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REGULARITY AND UNIQUENESS
OF HARMONIC MAPS INTO AN ELLIPSOID.

Frédéric HELEIN

This paper concerns hazrmonic maps from an open et §
of I{N into an n-dimensional ellipsoid
2
Y11

M-[(ul,uu)e R xR/ ui + 82 = 1} where a€ [0,1].

First one shows that any harmonic map whose image
lies in a compact subset of the open upper hemisphere of
the ellipsoid N* is smooth. Then one proves the unique-
ress of any harmonic map whose image lies in a compact
subset of N’ » #nd uhose bouridary deta are prescribed.
Using these results, on computes the minimizing map from

a ball of dimension n into N whose boundary data are the

x
equator map -[—[- .
x

2
. _n 2 ' ,
Let N = {(uI,uu)tR x R/uI + az = |} be a n-dimen
sional ellipseid, where n» | and a>0Q .

N+ = {y = (ul'"II) € R Rluu >0} is the unper hemis-



phere,
Let @ be a bounded open set with regular boundary 39
of RN where Na |

We consider the space Hl(n.N) of functions u of
1 +1
0@ R )

will be the closure of C:(n,nn+l ) in H[(Q,Rn*l).

Hl(n,Rn+|) which verifies a.e. u(x)eN . H

. 1 .
We define on H (Q,N) the energy functionnal E by :

{ 2 1 N n+l i!u.1 2
EQuy= 5 [ |u(x)|"dx = =f ¥ I () .
2 .
a 20 g il g
We will study the critical points of E, i.e. the weakly
harmonic maps. They satisfy in the sense of distributions

the following equations :

bu; +Aup =0 {a)
(6.1) vl
AuII + A - = 0 (b)
a
2 4
2 fou |
where ) = [|vuI| + ;I } 3 za 5= + See e.g, A. Baldes
a a UI"UII

[B].

We will only consider the case of a flattened ellipsoid,
i.e. we wikl assume that a€ (0,1].

The first result is a regularity theorem. We will show
that if N>3, every harmonic map u whose image belongs
to a compact subset of N+ is smooth inside of @ . This
theorem is a variant of a result of § . Hildebrandt, H.
Kaul and K-0. Widman who have proved in [HKW] the same
result with a geodesic ball of radius M of a Rieman-

nian manifold M instead of N+ » with the condition that

M<= where K is an upper bound of the sectiomnal
2K
curvature of M . The two results coincide when a = |, but

the result of this paper is new in the case a€{(0,1) .
However the following proof is a variant of [HKW].

The second result is a uniqueness principle. If
N> ] we show that for every ¢ in Hl(n.N) auch that p{x)
lies in a compact subset of N, for a.e. x in 3R , there
exists a unique smooth harmonic map whose image belongs
to N+ and which agrees with ¢ on 3 . This theorem is
a variant of a result of W. Jidger and H. Kaul who have
obtained the same result in [JK1} with a geodesic ball
whose radius is strictly bounded by EﬁkA. The two results
coincide only when a = |1 but the proof here uses the same
ideas of [JK]].

In the third part, we will use these two first results

to study the following problem :

Let us suppose n = N>3 andg = B" = (x€R" /|x| <1},
we consider the equator map u,(x) = ( : ,0) of Hl(Bn,N).
and we want to find minimizing maps u of Hl(Bn,N) which

agree with the equator map on aB" si.e. a map u in

HI(Bn,N) with the boundary condition u o~ Us n,and
joB |28
such that E(u)<E(v) for any v in H’(Bn,N) such that
v = u, .
[e8®  "ag"

By a calculation of the hessian GZE(u*) of the ener-

gy functionnal E on u, , A. Baldes showed in [B] that

u, cannot be a minimizing map if az <££E:l% , and that

(n-2)



. 1 = +
“.ZE(u,,)(v,v) >0 for any v in HO(Bn,Rn”)ﬂL (Bn,l!n ! }
such that vw(x)ET N a.e. and v#0 provided that
us (X}
32;,&(11-[;
(n-2)
local minimizing. He proved also that if u, is minimizing,

. Note that this does not imply that u, is

then u, is rhe unioue minimizer. Here we will show that ;

. if a2< ilﬂ:l% » there is a smooth minimizing map.
(n=2)
it 323 4(n-1)

(n-2)*

.

» U, is the unique minimizer.

The proof here uses the movement of a point on a
cycloid and is a variant of the method of W. Jidger and
H. Kaul in [JK2] who solved this problem in the case of
a sphere, i.e. when a = |, using the movement of a

pendulum.

