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Introduction

In this note we present a new approach to the Morse theory which ia based
on a generalization of the Conley index to non locally compact spaces. The
variant of the Morse theory which we cbtain seems suiltable for applications
to nonlinear functional analysis. We refer to a papeerrepantion [_Bj for
some of such applications.

Since we are not well acquainted with the very extensive literature on Morse
theory, we did not attempt to provide & listing even of the main papers on
this subject. We apologize for this to the readers and to the authors.



~§1 - The homotopic index.

Let M be a metric space on which a semiflow n is defined i.s. a (continuous)

map
+
N:R xHN—> N

such that N(0,x) = x and N(E ML, x) = AL+t ) (e, R, xen.

2
When no ambiguity is possible we will write x*t instead of nt,xj.

A semiflow which is defined for every t € R is called a flow. If X is any
subgset of M and T a positive constant we set

o0 = 6 x,m = {x ¢ # | x[o,7] e Jaf|J ne,x)
t20

If N is a flow, clearly we have
T
¢ = {xenm|xf-r1]ex) - n nit,x).
te[-r,7]

Also we get
T=Z(m ={xcM|x1sclosed and I T > 0 s.t. 6 (x,n) cx)
where ;( denotes the interior of X.

Def.1.1 A pair of closed subget of X(N,N,} with No © N is called index pair if
‘IT(N— v, ) C N-M

(L} ©

{11) N, is positively invariant with respect to N (i.e8. x ¢ Ny and
x[o,t] e x 2xot]en )

{111) Mo 15 an exit set for N (i.e. x ¢ N ana x-[0,t] ¢ N >yt e {Co.t]

such that x+t* ¢ Ng )

We say that (N,No) 1s an index pair for Xe¢ I if
(iv) N - Ny €X and there exists T > 0 such that GT(x) C N - Ny

Now it ls necessary to recall some concepts from ths hamotopy theory.
If X is a topological space and A 18 a closed subset then X/A denotes the spa-
ces obtained by X identifing all the points of A.
Two spaces X/A and Y/B are called homotopic equivalent if there are maps
¢ £ X/A+¥/Band § ¢ ¥/B+X/A such that ¢ [a)) =B8], w([B]) =[]
and such that ¢ o ¥ and ¥ o ¢ are homotopic to the identity by homotopies which
leave the points |:A:| and Ea:[ fixed respectively.
The class of all spaces homotopically equivalent to X/A is called homotopy type
Of X/A and denoted by [x/a] .
The homotopy type of X/X 1is denoted by © ; if X is a contractible space, the
homotopy type of X/¢ is denoted by 1. Morever, by convenction, we set ¢/ = 0.

Def. 1.2 Por X € I, the homotopy index of X is the homotopy type of an index

palr (N,Ng) relative to X; in formula we write

hX) = (X, = [N/% ]

The definition 1.2 makes sense if we prove that

{a) ¥ X € I there exists an index pair (NN} for X
(1-1)
N
(b} 1f (N,No) and {l,No) are two index pairs relative to X,
then [N/8] = [n/Ma]

In order to prove(l-]) sowe work is necessary. Firat, we need an other notation;

for T > O we set



T
(1-2) Tix) = I'Ttx.m ={xec(x,m | x-f_'n.'r] nax = ¢}
We need now a technical lemma:

Lemma 1.3 Suppose that X, ¥ & I; than

(L) Xcy ~ GT(X) c GTW) for every T > 0

(14) T,>T>0 GT‘(x) c GT(XI

(111) GT“T‘m . GTHGT‘(xn

(iv) 1£6 (K c & then 670 ¢ int |'_'s o)

{v) G {X) i8 closed

{vi) if X & T then c {X) and n(t,X) & L

(vil) I‘T(x) is closed -

{viii) PT(x) < 3GT(x)

Proof (1),{11) and (111) follow sasily from the deffnition of GT(K) .

