces an ellipticity condition
on (P,G) given in their paper. The advantage of this approach are twofold:
(1} Only weakly sequential convergence rather than the strong convergence is
used. It makes the argument clearer and more direct. (2) Thae functions F
ard G are ro more guadratic, we may apply our theorems to a iarge class of
functions.

A different approach, which lsproves {2] as well, is given by Zhang Ke-
wel (7].

The proofs of Theorema I, II and III are given in §2. In the third
section, we present some examples, the first one, in some sense, is &
comparison with Bensocussan and Frehse [2). The second one compares with a
study of saddle points due to the author [3]). And the third provides a naw

exanple.
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§2. The proots
Firstly, we modify the Ky Fan inequality to noncompact convex sets. It
is the abstract framework of the existence proof.
Lemma. I';t X be a closed convex set of a geparable Banach space F;
and let )
gt XxX+ r!
be a function satisfying the following conditions:
(1) ¥y ¢ X, xb—+ gix,y) 1is swisc,
{2} W¥x ¢ X, yV glx,y) 1is quasiconcave, and is fsc {(in the strong
topology}.
(3) 3 yg £ X such that the function xk—+ ¢{x,¥g) 18 coercive,
L.0. plx,yg) ~ += as Ixl + =,
(4) op(x,x) < 0O ¥x ¢« X
Then there exists xg ¢ X such that
vixg,y) < O ¥y € X
Proof 1*. We consider a sequence of finite dimensional ‘1inear subspaces

of E:

L‘cch o-oCLnC o

auch that ngi L, "E and yj ¢ L"U for some kg.

On each Lpy n 2 ko, we define
n " !lxn,xn
where X, = L, N X. Then we have
(1) ¥z ¢ X, wh—s g,(v,2) is fac.
(2) W ¢ X, 2+ g,(v,2) 13 quasiconcave.

(3) gulv,yg) » 4= an lvan » -

(4) pplw,w) =« 0 Ve X
-

According to Xy Fan Minimax fnequality, we obtain ¥n £ Xy rsuch that

(5} ¢lw,.z) <0 vz € X,.

2%, Let us define

K 1= (x ¢ X|glx,¥q) ¢ 0} .

Provided by the assumptions (1) and (3), K is bounded and sequentially
closed, so it is sequentially weakly compact.

According to (5), one has {Hn1n>ko C XK. This implies a subsequence
wnj ~—% xg € K

Again by the assumption (1), we have

¢lxg.z} < 0 Vz e U X,
n=1

However, the functlon zr—* gix;,z} is assumed lower semicontinuous and

-

eince U xn = X {in the strong topology}
n=1

Coelxgey) €0 ¥y oex.

The proof of Theorem 1. Define a Banach space E = wc‘,"'m.n"*"). and

denote E = {u,v]) ¢ E, where u ¢ w;'rm,n“l and v ¢ W;'r{ﬂ,k"). We define
& function o r X x X » R! as follows:

elE,nY = [ H{x,ulx),vix),Veix),Pvix); ix),F(x),95x),V5(x) }ax
n

vhere £ = {u,v), n = {u,¥) € X. The functional ¢ is continucua (strongly)
in ¥ x £, and that
YE € X, nl— ¢l{E,n) 1s concava .
These follow from the assumptions I and IV respectively.
Provided by the assumption II,:

wlE,8) = [ H{x,u,v,%,Vv; 0,0,0,0}dx
q

>cy [ tlw) + [wv]i%ax = cp [ (|u] + [v] + 1)Tax » 4=
n a

7=



as I{l + =. hind obviously we have Itug,vg) 3 ICE,vg),

Yid,¥) ¢ E .
=0 . -
AR K{ug,vg) ? X{ug, v}

Therefore, in order to apply the lemma, we only want to verify tha swisc The theorem is proved.

