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Inpressive developments have taken place in theoreticaj Physice
over the past decade or so. Gauge fleld theoriee have led to the
unification of weak and electromagnetic theory while string and
superstring theories show promiss of unifying gravity with the other
known forces. These major advances could not have been occurred wera it
hot for developmwents in twentieth century mathematics which evolved
1ﬁdepandantly ot such applications, The language of connections and
curvature on principal fiber bundles hae become part of many
physicietas? vocabulary. More recent work on superstring theory has
made significant use of generalizations of the Atiyah-Singer index
thecrem, Riemann surfaces and Teichmuller spaces. Mathematics as wall
a8 physics has also profited from this interplay as illustrated nost

dramatically by the recent results on 4 manifolds of s. Donaldson, M.

Freedman and others,

In thie note, I will talk about a more algebraic, or perhaps
homological, 1link between math and physica; what A.M. Vinogradov calls
the Algebraic Topolegy of Differential Equations (71{8}. I will
illustrate thias theory by presenting some partial computations for the
cohomology of the Dirac and the Maxwell equations, This paper will end
with a statement about a long exact seguence linking the cohomology of
these theories with that of Quantum Electrodynamice. It is my hope
that the methcoda presented here can be extended to Quantum

Chromodynamice and possibly to super symmetric thaories,

* Partially supported by the US Army Research Office through
The Mathematical Sciences Institute of Cornell University



This note should be considered to bs a brief and incomplete sBurvey of
the riethods in this fleld with just an indication of some of proofs and
tha scope of the applications. No sophisticated knowledge of physics or
differential equations is assumed, however some familiarity with
algebraic topology would be useful. The interested reader is encouraged

to consult more detailed references for generalizations and proofs [1]),

(51, (6], (7).

Section 1: Dirac Equationa for Free Electrons

COver a half century ago, Dirac wrote down a pair of relativistic
equationa to describe a (free) electron [2]. We will introduce these
equationa below in a simplified context and carry them along to
illustrate the variational complex.

(1) 1«“auw -my =0

(2) 18, %" + mp = 0

In this equation, ¥ is a map (here taken to be smooth) from Minkowski
Bpace-time, M, to c‘, 4 dimensional complex space. The coordinates on
M will be written variously as (x"], (xo,xl,xz,xs) and (t,x,y,z). The
symbol, 8u, is shorthand for gx ,
electron, and

n denotes the mass of the

+* for u=0,...3, are the 4x4 Dirac complex permutation

matrices. Por example

(3) T = 1 and % = -1

-1 -1
-1 i

The conjugate equations involve (2) ¥ = *'10, a slightly modified

form of the hermitian conjugate of ¥. The Einstein summation
convantion will be in force on the repsated indices p = 0,...,3 B0
that sach of the Dirac aquations are 4-vector equations with 5

summands. For example the first component of equation (1} will be

(4) 10,9, + 1oy, - Oy + 18,9, = mp,
As these squations are first order linear PDEs, it is not difficult to
find solutions. Indeed tha following plane waves

(5) ip.x

y(x) = wva
where p is the 4 vector (E,P) and p.x « Et - B ¥ can be sean to satisfy
the Dirac equation and its Dirac conjugate, provided Ez = 2+ 13[2.
The solutions with E > 0 are called electrons while those with E < 0
are called positrons. In addition the solutions have another degree of

freedow which is identified with the spin of thase particles [2].