(1v) First of all cbserve that if
T -
{1~3) x €6 (X) , then x*t is defined for t € L-T,TJ i.e. we can go back in

time up to the point -T; and this by the definition of GT(x) .
In order to prov- (iv) we arge indirectly and we suppose that there exists
y €6°T(0 7 26T (X). Ten there exists a sequence y, + y such that Y L1, 1]d .
This implies that there exist tines th & [—'1' 'I':I such that yjet, ¢ x; we can
extract a sequence tj such that t} + t, 50 we have that Ynot} + y*c ¢ 3%. Since
veex, y[-2721) ¢ x and 50 v+t ¢ 6" (x1 (since e} s 7.
And this contradicts our assumption that GT(I) A X = @,

(v} We have clrm = { h] nie,x)} n (xe x [ x{O,T] C X}
u[o,'r_

L3
The first set of above formula is closed since for every t > O nit,X) is closed.

If wa set A = nit,+), then { x¢ X | x{o,'r:l CX} = Q A;:l(x).
: t¢|0,7)

T
S50 also thip set is closed. Therefore G (X) is closed.

(vi) GT(I) € Tby (dv). n(t,X) € I by the continuity of n.

o -
(vil) Let {x } €T (%) with x * X. Then there exists € ¢ I-O Tj such that
x 't e aX. Let t' be a lubsequancc of t converqlm o soma t iLO TJ

then x -t' + Xt & 3X. Therefore x & 1" (X).

(viii) ret x ¢ I'T(x); then 3 t & [0,'1‘] such that x*t & dX; thus there exists
a sequence y 1 xc (chenotnl the complement of X in M) converging to
x°t. This implies that y (-t} + x. But y (-t} & G {X), therefore
% €3 1.

Now we can prove (1.1) a).
Theorem 1.4 (Existence of index pair). Let X ¢ [ and let T be large enough
that G (x) ¢ . Then
© ), I x)
is an index pair for X.

Proof By lemma 1.3 {vi), (vii}, GT(X) and ]‘T(x) are closed. We have to check

points (i),(1i) and {11i) of Def.1.2.
T T T
(1} By lemma 1.2 (viii), G (X) - I (X) = G (X); so by lemma 1.2 (v), the

conclusion follows,

(11) Let x ¢ I'T(xjmd suppose that
(1.4) x[0,t] cc x)
we want to prove that x-[o,t] c I‘TIX) » Buppose that this fact 18 not
true; then there exists ;:— € [O,t:l such that x-: *I’T(X) .
Now set



t* = inf {t€[0,t] | xov & M}
Clearly t* € [0,t) and
(a) x*t* € I‘T(x) since I‘T(x) is closed by lemma 1.2 (vii) ;

(1-5) .
(b) x-(t'+£n) § I (X)) (with € >0and € 0).

T
If we set y = x*t¥, by (1.5) and the definition of I {X) we have
ylor]anaxag
yole T]n x = ¢
From the above formulas we have that

(1-6) Y € dX.
On the other hand, by {1-4), Y« GT(XJ and hy our assumptions y ¢ X ; this
fact coptradicts (1.6).

(1i1) It 1 trivial

R
Theorem 1.5 (Equivalence of fndex pairs}. Let {N,NO} and (N,No) be two index
pairs such that exists T > O such that

T oA,
GIN-NR)CN-N and
o o

TA A —_—
GIN-N)CN-N
o o
Th NN N .
on [ww ] = (om]
Remark . The proof of theorem }.5 ia esgentially contained in Salamn| S]

Be gave a short and elegant proof of Conley's theorem of equivalence of index

pairs (in the compact contest}, Salamon's proof can be adepted to cur case.

—_— A
Sketch of the proof of th.1.5 . We can suppose that G (N - N } Cint N - u v

T W
and that G N - N ) € int(N - N ) {if not it is enough to replace T by 27 and
use lemma 1. 2(1v). Now let f : NT/N -+ N/N be defined as follows

- N \
[x.37] 12 xfo,2r] ¢ N-W oorx 7] ¢ Nj- N
t(xh = '

| [no] otherwise

the function £ is continuwous (for dcta.i.l of the proof see rS-] lemma 4,7).
In an analogous way we can define a up . N/N x| T, =)+ N/N
We have to prove that f s f and £ e f are homotopic to tho identity in N/N
and N/No respectively.
For t ¢ [0,T | define the map h ; [o.T] x N/N_ +N/N_ as follows

([x-6t] 1£x{06t] ¢ N- N
h(t,[x]) LI _
[ [No_.l otherwise.