of the functioals: Wn = (U, ¥), £ & (u,v)b— olg,n), l.e. WGT) ¢ E, the The proof of Theorem II.: Since the Nash point equilibrium {ug,vg) ¢ E

swlisc of the functional satisfies the inequality

{(u,v) — é Hi{x,u,v,%0,0v; u,V,Vi, VW)dx . J HOx,ug0x) v (x),Yuglx}, Tvg(x)s ulx),vix},Pulx),vvix) )dx < O .
1]

let Viu,v) ¢ wa"(n,nﬂ*"). The coerciveness assumption 11 implies

- - r - = r
gix,p.q) = €301 + |p| + [q + |G(x}| + |F(x2}|2T + eqtlvatxyfr + IV“KJI ) ¢y [ t|vug)® + Jovy|Trax ¢ c [ (lwl]® + {wviTiax
fl 1]

and let
£0x,p/q,P.0) = Hix,p,q,P,Q8(x),¥{x),¥5(x),¥5(x)) + alx,p,q)} . + ¢y ‘{ €+ Jul + [v| + Jug| + Jvg)rTax
1he function f is quasicénvex in the Morrey cense with respect to (P,0). .
Thanke to the theorem due to Acerbi and Fusco, we have Vlu,v) € WA'I‘Q-FN+H)- According to the Poincaré inequality, (ug,vg) turna
lim [ Flxuy b ouplx) , Fug{x), Pvy (x) }dx out to be a Q-minimum of the generalized Dirichlet integral
k+=

£ (1 + |vugl® + ovglTrax < @ é (14 |wu|T + |7v]|T)ax

» [ fix,ulx),vix),Pulx), Pvix})dx

" for suitable © > 0. A result due to Giaquinta and Glusti (4,5] is applied,
ae §y = {uv) —> (u,v]) weakly in E. Provided by the Sobolev embedding see also Chang [3].
theorem together with the continuity of the Nemyteki operator, we obtain Remark. Theorems I and II can be generalized to the case where F and
lim [ glx,up(x}, v (x))dx = [ glx,ulx),vix) }dx . G are inhomogeneous with respect tc P and Q. Namely, say F, G are r-
ko= o power growth in P, and t-power growth in Q. Under suitably modified
It follows _ assumptions I and II, these two theorems hold as well. The proof of Theorem I
wlExen) + olE,n) am £y - ¢ in E. ie similar. As to Thecrem II, we refer to Chang [3].
Therefore the lemna is applied, we have Ep = {ugsvg) € E Buch that The proof of Theorem III. We use the following conventional notations
elEq.n) = £ Hix,ug,vg,Pug,Yvgr U, V,90,7%)dx < 0 A/B,...,c stand for bilinear forms Afji(x,p.q),
Bti(x.p.q).--.cig(x.p.ql etc.
¥n = {§,¥) ¢ E. The last inequality is equivalent to K,B,,e00,& stand for bilinear forms Aﬁ;(xnﬁ.q):

B;i!x.ﬁoqla---c:g‘(x.ﬁ.q) etc.
-fi—
-9
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ArBrrvoyc Btand for bilinear forms Aﬁﬁfxfp'ﬁlr
ni%|x,p,§l,...cigtx,p,§) etc,

el 0= (oh,

AP « P'= liz(x,p,q)PgP;,-..... etc.

UgpoR § ulxlax, VxgeR " ¥ vix) ,

Balxo) BR(XD)

where Bpixs) is the ball with radius R > 0 and center xg, and f stands
for the mean value.

Let us denote w : R* + Y, the continuity modulus of the functiona
AsBives,00 It i increasing, concave, continuoug and satisfies w(0) =« p,
wit) < M, a const., and
|atx.p.q) = Ax*yp'.q')|, |Bix.p.q) - Bix'sp',q" )| eei]etxp,g) - ctx',pt,q')|

Coflx = x'{2 4+ |p-p|2 4 |q-q?.
Assume that (u,v) is a Nash point equilibrium of the function pair

(J3,Kj+. The Proof is based on the following estimate

/ (1 + vu]? + |w|?)
Bp'”o)
" 2 2-n 2 2011
<cl(f) +wr’+c ¥y t|va|2 + [vv|2))1-2/8
Bolx)
+c(f [val? + fvvlezfn-%] J 1+ w2+ |ew]y
Brixo 2r!%o’
+ CJRH(I“XO,RI + 'vngkl'zn/n-z + C4Rn m

Vxgel, VO<pC<RC %-dllt(xo,aﬂl, where 'CiC14C2,C3,C4 > 0 are
constants, and 8 > 2 ig a suitable constant. Once it is established, the

conclusion follows directly from Giaquinta and Glusti, cf. Glaguinta [6, Thm.

1.1, ¢h. vi).