I want to express my gratitude to J.M. Coron for
his helpful advice.

I - REGULARITY,

Let us formulate our first result.

Theorem I. Suppose that N33, assume that u€ Hl(ﬂ,N),
that the image of u belongs to a compact subset of M+

and that u verifies weakly (0.1).

Then u is smooth on Q .

Remark. If N = I, the regularity is trivial, if N = 2

Morrey showed in [M] regularity for minimizing maps.

Notations. In all the paper, we will note by the dot the

scalar product in Rm] , and by the bracket the scalar
N
product in the dual space of R , so that :

N
T
1f weu' @, 8"y, sen' @Ry, < VB> = ¥ 22 e
o=] ax 9x
n+] R .
Yy, vew = I webt .

i=]

If o, v€H @&

Proof of theorem 1, We will prove only continuity. Smooth-
ness then follows from [Li}l. See also [BG) or [S].

Let us consider a weak harmonic map u whose image
belongs to a compact subset of N+ So there exists uo>0
with :

(1.1) uII> a  a.e. on o .

. . 1
We consider the equation for f in H (R,R) :
=AL = f
(1.2) 1
LE HD(Q,R).

There is an associate Green function G which gives the
solution of (1.2) by

(1.3 ¥y €0, tly) = | £(x) G(x,y)dx .
Q
For every point y of Q , there exists o, such that
B (y) = {zERY/ |z-y|< 0 }ca.
a ¥ y o

Then for o € ]0,00] , let us consider

o i - .
(1.4) G (x,y) -Ei_—_—ﬂc(y}] IBO(Y)G(X'ZMZ -{-Bu(y)ﬂ(x,z)dz



a 0 -
From (1.3) we deduce Ig AuII(x)G (x,y)dx IQA(uu“u)G {(x,y)dx

-4 {u, . -w)(z)dz .
5 e xuyny = f, ()£ (2)dz Ba(0) 11
8 o’ Replacing this in (1.11).

We use too the following properties which are in

Yyg
-3 = dz<a .
[L5W] or in [HKW] : there exists strictly positiv cons- I A c° (x,0)dx -fBo(O) 11 “w)(z)dz<a
tants KZ’K3 such that
Using (1.1)
(1.6) © 0 6(x,y) <K, |x-y| F ) .
2-N 3 In LG (x,0)dx € =~ .
(1.7 c(x,y)alex-yl , if [x-y]%zd(}'..ﬁ:!)) 9
1-N Obviously A& a2|Vu|2 and so
(.8 1V, 60y} | <K lx-y]
2 o a
_ - (1.12) Jolvu]® 6% (x,00dx < 2 |
(1.9} ¢(x,y)<2V2 K[|x-yI2 Noir oc%lx—yi ? %o

o 1 w Now, using Fatou's lemma and passing to the limit in {1.12,
. if d{y,an)> - . ]
(1.10) Lf d(y,d0)25, [xe G () €H (2, R) 0 L" (2, R) when o+ 0 . we obrain

where x and y are in Q. (i.13) flvu(x)lz G(x,0)dx < ;_a_ ,
Q

We take an arbitrary point of § and show that u is o

continuous on thxs point. It is always possible using Using (1.7), for £, sufficiently small :
translation in R to assume that this point is0 . By

2 2-N< a
(1.10) we may use the map IB (0) [7uto)] x| a K,
€

o
x = (O.Gu(x,ﬂ))] as a test function in (0.1), for o

Hence, by Lebesgue's theorem, if € + O
small enough. This gives

2, 2-N
o “a a4 f i x) ™ .0,
(.11 [Aun(x)ﬂ (x,0) +) G {x,0)] dx = 0 . B_{0)

f a
Let w in H](Q,R) be the solution of the equation And it follows that

. } 2
{— My = 0 {(l.14)bis E—N—_-z" IBE(O) IVu(x)| dx + 0 ,
“laa Hlau Let us remark, using the results of R, Schoen and K .