It is easy to show that h is continuous and that

hit xp = £ o2 and hio{x]) = S
T [+]

#a N ]
In the some way it is possible to constructa homotopy h : |:0.'r] x N/No -+ N/N N/

Comllﬂlﬁ If (NN ) and (N, N ) are two index pairs for X, then]uu'[-
- [N.N ] in particular {1-1} (b) holds.

ANy
Proof. If (H,No) and (N.Nol are two index pairs for X, we have

T T N A
G (N - NO) CG (X)L N~ N'o by definition 1.1

and

"
CN-N)ccmeN-N .
[} o
The conclusion follows from theorem 1.5. /4

So at this point h(X) is well defined. An other consequence of theorem 1.5
is the following Corollary

Corollary 1.7 . Let X, Y ¢ [ and supposie that J T2 0such that



T
(1-7) G(X)c¥Y and GT(Y) < X
Then h(X} = h(¥).
A
Proof. Let (N, Nol and (N,ND) be two index pairs for X and Y reaspectively. Then
T T
{1-9}) G IN-NO) € G (X) €Y by definition 1.1 and (1-7).
N
Stnce (N,N ) is an index pair for ¥, 3 T, > O such that
T
1 nooA
G (YY) C int(N -N)
1 o
Therefore by the above formula, (1-9) and lemma 1.2 {i11i}, we have that
T+T

1T — Ao
G (N-N })C N - N
o o

For the some reason thers .xisﬁ T2 » O such that

T+T—-—-—

. 2% A
G ¢ (N-NJE&C N-N
(=] o

Thus by theorem 1.5 (replacing T with T + m(Tl'Tzn the conclusion follows.//
Corollary 1.8. For every T > 0O h(GT(x)) = hiX).

Proof. Trivial., J

Corcllary 1.9. If there is T > O such that GT(x) = ¢, then h(xX) = o.

Notice that Corollary 1.9 cannot be inverted as the following example shows,

Example 1.10. Taka

M=R ; nit,x} =xt ; xX=[0+)

T
Then h(X}) = 1 but 6 (X}* ¢ for every T > O.
Howsver thera is a good test to see if the index of a set i8 O.

Theorem 1.11. Supposs that X € [ and that

{1-10) for every x £ X, there is t > O such that xt € X. Then h(X) = 0.

We need soms lemmas tp prove theorem 1.11.

Lemma 1.12. Suppose that (N,No) is an index pair and that T is a positive con-

stant such that
(1-11) x» [0,1] c N ~ N,

Then there sxists an open neighborood V of x such that for every y ¢ V A N,

ye[oricn -N .

Proof. We argue indirectly and suppose that the conclusion of the lemma is not
trua. Then exists a sequence xn + X (xn € N - NOJ and a sequence tn € j'o. TJ
such that
X+t N-N .
A S
We set
L -
£ = sup {t ¢ |..°"",.:| such that x+[0,t] ¢ N}
a
t 4is a bounded secquence; &0 we can suppose that it is convergent to some

R o -
t ¢ l_O,T.]. By our construction, xn- tn € No 3 80 x*t ¢ No. since No is closed.

This last statement contradicts {1-11);s0 the lemma is proved. [/

T
Lemma 1.13. Let (N, Nol = (GT(X),I' (X)) be an index pair for X (cf.Th.1.4).

We set

- ]
v={xeN|]té| o 2r] such that xst €N}
e :
where N denotes M - N.

Then U satisfies the following properties

1) " U is relatively open in N ;
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(i1} given two positive constants t.l < tz such that
::-t1 &€ U and x.Lo,ti_‘ N (1=1,2)
then for every t € Etl,tz_-l s Xabt EU

(i14) N €0
o

(tv] (U8 ) 1s an index pair and | U/N _] o .

Proof. (i} and {(1i) are easy to check.