-10-

Let A,D,...,&, denote the constant coefficient bilinear forms
1 1 11 .
Ahg(xo'uXﬂ:R'vxoan)' Bhitxu'uxotﬂ'vxo.k,'”"c!.m'xo'uxooR'vxo:R) ete
Let ({G,¥) be the solutions of the following constant coefficient

elliptic boundary value problems

f AVE « Vg +%BV; s P =0, ¥p e W) Boixg), RY)
BR(xo)

and
f 297 - vy +-;—qu <=0 W oe Wi ABpixng), RN
IR(XO)

with GIBBR(xU) - “laBn‘*o)' ;I‘“’foo) - "'“gfxn?' and let (up,vg) €

wg‘ztsn(xo),aﬁ*"l be the solutions of the following equations
. . . 1.
f ANO-V,-%BV@-Vvaj‘ €Vp ¢ ¥y - 5 bVu « Ty = 0
Boixg} Bpixg)
Ve € ﬂ;'zlﬂntxo).ln). ¥ € WA'Z(BR(xD),l"), we have

f AV(E +ug) Vgm0, [ 89T + vp) - VE w0,
Bpix,) Bpixy)

. Ve € Wy 2Batxg), WY, vy € Wl 2(Bo0xg), K.

According to condition (c}, the Caciappolli inequality and the LP
theory of elliptic systems imply that I constant Cg and Cp > 0 such that
for 0 < p < R,

I o + ug) 12 + |ow + vy |?)

Bp(xoi

n - 2 = 2
<c(®) f (vt + ug)|? + |98 + vy |
By xo)

and V1 <p Ca,

-1t1-



! (965 + ug)|? + [V(7 + vy |P}

I (otu + ugd P + vty + vy |Py

BR(xO)

(Cf. (6, Ch VI, p. 206=210].)

These inequalities imply that

I tlva]2 + |v5]?)
Bp(xo)
n
< Ca{%} I tw)2 + o]y + 0+ e) (lougl? + |vvg|2y (2}
Bolx,) B(x))
and

/ tlva|? + [W9]P) < ¢, f (]vulP + |vv]P} (3)
B_(x, ) B (x.)
R *0 r' %0

where ¢ > 0 is an arbitrary positive number, and C. 18 a constant
depending on ¢.

let w=u -1, Z=v -~ ¥. According to the Plancherel 1dentity and
because (U,¥) are the solutions of the above BVPs, we obtain
Ay towl? + Jvz|2) < / ;VH « w + &7z + ¥z

Bn(xol Bntxol

-/ AV(uti) » V{u~G) + BVw = Uv + BYu = ¥z + SV(V$TIV (v—F)
Bplxg)

. - . ~ . -
-f (A=A} (VusYu-Vie¥i) + (B-B)VQ + Vv + (b-D)vu + wv

+ (&~C) (TveTv=TT+9¥)

- . . -~
+ [ (A-R)Vu = Yu + (B-B)Vu « 9v + (b-b)Vu « Vv + [C=c}¥v +» Vv
BR(XO}
+ | ATu + Ju + [B+D)Vu + v + cVv « Vv
B (x)} *

-1

-f AVU « Vi + DVU - Vv + %0 9% + CUT - W9

'BR(xol
I PRL 2D PYLIS CUE 25 PR {4)
Noticing
‘ 2 2
I, +1;¢¢g [ wiR? + 2[{u - “xn.af + v - Yx, R|2 +

BRIxD)

#lu=al2 ¢ v =512D)[|val2 + {we]2 + |va]2 + |ve]2]

and that w 1ie bounded, we have for some 8 > 2

2
1- £
J w e+ (Jra|? 4+ [wvl?) <o [f loul® + |vv|%)2/%(f o] ®
Bpixg) Bpix,) Bpix,
-2
<cg [ (v ¢ v+ [val® - [f w] ®
Bopixy) Bpixg)
by Theorem II. By the concavity of w; we have
§ w(R? + 2(]u - uxo'R|2 + [v - vxo,nlz + w2 + |z|2)
B (x }
R0
< wir?+ 24 (Ju - Uy F|2 + |v - vxo'n|2) +24 tlw]? + |2]2n
BR(xu) Bn(xo)
< w(R? 4 cgr2M | twa]2 + w2 .
Bolxg)

The last inequality follows from the Poincaré inequality and the inequality

{3). Similarly, we have

-13-



2 2

£ 1- £
I w e []98]2 4+ |v5)2) < ol f tvai® + jvei® s |1 w] 8
Brlxg} R'%! . Tptxgp)
2 -2
< 011[4‘ : {feul® + |VV|3)]S[£ w] °
R(xo R(xo)
-2
<cyy f o vl + o4 ] %,
Bopixg) Bpixg)
It follows
-2
Iy * I < CyautRB4c r2D | thwe[?+ov]?y) I (1+{ve]2+]ov) 2y ,
Brixg) Borlxg!