So u -weli olfsR) and by (1.5)

Uhlenbeck in [SUl , that if u would be a minimizing map ,



then (1.14)bis would be enough to prove regularity. Alu(x)-v] ¢° {x,yIn{x)

a
a A
R € == : R =
Now, for R« 3 let us define where yE BR vo< g -i¥]ne€ Cc(BZR'n)' nalon BR and
Top = (x€0 /R<[x| < 2R} . 2
R -1 N
Bye = (x€Q /[x]| < 2R}, |vn[<K5R . This gives :
We note for a>0 No. = N {uluII>a.} « S50 (1.1) implies IB [-<v(u-v).vA(u-v)>Gan-<v(u-v).Vn>.A(u-v)G°
that u(x) ENQ a.e. 2R
o - - U -v)nt Aluv)E%q)dx = 0
We consider the point up of N which is defined by : < P{u=v) 967>  A(u=v)g+rau).Alu \.r)CI n}dx
e o (1.16) =[, <o[(u-v).A(u=v)n] 6% > dx
upg = f ug (x)dx € R" R
T fI <vn,vG°> (u-v}.A(u~v)dx
2R B
Ve 2%
Srrz T 2 VI - (upp) “2fy  <T(u=v},Un>.A(u-v)G6° dx
S0 we have the following inequality using Poincaré's ine- R g o
A{u-v)- G =
quality + ZIBm{;\A(u) A{u-v}-<yu,y[A(u) ]>] G pndx
. R . . .
(1.15) ||u-uR|l 2 < kKl uI-uRIII 2 - Since g<3 ~|¥|+ the first integral is equal to
L (TZR) o LT, )
_{_Bu(y) (u(z)-v).Alu(z)-v]dz .
“poincars Ko X full 5 » In the second integral we make the decomposition
o L (TZR)
< K, ® 0 vl , . (u=v).A{v-u) = (V"UR)oA(V“‘UR)
L (Tye) + (v} ALu=v)= (v-up) A (v=ug) ]
We consider the constant speed parametrage of the unique and |(u-V)-A(u—v)'(v'uR).A(v-uR)I<K6| Iu“']'l"'“glf
geodesic in N% the extremities of which are ug and the <K6]u-uR| .
north pole P = (0,a),
> i = - hence
[o,1]+ No: , b4 uR,t y with uR,O P, uR,I uR .

o |182R<vn,vcc>[ (u-v) +Au=v)=(v-up).Alv-up)] dx|

For the sake of commodity we note v = y

o} -
Rt * < KCJTZRI‘V“'VG (X'y)>||u uR|dx
We defi ¢ . . . n+] n+l - -
e define the lll,rIuIear mapping A : R+ R, < KK 2" 21(3 R NIT [u—uR|dx .
(uI,uII)H (UI'_Z—) and we use the following test function . 28
a



Tar

< K, K KK 2

3747576

2 2 ~-N 2

< K7[j |Vu(x)| dx}

uging (I.B) and (1.15). So the second integral is equal

to 1
(v-ug) A lvmup) + 0([1 |Vu(x)|2 =N a1 .

« In the third integral, we use the Cauchy-Schwarz ine-

quality

I=2fy < 9(u-v),7n> .A(u-v)E" dx] .
2R

l I

1 2 7 2
< ﬁJ[;":?[IT IVuI Gc(x,y)dx]Z[JT I\?nfzcc(x,y)dx]2
a 2R 2R

-y 4 1
1 2 R 2 _N-2 2
< "Ez ""UT KIIVUI ) dx]” 2 (KI) K, mes (TZ)
1

‘KUB IVuI22N 2

- In the fourth integral, we remark that X -‘EE“V[A(U)]>

80 AA(u).A(u—v)~<Vu,v[A(u)]> = = A(u).A(v)) .

Hence (1.16) becomes
(I.l7);Bo(y)(u(z)-v).A(u(z)-v)dz((v—uR).A(v-uR)+
xg[jB [Vu] 2p2N4yy2 =2fy  M(u).A(W)IEndx .
2R

2
Now, let ¢+0 and use A:—Uﬂiggﬂ-— . (1.9), (1.14) and
a

Lebesgue's theorem. We find for a.e. YEB
L}

MY

(1.18) (U(Y)‘V)-A(u(y)‘v)<(v-uR).A(v—uR)+
1

¢ Kglfy  |vu) R Max)® - 2f, ML) .AMWMG(K,yIn(x)dx .
9 Bag R

Now, we take p('% and y€ Bp , and we write
IB A (). A(VIG(x, y)n{x)dx
2R

>-f aZ 90| 26 (x,yIn (x)dx+ InE[A (u) . A(v) ]
B,,\B
2K 2p sz
IB HZIVUIZG(x,y)n(x)dx.
2p