In order to prove (iii) we argue indirectly and suppose that there is x ¢ N

such that x-|_0 ZTJ ¢ N. Since N is positively invariant with respect t'.o N,

x-ro 2T | c No' Then if we set y = x+T, it follows that Y ¢ Ho and y ¢ G (N).
T

Since G (N) ¢ N by lemma 1.3 (i11) and (Lv] and N C 3N, by lemma 1.3 (vii{),

we have obtained a contradiction.

Now let us prove (iv), Pirst observe that Noc u by (1ii). {i) of Def. 1.1 is

satisfied since U - N = U and ¢ () = ¢ ¢ 1nt ().
To check (1i}, it {s enough to cbserve that ; N. {i1i} follows directly by
the definition of -l? S0 (E.Nol is an index pajr.

[_'E/noj = h(U) = 0 by Corollary (1-9).

Proof of Th. 1.11. Let N, No and U as in lemma 1.13, For every x & N, wa choose

a t{x) > O such that
x-[o,t[x):l cN and xXet{x) ¢ U .

This is possible by {1~10} and lemma 1.13 (14i). If x & U we choose t(x)= o,
Also if x § U, we can chooss tix} such that t(x) § N,

Now for x e N - No, let Vx be an open neighboroocd of N {open in the topology
af N} such that

(1.12)  for every y ¢ v, y-[(z,t(x]] CNand yrt(X) ¢ U .

This is possible by cur choice of tix), lemma 1.12 and lemma 1.13 {i}.

11

For x ¢ N, set V = U. Thus v }xtu i3 an open cover of N {open in the re-
lative topclogy of N).

Lat {!.',.}“I be & locally finte rifiniment of {V, }xﬂt which sxists since N is
a metric space.

Gbserve that,by our construction, for svery 1 € I, there exists tiz 0 such that

(1-13) nELVICU and  ng I:o.tij,vi) c N,
Now let {B (’1)}1 be a partition of the unity relative to {vl.]i!I i.e. a set
of function B : N +R whose support is vi and r Bi(xl = 1 for every x € N,

é
Such partition exists since N is a metric lpaco.1 t

Now set

o) = p B &IE,
161

Clearly Tix) is a continuous function. We claim that

(1-14) xeT({x) é U .

In order to see this, fix x &« N and set
¢ () = nin(ti | x e vl} N m{t1| xev}.
By (1-13) . B, ® €U (=120 andan((oe ] DN,

Therefore (1.14) follows from lemma 1.13 (1i).

Morsover cbserve that by our construction

{1-15) T(X) = O for every x ¢ No .
Now consider the map h [0,1] XN=+U defined by

his,x) = ni(s+*tix),x)

h is an homotopy equivalence between N and 6, and by (1-15) it is also an homo-
topy equivalence between N/No and E/No .
Therefore, by lemma 1.13 (iv)

nxy = [ )= um]=0 . Vi
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Remark 1.14. Now, few words to compare the Conley index with our generali-
zation.
A closed sat X is called by Conley [C] an {solating naighborood if I(x) C %

whers I(X} = {x € X : a R C X} or, vaing our notation, I(x} = M ch.
ty0

Let ? be the family of isolating neighboroocds in M; then if M is compact [ = ?f
If M is not compact, in general, I c E. S0, in our approch, it was necessary
to restrict the class of sets X for which to define index pairs (and introduce
the operator GT(-)).

How, observe that the relationship (1-7} gives an equivalence relation on I
(vhich we will denote by %) .

Corollary 2.4 states that the index is constant on each equivalence class of X .
If M 18 compact, then X % ¥ if and only 1f I{(X} = I(Y) {the easy proof of this
left to the reader). :

So, when M is compact, h depends only on the maximal invariant set I(X) con-
tained in X; therefore it is an index of Isolated invariant sets. Example 1.10

Shows that this ia not the case when the compactness 18 not assumed (in fact
h{X) =1 but I(X) =¢). Concluding, the Conley index is an index of isclated
invariant sets; our generalization is an index of a clags of closed set [

which has been closen in order that the wmain properties of the Conley theory

can be preserved.