If we write the integrand of the summation ia + Iy 1in the form

HiX, U,V 00,00, 97) + hix,u,v,...,%5,v%) ,

then

5

’h(X:Pan---- 2,01 < Ciqltp] + lal + |5] + lEl)“'z ¥

+ el + Jaf + 151 + [ah*(|p] » lel + |B] + {gh™)

where 0 <r <2, 2 <¢pr+a¢ 2+ Eﬁ-, provided by the assuwnption (d4}.

However, (u,v) is a Nash point equilibrium, we have

] Hix,u,v,%,v; §,%,V5,V%) <0 .

Bk(xo)

(By ertending (a,¥) = (u,v] outside the ball Bulxg).) It follows

2n
Iy+1q<ey, f Ctla] & Jol + [&] + [5)y"2
R' *0

+tu) + |v] + 5] + (518 vu] + lovl + |sii] + Jve)ymy

n 2n
2 2. n-2 -
< et I TN L M P e
ri%g! o

-14-

cf. {3, Thm. 3}, 1In fummary

{ (|Vw|2+leiz) < c19[f (1»]?u]2+lel2)){m(Rz +
BR(xo} BZR xol
- 2 2
+ cgr?M | tloa)2e)oe] By % « ([Vu|2+|vV]2))“'2|
Bpix,) Bp
2n

n n-2
+ R (qu ,R!+va°,R,,

+ R’ . {5)
(1]

Using the relation

] (o2 + [wv]2) < (1 + ¢) | tlvil2 + |ve]2)
Bp(xo) Bp‘*o’
te f twl2 4 [92]2y, {6)
Bptxnl

and eince {ug,vg) € Wg'zibr(xoi.kp+m) satisfying

. - 1
! AWOVQ-‘Z“BVQ-VV'U,' I &Wo-w-ibvu-vao.

Bplxg) Bplixg)

One sees that from condition (4}

A f IVuOI2 < %-A‘ J [ve|2 and
Bp(x,) Beixg)
y S |VVD|2 < % A f fml2 . (M
B.{x )
Boixy) r*p

How we substitute (2) and (7) into (6}, it follows

n
I§ tlval? + Jov]?) < ) | tlval? + lov]?)
Bplxu) BR(xn
+ U+ 02 tIwl? + fovl?y 4 c, | tlow|2 + [9e]2) ,
B (xu) BR xo)

Choosing e > 0 sufficiently small, (1) is obtalned by (5).

-15-



The rest of the proof is essentially the same as Theorem 1.1, in [6, Ch.

IV] and Theorems 1.1,

t-2 in [6, Ch. VI,

-16-

§3. Examples

In this section, we shall present seoveral ;xamples to i{llustrate the

conditions stated in the theorems.
Example 1. Suppose that A;a,nia,......,cia etc. are bounded
Carathecdory functions defined on § x RVHM,
Let
€ = Clx,psq) - E(x,Peql,
2 = alx,p,q) - a{x,p,d)
and let
Q= {A+3)P» P+ (B+B)P + D+ (C+e)Q+ 0
where we use the abbreviation notationa as in §2 Theorem II.
Assume that @ 1is positive definite in (P,0Q)

V(x,p,q, B, € 2 x R2*M) 5.0 9 350 guch that

22 a2 + g2y .