Faw aquaticns in particle physics are quite as simple as these for
the free electron; in general equations are non linear, of higher
order, and with no elementary solutions. By an appropriate qualitative
analysis of the equations, howsver, physicists and mathematicians have

been able to find various characteristic quantities of the solutions



which have important physical interpretations. For axample one is
interested in knowing whether solutions to the equations of moticn
conserve energy and momentum. Both the Hamiltonian and the lLagrangian
formalism can be very useful in understanding these and other features
of the equations of motion. 1In this note we will consider only the

lagrangian or variational approach.
Sectlion 2: vVariational Methods

A popular method for studying sguations of motion more complicated
than the Dirac equations is to write down an action functional.
Classically this action is the integral of the difference between the
kinetic and potential energy of a physical system, Hamilton's
principle of least action states that the equations of motion are given
for that function which mninimizes the action. 1n general the action

integral is
(6) A(u) = J, L(x,u,8u) d®

where L is a function, called tha Lagrangian density, of the
independent variables, x = (»*), the dependent variables

u = (u") and the derivatives of these dependent varlables

gy = (6“u“). The integration is carried out over the m dimensional
domain, M, of the independent variables (o }. Standard techniques from
the calculus of variations imply that under suitable smoothness
conditions the critical points of the action functional are functions

u = f(x) which satisfy the Euler-Lagrange equations {4]):

(7) E (L) =gL - 4 -0
a (F) au” ot a?ﬁLu“)

The Dirac equations are the Euler Lagrange equaticns for the
action functional with Lagranglan density

(8) L(¥,¥%) = ¥ t11"au--)w

To Bses this, note that (2) follows from:

(9) 8L _ _= e . 4L - 8,9 (17%)
and (1) is given by:
(10) L o riba _ 9L _ = 0.

oy = (175, - my, 68, %)

One of the advantages of the variational methods is that symmetries of
the Lagrangian density correspond to conservation laws., For example if
the Lagrangian is invariant under space translations, if the physics
described by these eguations iw the same in New York as it is in Italy,
then this implies that the total momentum of the system is consarved,
Such invariance of the Lagrangian density follows if L(x,u,du) =

L(x+c,u,du} or equivalently if 8L = 0. This obviously occurs if L
ax

does not depand explicitly on x as in (7). Similarly if thae Lagrangian

is invariant under time translation, if the physicse is the same



Yesterday and today, then anergy must be conservead.

The precise mathematical relationship between symmetries and
conservation laws was formally established by Emmy Noether in 1918 (3]
and redigcovered by countless phyaiciats in far less general settings
over the next halr century. We illustrate this relation by considering

the invariance of the Dirac Lagrangian under a global or rigig phase
shift:

(11) v+ el% and j. ™85
This transformation Clearly leaves the Lagrangian density invariant ang
shifts the phase of the solution (5} by the same amount at each point
in space-~time. Noethar's recipea for Producing a conservation law

implies that the 4 vector (+*"%) has o divergence:
e 3) By o+ Tb
(12) W@t = 0,3 P+ 5 (a"w)]
+1 [ =y - -iw]
i
= 0 4+0

Note that we cap rewrite this equation as

{13) 2 %% = - v 3
at

or after 1ntagrat1ng over a large ball B in r? we get

(24) g £o0% d'xm s o Gat

= fap V9 4% — o

provided that y -»> o sufticiently rapidly as |x| => =, {,a., that the

electron is localized in space,
Physicists interpret thig integral quantity,
{15) Igd 1% a’x = fg3 'y alx

as the total charge of the system and thus global phase invariance
implies charge conservation [(2]. fThis motivates the definition of a
conservation law as an m component vector field with o divergenca.

It we tried to make a different change of bhase at each point in
Space~-time, i.e, if we assume that O(x) 1is a {smooth) function of x,

then the Lagrangian {7) is no longer invariant under this symmetry:

(16) i85 (18 - m) ol =y - 1¥m(3,0)y

The techniques of gauge field theory calls for adding terms to the
Lagrangian so that thig invariance under such a local phase shift will
be restored, The resultant theory for Dirac equations, quantum
electrodynanics or QED, contains Maxwell's equations. We will explore

8ome consequences of thisg in Section 7 below.