Example 1.15., Let M = E be an Hilbert space and let L be a bounded normal
invertible operator.
We consider the flow n defined by the differential equation

{1-16) X =eix

We want to compute h{X,n) where X is a bounded closed neighborood of O,

By our assumption E can be splitted as follows

(1-17) © emE'gE

+ -
where E and E are two sutually ortogonal subspaces such that exists a constant

a>0

<Lxx>za P ¥ xcE
(1-18} 2 -
< L oxx >S5 -a x|} ¥ xeE

According to the splitting (1-17),(i-16) can be written as follows

+

. + +
X =.L x

x --L-x-

+ - + 1 k4
where x = x + x with x € E andL-LEt.

Now, 1f Y is any other bounded closed neighborood of O, by 1-18, it is easy
to check that X,Y € I(n) and that (1-7) {s satisfied. Then hi{x) = h(y).

In particular we can take

+ -
Y= (BRnE)x{BRﬂE}
where BR is the ball of Radiocus R.
It is easy to check that

+ -
(¥, (an E) x E(BRn E))
is an index pair and that it is hogotopically equivalent to
(2, n E, 3B NE)} .

Also wa have

- - N -
B N E ) [s",] if dimE = N

— - “ - -
3E.N E) [5+*] = 2 1if & is infinite dimensional .

S0 concluding we have

X} = hip) =", +]

where N is dim E and remembering that I's”, '] - I:'. '] =0 .

13
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2 - Stability and homotopy invariance of the generalized Conley index.

We neaed new notation :

HiM) » {Xxc M| X is closed}

&arfnece
3(M) can be equipped with the.ﬂausdorff metric :
d _(X,¥) = sup d(x,Y) + sup d(y,X}
H
xEX yo¥

We need also the following notation

xétf—ef XcyY and dist(X,3¥) 2 §

def &
XEY <=3 Jé>0 st. xE Y.

We set

T
I =L (m = {x 3w [T 6>0 st. & (N X))} E X, and n(-,T) is
und foxlmly coatinuous }.

Clearly ZOC L .
o
Theorem 2.1. Let X ¢ Zo(n) and let N be & flow such that

L
a(nit,x), nit,x}) S e vte[-TT], vxex

where £ and t are suitable positive constanta, which depend on X and n. Then

W) XeI(m
Q

~
(ii)  hi{x,n) = h(x,n}

Before proving theorem 2.1 we will see two important consequences of this

theorem.

19

",
Corcllary 2.2. Let X,n,n be as in theorem 2.1 and let ')\(' be a closed set
such that

"
(2-1) da(x,x) < £

where du(-,-) is the Hausdorff distance and € is a positive distance depen-
A
ding on X,n,n but not on ')'(‘
Then
A
(1) X €L (n
[

)
(14) hiX,n} = h(X-Tl) -
Proof, By Th. 2.1 (£), there exists -1',61,62 > O such that
T n G2
G (usl(x),m coX
Now choose s:1 > O smaller then min (6112,62/2). Then by (2-1),

T " A
(2-2) G o, x,m e ¥ ax
1
Moreover, by the choice of ¢ ' we have

n n,
XCSN(CHN x) N
s ) 61/2 and Ez(x) [ = N&,"“ .
By the above formula and (2-2) we get
T N T o 1 a
(2-3}) G(N (X,MCG(N (X},mME XNDX.
€y 61
The above formula proves {i).
Morsover by (2-2) and (2-3), we have that
T n o,
G (X,M ¢ X ad  Gmex.

Then by corollary 1.7 we have

"
hix,m = h(X,m.
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The conclusion follows by (ii) of Theorem 2.1%. /4

Corollary 2.3. Let N e [0.1] ;e a fanily of flow depending continuoualy
oniwith respect to the topology of the uniform convergence on X x [-T,T]

for avary T > O where X C M.

Suppose that !1 is a fanily of sets contained in X and depending uniformly on
A with respect to the Hausdorff t.opdlogy.

Finally suppose that X, ¢ l:o(nl) for every ) € |:0, 1] .

Then "“‘1‘"}’ does not depend on A.

Proof. By Corollary 2.2, for every A €] 0,1] , there exists a neighborood of

A, Ii such that

h‘xl'"x) ig constant for X e II'

Then the conclusion follows strightforward. V4 .
The proof of theorem 2.1 is involved and relies on several lemmas.