And since 2(x-y)>|x-y|+p>(x-y)+(y)>(x), and from (1.6),

2, 2N
J [9u] “fx|” "dx
10/Byp,

2 -
<Kofy lvu|%|x]
10 JZR

2 2
a VU| G(x,y)n(x)dx[sK
”"23\ B |

dx .
So (1.18) becomes

(I.l9)(u(y)—v).A(u(y)—v)<(v-uR).A(v—uR)+
|

k1 vut?o0? ™M
2R

2
-2 InflAQu).A(v)] J’B a2|vuf G(x,yIn(x)dx .
Bo 20
]
Now, we define h : [0,1] - R+ by

h(t) = lim sup[lim sup(u{y)-v).alu(y)-v]] .
R0 p+0 B
Let us remember that v = Up p * It is standard that h is
’
continuous.



a
Furthermore, h{0)<2(1- 1? }. In fact we have for every t

a
in [0,1], h(r)<2()- 1? ). Let us suppose that it is false,

then, there exists t, in ]0,1] such that h(t_ )=2{(1- :?)+£
a

tere sufficiently small, such that 2()- 7? Y+ gc2,

It follows that for small enough R and p < po(R). we have :

for a.e. y€ sz , (u(y)—uR,[o).A(u(y)—uR'to)< 2.

or for a.e. y€ sz . A(u(y)).uR’tD> 0

which implies that for a.e. y¢€ B, » Alu(y)).Alu >0,
bl R,t

.

Now, we use (1.]9), and find for a.e. y€B

(U(y)-uR[ )-A(u(y)--uRc )<("'Rc -uR).A(uRt -uR)
o] o o o]

i
, oy L
+ k) 1 o] 2 M2 ?

And this implies
a
< - -yt -2
h(l:c‘)%c-(up":o uR)'A(uR,to uR,<2(l 3 )

@,
which gives us a contradiction with h(t Y= 2(l- —=re,
Hence we conclude that ve€[o, 11, h(t)‘§2, and so for
small enough R andp< po(R), we have A(u(y)).A(uRt) =0,

for a.e. y EBZR - We apply this in (1.19) with t=1, this

gives .

fVu|2[xf2~Ndx]2

1
» _ -
= (1.20) Iu(y)—uRI *:Klsz52R|Vu]2]x|2 N dx]2 '

(u(y)-ua).A(u(y)-uR)€K|][fBzR

for almost everywhere y pufficiently small, and R

sufficiently small. And using (l.14) the continuity of u

on y is proved.

II. UNIQUENESS,

We want to solve the following Dirichlet problenm :
Let ¢ be a function of Hl(ﬂ,N) whose values on 81 lies on
a compact subset of N+ s let us find a harmonic map u
which agrees with @on 32 and whose values are in N+ .
The existence is standard by finding a minimizing map.
We will show that this solution is unique using theorem

| and the following result :

Theorem 2 1f ul, u2 €c «Q, N n H (a,N .) are harmonic,

and if u (an) and u (BQ) belong to a compact subset of
N.  , then the function :

+*
| l l-u2|2
0w 3 X 77 checks the maximum principle :
Y1111

. i . . .
Proof. For r = 1,2, since u (30) is contained in a com-

pact subset of N+ » there exists ao>0 with u (x)> a

if x € 3 .
Using (0.1) (b),we have
ui (x)
- nu () =2 —113—— >0.
a

And so by the maximum principle
i
. > .
(2.1) uII(x) a onf

The function ¢ = =~ Log(u;I)-Log(uil) is smooth and bounded
on Q . We u111 construct the ellxpt1c operator L with ¢
by : V¥f€ H (2,R) , L(f) = div[e grad £].



We will show that L(g)»0 s which assures the result,

Noting ¢ = -;—|u]-u2|2 so that 0 = % and :

L£{0) = ap +yA® + < Yy, V&>, we have

vul vu2
11 11
IT IT 2 2
nui Auz Vu2 Vu2
11 II 11 iI
e LSy o
Y11 11 Y11 Y11
Hence
"Aul AUZ VUI : VH2 :
II 1 11
(2.1 o) =ap+y[ . 21 * | 1 I + ’ I; ‘ ]
“in Y1 Uy Y11
. 1 ¢ 2
u u
11 I1
-« I + T s Vo > .
Y1 Y
Using Young's inequality
Vu;I Vu;I 2 !vw[z
TR T W > -.p'—-—-“-il me— ,i=],2,
Y11 11
We obtain :
2 au! nuz
(3.2) L(@)=ay - l‘iz‘l’-i_ -4 [““TH' + ;_1 1,
11 Y
and by the Cauchy-Schwarz's inequality
2 1 2 2
3 <(u-u). gy ).(ul-uz).v(ul-uzb

———

2y (u]—uz).(ul—uz) .