Section 3: Variational complex

Information about Lagrangian densities, Euler Lagrangae aguations,
Nosther symmetries and other features of differential equaticna can be
encoded and studied using homological methods. Basically a system of
differential equations can be translated into a (larger) system of
"algebraic® equations on the infinite jet bundle over the original
domain. A deRham type complex can be constructed and klgraded into a
bicomplex. Various groups and differentiale in this bicomplex will be
related to the concepts discussed abovae. In particular the set of
conservation laws for certain Eulaer lLagrange equations can he

identified with a cochomology group of this bicomplex.

Although this theory has been developed in great generality, for
ease of exposition we will restrict our attention to a system of
differential equationa whose solutiona will be functions from
£: B® -> " which satisfy a system 9 of kth crder nonlinear
differential equations. For more detalled history and development of
this theory see [1], (5], (6], (71, [8].

For example a solution to the first order Dirac equations can be

considered to be a map
(17) vi:RY ogtagt

which satisfies (1) and (2) or alternatively as a section of the

(trivial) vector bundle Rix R%-—> g4,

The graph of a solution to a system 2 1ig a subset of
" x R". The topology of the union of all graphs of soluticne tends
not to be very interestings it often is the whols space. To get more
topological structure we extend or prolong the differential aquations
to a set of "algebraicn equations on the jet bundle asscciated with the

projection R® x R® -y g®,

In our eimple, local coordinate, model, we may define the kth jet
bundle simply am a product of euclidean spaces and choose coordinates

for the jth factor as follows:

{18) I% w R RYy BR™%. .. k™%  for n = ‘n;k-l,
The coordinate system for jth factor can be taken to be symbols u;

where I = (11,12, ...,11 } ranges over unordered saguences of integers

from 1 to m.

If u = £(x) is a smooth golution to the system ®, then the graph
of this function can be extended or prolonged to the jat gpace using

the Taylor polynomial of f:
(18) prif) (x)=(x, £,8,8,...,8,1)
To capture the full power of this mathod, howaver, it is necessary

to extend this construction to the infinite jet bundle J', the

projective unit of Jk, and to prolong or formally differentiate the

10



original system arbitrarily often. The solutions to this Prolonged
equation will form a subbundle of the infinite Jet bundle. 1t ig this

space Chat we wish to study,

Section 4: The Variational Bicomplex

Consider first the deRhanm complex of J°, Using the given local
coordinate system, a hasis of fundamental l-formg can be written as
&, au® , ang dug + Where u, corresponds to the appropriate higher
partial derivative of @. Coefficients of theme 1-forms are smooth
functions, f(x,u,ﬂuu,...) = fl{u), or finitely many of the variables X,
u, and Ur- To aid in the study of this Complex, we consider the
bicomplex np'q(J.) generated by differential forms

(20) £lu} au®? & auis A h dui%s gy A, s axp.
q

1

The deRham differential q can be written as the sum of the
differentiala
(21) dH=nP:q ~qPtl, g and dvzﬂp'L'ﬂp'q+1

with dev + dvdﬂ-o.

using standard Spectral saquence techniques for a bicomplex tt], 5],
[7]. We will illustrate only the most elementary features of this
Procedure below. First the cohomology with respect to the horizontal
differential will be the El term of the spactral sequence. The

11

computation of dH is somevhat more complicated than that of the
ordinary derRhan differential. pven though we consider the variables u,
and uy to be independent, the formula for dH on a p,0 chain must take

into account the chain rule. por example:
- 2
(22) dy(u u dy) u,” dxdy + u u, dxdy

The chain rule also comes into play in the computation of dﬂ on
duI:
(23) 4y (duy) = dup » &

In the cape at hand where the base and fiber are suclidean spaces,
the horizontal cohomolegy is almoat completely trivial as would be the
case with ordinary deRham cohomology. The axception occurs in the {m,0)
group, in the lower right hand corner of the bicomplex, Since o®*1,0
0 for dimension Treasons, all elemsnts of g%:0 are cocycles. However
the Poincare lemma does not apply in this case whera the coefficients
of the basic forma are functions of the “dependent® variab)eg as well
as the independent. Indeed it is not hard to compute that the (m,0)
form L[u]dnx cobounds if and only if the Euler Lagrange equations (7)
on L are identically ¢ [4].