Lemma 2.4. Take X £ L and T large enough such that

(2-4) GT/Z(X) cx

Set ¢1 : int(Gletx) + GT(x)/I‘T(x) be defined as follows

[xer) 1 %7 &G (%)

b (x) =
! "] ttxericm .

Then ¢1 is continuous.

T
Proof. It ie obvious that ¢1 (%) is continuous if x-T éint(GT(x)) or x*T kG (X).
So we have to consider only the case x+T € 3GT(x) . First notice that

(2-5) x ¢ int(g? )= xfo,r2]ck’.

Moreover

17

AT ¢ GT(x) -

Lo
L
]
» |
)
[
(2]
-
x

Thua by (2-4) and the above formula x E ';- T, ':—Tj ck ana by (2-5) it fol-
lows that

- 3 - °
(2-6) x LO, E TJ cx.
We clain that
(2-7) XeT € 3G (X) ==> xoT € [P (x).

T
In fact if x*T € 3G (X} there exists t ¢ [0,2'1'] such that x+t € 3X.
3
By (2-6) we have that t 2 3T 2 T. Then by the definition of P'r(x), {2-86)

follows. So we have that

T T
XT €36 (0 => ¢ (x) = (rm]

and by the above formula the continuity of ¢1 at x follows easily. //
T T T T
Lemma 2.5. The function @2 PG (/T (X)) G (X}/I (X) defined as follows

{ x7] 1€ xoT € 6T (X)

0,0 [x]) =

.:I_ [I‘T(x) ] otherwise

is continuous.
Proof. The proof of this lemma is contained in the proof of Th. 1.5 when it
is shown that hit, |:x] } is continucus. Y/

Lemma 2.6. Let X ¢ Zo(n) and let T > O be large enough that

(2-8) a2 & x for some § > O

Then there exists 61 = dlln,x) such that

_ T 3
x € "61” (x)) => » [0, 5-1-] na =g .
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Proof. Choose 31 small encugh that

{2-9) d(xl"ﬁ) < 51 ma> dh‘r'T' xy T 5 82 14 X, X € X .

This is possible by the uniform continuity of n(T,+).

S0 we have
x €N (P () =>
b 3

Ix et s axis s, = (v 9]

d(x*T, :.1-, < §/2 wm> [s.tnca ;-‘r € ax]

A(x*T,3X) < /2 w=> [ty (2-81]

Tk 2 - [by the definition of e’ 2(x)]
1 3 ‘

l'[‘z‘T,;T]ﬂ3¥¢¢. Vs .

In the following lemmas we shall write nt {x} instead of n{t,x) to simplify the

notation,

Lemma 2.7, Take X € Eo(n) and choose T large sncugh that
T -
(2-10) Fwedmds .

LY
Let N be & flow such that

5

A -
{2-11) d(n {x}, n ) $— vxex vte|-nT]

where 61 - dl(n.X) < § 15 defined in lemma 2.6.

- T T
Let h : | 0,1] x 6 (/T (x) =+ G (X}/TT(X) be defined as follows

) Mgy * Wyp "] e No,or] ® € 6 ()
hix, {x] )=

. |: FT(X)] . othervise

Then h is continucus.

19

Proof. By (2-11) taking t = -AT and replacing x with n_n.(x} we gat

A
{(2-12) d{n

L . T
ap " Mt 0 S6/2. 56/ vaelon] vrec .

Then by (2-10), the function

"
x+n (x)

nADS GT(x) into int(GT/

o M
2(::)) for every X e|_'_o,1] .

T T T
Now consider the function g : [0,1]x G (X)+ G (X)/T (X) defined as follows

[ * g mypt0]

if "[0.21'] C GT(X)
gl{A,x} = ':|

[ [rT(x) ] otherwise .

Then we have g(i,x) = ¢2 . ¢I . {'r"f_ } vhere

[ ]
o M

“ o T T/4

LIRS N [o/1]xe ) »a "

¢1 t GT“ tX) - GT(K)/I'T(J() is defined by lemmn 2.4
T T T enma 2.5 .

o, G X /TT ) » 6 x)/ g t® defined by 1 3

8ince all the above maps are continuous also g is continucus.