(3.1)

Buppose that f,9 ¢ 0 x l(”“““”” + &! are Caratheodory functions

which are linear in {P,Q), and fati:fy the growth condition
lelodal < v+ [p|" + [al™ + || + gy, r<2.
Then the functions
F{x.p,q,P,Q) = AP + P + BP « Q + €0 » Q + £(x,p,q.P,0) ,
Gix,psq,P,Q) = aP «+ P + bP » Q + cQ « O + g(x,p,q,P,0)
satiefy the agsumptionas I, II, III of Theorem I with r = 2,
We verify the assumption II
E= (A+28]P s P+ (B+DbJP+Q+ (c+C)Q+0
+f+g- f - g - (AP« P + BB Q+DbP e +cho o))

where we use the abbreviation notatlons of §2 Theorem III. Thus

-17-
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- ~ ~

w012 « ol - mefB)? ¢ 151 - 2c0r 4 lel™ + |ai® + |B|" + jaIn

) 2
Aaar2 . M gs2 A ,.02 M o=2 3 2 2, €% =2 s 2
=g et - 1B1° - 5 el - lelt =g del® + Jep? a 217+ 185

> 3R+ 0l < w B2 ¢ 1813 < cqtlpl + ol + I3 + gl 5 07 .
A8 to assumption III, we observe that the function
{P,Q) b—+ H(x,p,q,P,Q7 P.§, P,D) = Q(x,p,q.5,31 P,Q) + linear terms of (P,Q}
is convex. 5o that is quasiconvex in the Morrey sense.
Furthermore, we assume that the agswmption IV hold, i.e. the function
(p,P) — Fi{x,p,.-+,0) and (q,Q) +— G{X;b;e+¢,0) are convex.
Then Theorems I and II hold true for this pair (F,G).,
Remark. This is just the example given by Rensmoussan and Prehse in
(21« RAlthough the abstract assumptions of theirs are different from ours,
this example i5 a common model. An obvious advantage Jin this paper is that
heither the differentiable conditicns nor the growth conditions of the
differentials of the functions ¥, G are needed.
Example 2. Suppose that F is & function satisfying the assumption I
and
Assumption II'. 9 constante r >r > 0 and C.C,,Cz > 0 such that
P(x,0,9,2,0) > C|B|T - ¢ylolT - cytlp| + [q| + 1F |
Fix.pea, P, 0 > €lQIT - cql2|¥ - cpt]p] + |q| + 1); .
Asswmption IV'. Wix,p,P) ¢ @ x RN, g0y + —F(x,p,q,P,0), ana ¥
{x,q,0) ¢ 0 x piTHRIN, (p,P) +— Fix,p,q,P,Q) are convex functions.
Then the function pair (F,-F) satisfies the asgumptions I-IV. 1In fact,
Assumptions I and IV are cbviously true. And
Hix.p,q.P,Q; 5.8, P.0) -Fix,5.q.5,0) + Fix,p,5,P,0)
>el?l* + lel*y - e (|FIT + (8]%) - cytlpl + lal + |5) + [4] + 1

1t follows the assumption Il. Since, now, the function H 18 convex in
-
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(P,0) according to the assumption IV', it is quasiconvex in the Morrey sense
i.e. the assumption IIl holds.

Trne corresponding Nash polnt equilibrium (uz,vpl of the functional palr
{J,-J), where

Jtu,w) = = [ Plx,u,v, P, v)dx ,
Y]

is just the saddle point of J.

The existence Theorem I and partial reqularity Theorewms II, III imply the
corresponding results in Chang [3].

However, the ebove assumptions for the saddle point problem do not
satisfy the assumptions given in DBensocuszan and Frehse {2], particularly, the
ellipticity condition.

We present here an example. Asgume

£(e) = f-lt]r
where 1 < r < 2, and let
F{P,Q) = £(P} - £{Q) .

Obviously, the assumptions I, II', IV' are all satisfied, but there is no

posltive constant €y > 0 such that
(F(p,0) = F (B,8)1(P-F) - (rptp,0) = Fo(B,80)00-8) > cqtle-312 + [o-81?) .
Example 3. We present here some high power functionals which have not
been studied Ln [2]. Let n=M =N=1,
F(P,Q) = a'p% + aP2 + BPQ + cp? ,
G(P,0) = aP? + bPQ + cQ? + c'pt
where A,B,...,c,h’,c' are constants
H(P,0,5,0) = AP + P2 + (B + b)PQ + cp? + c'pt

4 . aF2 - 8Pp - bPY - D% - o' .

-~ A'P
Thersfore, if A,A%,c,c' > 0 and Ac > %—(B + b}z, 411 the assumptions I-IV

hold, and Theorems I and 11 are applied.
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