This fact allows us to consider elements of Eg'q = yPed (n*":dH)
28 equivalence classes of Lagrangian forus for a given system of Euler
Lagrange equatjions. More precisely, two (m,0) forms, le"x and de'x,

Yield the same Euler-Lagrange equations if and only if they differ by a

coboundary, i.e, if and only if there is a form N - nud"lx"

12



with dn = (L1 - Lz)dmx. This in turn means that the m component
vector field [nu} has divergence aqual to L) - L.
The vertical differential on the Lagrangian forms is computed in

ftar more strajight forward manner:

24 Ld®) =3 3L au® d™x
(24) dy( a,raquf) !

For example if L depends on at most the first partial derivatives of u,

then

du

(25) dy, (La"x) = [g_&a (au®) + 8L, du: } d"x
H

On the other hand, ona can compute that the horizontal differsntial on

the (m-1,1) form

a . m-=1 " (- ] al m
(26) dﬂ(%{;adu L S [aug-ﬁ‘a au® | %&a du“]d x
n [

In summary the Euler Lagrange equation are given essentially by the

differential d1 in the E, 8pectral sequence:

(27) dy (La®x) = E (L) du” mod Im(dy,)

A more sophisticated approach to this relation between vertical

differentials and the Euler Lagrange operator can be found in [1].
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Section 5:; Noether's Theorem (special case)

Now consider the subset of J" consisting of solutions to the
prolonged Euler Lagrange % equations of a fixed Lagrangian [Ldnx] in
Hm'o( n(J.):dH). This means that we consider the set of solutions in
I° to DI(Eu(L)) = 0 for all derivatives DI‘ Under relatively weak
regularity conditions, this solution set ia a submanifold of J" [6]
[7]. We would now like to characterize some of the groups in ﬂp'q(ﬂ) =
1'ﬂp‘q(J-) In particular we would like to indicate the ralationship

between variational symmatries of the Lagrangian, conservation laws and
a®"1.0g),

Coneider firat a vactor field v on J of the form

ve=1Ig/u) au”, The prolongation of this vector field to J° ia the

sunm

a

(28} pr(v) = % DIQa duI

which has only finitely many non zerc summands since Q{u] depends on
only finitely many variables. This vector field is called a
variational symmetry f{4) of the Lagrangian L if

pr(v) (L) = 0.

For example if v = Gydy - 899F for @ constant then

14



{29) Pr(v) = v & Bwuawu... + 9¢u8¢".:.

and pr(v)(L) w L - [, = 0.

Equivalence classes of such symmetries can be shown to ba in cne
to one Correspondence with cohonology Clagses of dagree (m~1,0),
Provided the equationg are totally nondegenerate in the sense that they
and their Prolongations ars of maximal rank and that they are locally
solvable [4]. This class of diffarential equations includes thoge of
Cauchy Kovalevskaya type. We illustrate thie correspondence for the
special case where I is a function of y and its first partial

derivatives oenly, i.e., L is a classical Lagrangian. 1In thig case
{30) pr(v)(L) = g 8L+ 8 .q (0L.)
“ﬂu ka du
M
We claim that the cochain

(31) g 8L aP-lk
agf;:

is a dH cocycle:

12 ®-1 5 - ]
(32) 4, (Q, 2L, 4% (0,9, 2L, + %08k, a"x
[ H ]
= (PY(VI(L) - gk (1)) =0

In the analysis above, we hava interpretaa elements and

15

differentials in the lower right corner of the bicomplex in terms of
Lagrangianas, Euler-Laqranqo equations and conservation laws, A
remarkable result of Vinogradov [7] (sae aiso [1]) shows that for
totally nondegenarate differential equations as detined above, the
cohomology groups, with respect tc the horizontal differential, vanigh
except for the last two columns, provided the base and the fiber are

contractible.