It remains to prove that
RA, [x] ) = gtd, @ .
T
So we have to prove that if x ¢ T (X) then g(t,x) is constant, so that the

above equality makes sense.
By (2-12) we have

x €T (0 => 1§ L0 €N (oo

-
aw M 8
By the above formula and lemma 2.6 we have that

T
XeT X = Woor] " My " e A H 9
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Therefore g(A,x) = [PT{X)] VX é I'T(J(l . £/

Lemmas 2.8. Take T large enough that

T § T
G (X)C6G /Z(x) é X

and take 61 - 61(!.11) < 8/4 .
"
Now take n close enough to n such that

u -
W aln ., n (x)) 56 for evary x Xandt | -27,27]

@13 un N6t ¢ &
1

4 & 2 x

T T Ar .
Then the function £ : G (X) /T (X ~ G (X) /?‘m(x) defined as follows

, -y
(A * n_p0] 1 1y ¢ ) € 8w
£ {x]y =
. |:Iw(x}] otherwise

is continuous (we have used the notation &m(x) - GT(X.?]‘) and 'l\‘m(lr] = PTIX.?\‘)) .
Proof. By (2-13) (i) we set
(2-14) aM_, *n(x), x 56 vxec I

e "N (x. x ; Vxeem veel[or] .

Then, by (2-13) (11), the function RT . qT waps GT(XI into int GT/2(X).
T AT
Now define g : G (X) + G (x)/?‘m(x) as follows

g L
.{ nz-r * '}rm i “2-1- e 'er £ E’r(x)
gix) = -

[?',r(x):l otherwige .
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Notice that

n, . L") .
gix) -4*1 "LP n_T)

", T
wheras ¢1 : int E’I‘/Z{x) ‘*a‘r(x)/f (X)

T T P AT
is the map of lemma 2.4 with G (X), ' (X) and nt raplaced by G (X), [ (X),and

A,
nt respectively.

Therefore g is continuous.

It remains to prove that

£ [x]) » g .
5c we hava to prove that

x £ [‘T(x) -3 gi{x) is conatant
or more exactly gix) -[?‘(x)] .
T

Use {2-13) {i) with t = 2T and x replaced by n_Tlxl with x € T (X); then we
have

d(?i *nix,n_*"n () 4

o Tt Np T Ny 1

or

a
&‘.I(l'l,"lIl I}r(x). nT(x)) 3 6l

Since x S'T(x). ws have that nT(x) dX, and by the above formula
L
L ]
dmZT l],r(x). ax) s 61 .
Thus 'l\'l‘ *n_(x) k gr(x). S0 we have proved that
r o
XN = gix) = P

and this completes the proof of the lemma , H

Proof of Theorem 2.1. Take T and € such that (2-11) and (2-13) are satisfied

with 61 < 26

Moreover, if € ia small enough, we have also



22

(a) Ny & ¢ e

1

2
x)
{2-14)
2
(b} Fond x

Now let f : GT(x)/I‘T(x) + grm /?r(x) be the function defined in lemna 2.8.
We have to prove that f 1; an homotopy equivalence.

We clain that f : G (X)/F (X} G (X)/T (X) is the homotopy inverse of f

{}' is defined as f replacing GT(K) with E‘Tcx) , etc.. .},

£ and }' are continucus by virtue of lemma 2.8 and (2-14}.

Moreover ? ¢ £ = hi{l,+) where h is defined in lemma 2.7.

Lemma 2.7 shows that ‘t\" * £ % h{Q,*) (where """ means homotopy equivalence).
Moreover it is strightforward to ﬁhou that h(0O,*}) ~ Id. Thus £ * £ 1Id. Ana-

" .
logously we can show that £ * £ A Id and this proves Theorem 2.1.

Example 2.9. Let n be the flow defined on M by the differential equation

X F{xn .
We suppose that' Mis an Hilbert space E (or an Hilbert manifold). Let X a nonde~

generate critical point for F f.e. F(x) = O and F' (x) : T_M-»T_ M (where
X x

Txo M denctes the tangent space at Xg) 1% defined (as Frechat derivative) and it
is an invertible norma operator,

Since F'(x} is a normal operator, we have (cf. Ex.1,15)

+ -
T? M=E @E
+ -
where E is the stable manifold of 1 and E the unstable manifold.