Inequality (3.2) gives

< IV(u!-uz)]Z.

1 2

Au Au
(3.3) £@>n9 -y [ + —3

Y11 Y

2
1 - (vt -ud

Now, Ay =~ fv(u]-uz)l2 + (ul-uz).n(ul-uz) implies using (0.1)

Ay = lv(u'-u2)|2 - (u]—uz).[XIA(ul)-AZA(uz)I

*Jea!-h)? - ey -uawd) .

1 2
e S e 2 Y
Furthermore, - " i 7 "7 ¢
UII a un a

so, £(0)>fequl-u?y|? - 002, D-ulawd)

2
1 2 X, ¥A
u -u 1 72 1 2.2
+ 3 7 - |V(u ~-u )|
a
M 2 221 .2
or £(0)>‘“—2—- [-Ll-l—‘.z-g-—l- - a+ta’u ,A(u")]
a
Atk 2
or L(g)>-! 22 (1-a?) Iu]!:-uif >0,
la

This termines the proof.

III. THE PROBLEM WITH THE EQUATOR MAP.
Now we choose n = N»3, B” = (x¢ R /|x| <1},
u,(x) = -F):T - We show the following result.

Theorem 3. u, is the unique minimizing map if and only

if az > 5-(—'3-—1—% . If al’(i[_q_-—_l% » there is a smooth and
(n~2) (n-2)

radially symmetric minimizing map.

- Proof. We will only prove that u, is minimizing when



azb'iiﬂ:l% .- Unicity is then a consequence of theorem 5
(n-2)

of A. Baldes in [B].

We begin to look for the solution of the following
Dirichlet problem:let be 1 €(0,1) and u_ a map of

! (Bn.N‘) which verifies : wx€ 3B", uT(x)-(x sin('r% ),

a cos{r —})), and which minimizes the energy functionnal
among the functions of Hl(Bn,N*) which agree with u gn
n T
ab
It follows from theorems ! and 2 that u  will be
T

smooth harmonic and unique. Because of the uniqueness of
uT and because of the symmetry of the problem, uT must

be rotationnaly symmetric, i.e.
u_{x) = (~:~ si.neT (r), a cosd _(r)), where r = |x|.

w n
GT €C (EO,I], {Ol '2_])
a(o)=0,e(1)-r7TT .
T T

Let us calculate the equation verified by u :
T
-1 2 2 . -1 . -
E(u )=|Sn [f 168" (cosp +azsm28 )+ “—!-smze 1" ldr
1 o 1 1 1 T

2
r

Let us introduce the diffeomorphism t€ c ([0, -g—] +(0,5])
with

f

n / ‘
Vo € [0,"2—] f2(8) = [ coszq + a2 sinzq dq
.Jcoszq-ﬁ-azsinzq dq .

mlad w

@=f

£(g) is the arc-length of the arc [0,8] + Rz R

qe {(sing, acos q).
Let us note Sg C7([0,g},{0,1]) defined by

vo € [0, F) , S[£(8)] = sine .

(Note that if a = |, § is the sinus function).

We make the change of variables ) (t) = LEGT(Gt)]
0 . )
B = 1515 167 + s Be D g,

Hence, we obtain the equation which express that u.r is

harmonic
(3.1) A+ (-2)3 - (a-1)S(A )S'(L ) = O
T T T T

with the boundary conditions AT(-u) =0, ,\T(O)'L& er—)-

Now, let us introduce the cycloid

- —(+9)
z = —— cos 28 € (0,+w) .
y = -g.l;—a) e+ —(.!.;a’_) 8in 2g
,g_;_-_'_;_"lsin 2¢

The sinus of the slope of the cyeleid with the direction 2

is



dz
di
e dz,2  dy.,2 i
gz oy
Q6+ Gy
(Iza) sin26
J/(]+a)sin28 2 {l-a) z {i+a)cos2h 2 I-a X
e A s B G I e B

(1+a)sindcosa

— — 4
/Eosze+a§sin20
And S(2(8)) = sing implies

S'[e(e)]e' (o) = S'[E(a)]/casza+azsin26 = cosf .