Section 6 Maxwell Equations

Consider first the Classical Maxwell equations for the vector

fields E and B from Minkowski space time to space.

(33) v.B =0 vxE - g{ -0
V.E = p VB + JE = 3
8t

It has long been known that these equations can be studied in potential
form using the language of connections and differential forms. Assume
that a = Apdx”

is an arbitrary smooth 1 forn on flat Minkowski space M. Alternatively

wa may consider the related 4 component vector field (A ):M — gY,

u
Then the 2~form

(34) da = rwdx"dx"

is called the force or curvature form. Indeed i1f we set

16



(35) B = (Fyy Fyy Fpy)

E = (Fy;,Fop,Fo3)

- 0 '—"._.
and J = (p,.j) = pdx" + vdx
then the equations dda = 0 anddsda = J are precisely the

Maxwell equaticns above. If J = ¢ thaen we say that the equations are

sourceless,

A Lagrangian for the sourceless Maxwell equations dac ia
(36) L(A,) A% = -1/4 FhuF"”' da~ *d a.
The Euler Lagrange egquations read
(37) E L{daz) = 8,F, =0
or d*da = O
Consider now the variational bicomplex for the sourceless Maxwell

equationg qP:9 (42¢) Then the Noether conservation law associated

with the symmetry A“ — Au - (a"e) is the 3 form

(38) d0~%ada = d(B*ada) - 6(d*da)

€ Imdy € 07 %(daz)

17

Our recipe produces a coboundary and thus a trivial conservavion law.

Note that *da is a cocycle in nz'o(lac). Thie represents a non
Zero cohomology c¢lass related to the first Chern claes and thus appears
to contradict the two line theorem abova [1). However, the Maxwell's
equations are underdetermined in the sense that there 18 a non trivial
algebraic relationship among the derivatives of thesa equations

(39) 8" E (L) = 0

Indeed Hoether's second theorem (see [3] {4]) implies that such a
relationship exists whenever a system of differential equations admits
a family of symmetries, in particular whenever a theory has a local
gauge 1lnvariance. Note that the complete computation of the cohomology

of these equations is &till an open problem.

Section 7: QED

In one of the major successes of physice in this half century,
Maxwell's equations and Dirac's equations have been combined into a
remarkably successful theory called quantum electrodynamics, [2). As
noted in section 2, the Dirac Lagrangian is not invariant under local
gauge transformations. The error term produced can be cancelled by
including more variables in a process called minimal coupling. If we

add the interaction term

T u
(40) Lype = V1A

b Y: |



trivial.
to the birac Lagrangian, then

vV = 0y 3 - 093y + (8"9) Bhp is a variational symmetry: This result suggests that one has a long exact sequence of
cohomology theories

(41) pr(v) (Lginae * Lyne) =0
(45) 1% (249)» 12/%(dae) » 13O (9enac) AT TT TN

and so invariance is restored. As thie term is reminiscent of [*dx}] [;1"*]

Maxwell's equations, we add the gauge invariant Maxwell Lagrangian to

get the full QED Lagrangian: In this sequence the connecting homcmorphism will send the "Chern”®
class {#dx] to the classical Dirac current.

(42) Logs = F(iv"(8, + A) =m) oy - 1/‘rhvr""

One could conjecture that similar long exact sequences relate the

The Euler Lagrange equations are cohomology of gquantum chromocdynamice with the cohowology of quarks and

gluons. A precise formulation of such a conjecture would involve a
(11u(0p + lh) -®) ¥ =0, detailed discussion of nonabelian gauge fleld theories.

its Dirac conjugate, and
{43) 31"Au¢ - %da = 0,

l1.e. the “covariant® Dirac equations and the Maxwell equations with a

source term,

The gauge Symmetry vector field (41) produces a 3 cocycle

(44) @ $1"A”+d3x“ - d@"%da « d(f*da) modulo equations (43).

This indicates that the conservation law (44) is cohomologically

19 20
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