So SLe(®)) S'(1(0)] = m3iBBEOS0 ..
cos20+a?sinp

The curvilinear arc-length on the cycloid is

8 7 —
f coszq + azsinzq dq = £(8).
&

Now take R€ R, and consider the movement of a point M

on the cycloid whose curvilinear abeiss is defined by
s(t) = lIBT(t-B)] = A (t-g).
Equation (3.1) becomes
(3.2) s+ (n-2)5 X0p L
l+a
with the boundary conditions s(-w) = 0, s(B) = £(r%—).

This equation is the equation of the damped movement

of a point which is forced to slide along the cycloid and

which is subjected to a constant acceleration field

(n-1) 3
l+a sz °

The problem is : does this point reach the arc-length
¢ in a finite time ? To see this, we linearize (3.2) in a
neighbourhood of s » g (or § = é; ), this gives
(3.3) (s-0) + (n-2) (s-0) + =L (sm0) = 0 .
a

The characteristic equation is then

-1
u2+ (n=2) u+-"~2-=o ,
a

2
with discriminant A = £E~%l— {a2 - 512—1% ] .
a (n-2)

IfEACcDw a2< b(n-l; » we have small oscillations. 5o

(n-2)
there exists tIE R with s(tl) = g and

{Vte (-m,tl). s(tl)e (0.0).

VIE 1), 3tk € (e ), 8(t ) = Lty )

By a translation on t , we suppose that s(0) = g . Taking

B = tT i.e. AT(t) = s(t+t1). we find that AT satisfies

(3.1) with good boundary conditions for every 1 € {0,1}.

Equivalentely : eT(r) = %hl[AT[Log(e r)]}, so that
vTE(0,1], 8.(r) = 8,(e ).

“(“-l% + the roots are real and non
{n-2)

positive, the point M will never reach the abcies g .

AR O aZ >




Ao,

Indeed, let us suppose the contrary. Then there exists a real t
such that

{vr € (-=,t), s(thg (0,0}, 8(t) >0
S(?) =g .

Let y be a root of the characteristic equation of (3.3), , is

strictly negative, we pose
VEE (m=,t), x{E) = ,(g=s(t)) + 3(t).

Then we have

X = E-ys s -~ [((n=2)4y] § + ?E% p(s) .

. n—-l . a
2T B gl .
H —
R | sing cosp 2 Jcoszg*azsinzg
X = x + (n-1) - Iy 7 dq| .
ay L2 2.2 a
cos g+a“sin’g

. -
And it follows that ‘M < n_2_l_ x because if
au

sinfcoso Iz C082 +a2si 2
H(g) = —Sin0S0sd 7 yees'qralsing 4o
\/c0528+azsin26 8 a

H is negative on [0, —;—] since H(% } =0 and
H' I(a2+l)cosze+2azsin28]

(o) = 372

0 .
(cosze+a2sin29)
Then since Llim x(t) is stricriy negative, we obtain that x(t) is
tr—w
strictly negative, which is impossible because

x(t) = ula-s(x)) + &(t) = &(t) » 0 .

Hence we conclude

(VtE R,A(L) € (0,0},

e+

llim Afe) = #ﬂ@@"

Y. £(0,1),31 £ €R, s(c) = 9_(1121)

I1

By a translation on t , we suppose that s(0) = P.(T) .
Hence we will only obtain A_[ for 1€ (0,1} by taking

- 1 . - ivalen~
R = to-ty iee )_t(t) s(t + e nl) y OY equ

¥ 2
. )

BT(r) = 1 [A_I_Log(e 201l .

tely

Conclusion. Let v be in Hl(Bn,ﬁ+) which verifies

vl . u*|au“ . It is easy to find a sequence T and a
3B

sequence v which verifies

TkE (0,1}, T i

. 11 11
¥x € 3B" . vk(x) = (x sm('rk 5 ), a cos(Tk 5 M)

v

Yk

Using the following result, we have

(3.55 E(u,rk) < E("k)

We now pass to the limit

- +1]
aZ(M , obviously, u_ ~+u H](Bn.Rn_ ) where
2 1 1
(n-2) Kk
u (x) = (% sin 8, (r), a cos ().

. If



So E(u|)<E(v) and u, is a smooth and radially symmetric

minimizing map.

. If 2t » Adnl)
(n-2)

lower semicontinuity : E(u, )< E(v).

I +1
» obviously uL—au, H (Bn.Rn ), and by
k

And it is not difficult to see that these functions are
minimizing in Hl(Bn,N) ingtead of H]('Bn,ﬁ+), because for
every map u€ HI(Bn,N), if u - (uI,]uIII), then E(u+) -
I, n=—
E(u), and u*EH (B ,N).
This completes the proof of theorem 3.
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