Mow let ng be the flow defined by the following equation
X=X+ Flix)ox .

By Thecrem 2.1 it follows that
h{u,nl = h(u,n,)

]
where U 18 a neighborcod of X sufficiently small.
Therefore by the example 1.15, it follows that

(2-15) hiun) = (5509, o

wherea m{x] = dim B-.

23
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§ 3 - The generalised Conley index and compactness. .

For X £ I(n} we set

T
I{X) = Qo G (X} = {x& X | nit,x) € X for every t ¢ IR such that
n(t,x) is defined},

The following compactness assumption is very important for cur theory:

Def.3.1. Let X € L. We say that X satisfies the property (C) if for every
neighborhood U of I{X) there exists T > O such that

GT(!) cu.

Obgerve that the property (C) is hereditary, i.e. 1f X Ratisfies the proparty
(C) and Y € X (Y ¢ L), then Y satisfies the property (C).

Prop.3.2, Suppose that K,¥ € I and that satisfy the proparty (C}. Then

I(X) = I(Y) ==> h(X) = h(Y).
Proof. Let S = I(X) = I(¥). U= XnNY iz a neighborocd of §. Then, since X and
Y satisfy the property (C) there exists T > O such that

T T
G{Xlcucy and G (YycUCX .,
Tha conclusion follows by Corcllary 1.7. Vi

Def.3.3. We say that S & X 1s a (C)-invariant get if

(1) S is an invariant set
(i1) S has a neighborood U which satisfies the property (C} and
such that I(U) = 5,
.
By the remarks before Prop.3.3. and by the Prop. 3.3., it follows that any
neighborood sufficiently small of S has the same homotopy index.
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Therefore it is natural to define the index of a (C)-invariant set S5 as follows:
(3-1} h(8) = h{u) where U € I neighborood of § sufficiently small.

The following proposition gives a criterium to check if a set U & J satisfies
the property (C}.
Prop.3.4. Let U ¢ I and suppose that

(3-2) given a sequence xn € U and a sequence tn + tw such that

x'-‘ [o,tnj C U, then the sequence x . :n has a limit point.
Then U satisfies the property (C}.
Proof. We argue indirectly and suppose that there exists a neighborood V of
I(U) auch that for every T > O

cwEv.

Then there exists a sequence Yn € U and a sequence tn =+ +% guch that

t

n

E G (X} -V,
Yn (%)

If we se: xn =- yn(-tnl . then X [O,tn] ¢ U. Then by (3-2) L tn u:.-onvetgent
to some y (may be considering a subsequence). By its construction y-R € U,
therefore ; £ 5.

However, since ; = lim y we have that ; ‘ V. And this is a contradiction
PUOPEL
since V is a neighborood of S. //

Corcllary 3.5. Let M be a locally compact space. Then any compact invariant
isolated set § C M 15 a (C)- javarianl sei.
Therefore, the index (3-1) is defined for such S.

Proof. Clearly every compact neighborood of § satisfies (3-2). J/

Remark 3.6. When M is locally compact we get the “classical™ Conley theory
{of Remark 1.14).
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The property (3.2) (which was introduced by Rybakowsky [R] ] can replace the
local compactness of M in such a way that the main properties of the *original®
Conlay index are preserved {(in particular it is possible to define the index
of an isclated invariant set],

Our theory has been developed without any request of compactness, replacing
the index of an invariant set with the index of a set X ¢ L,

A compactness property, as the property (C), is required only to define the

index of an invariant set as in the original Conley theory.

Prop. 3.7. Let U satisfy the property (C} and suppose that I(U} is compact.
Then U & I'q.
Proof. Let
€= d(du, T{()}.
Since I(C) is compact then £ > Q. Then setting V = NER(I(U)), we have that

Vv € L and that, for T large enough
T
G (= v (since U satiefies the property (C)).

2
Thus ¥ g- U as we wantad to prove. jf/

Exampie 3.8. Let x be as in example 2.9, Then ; is a (C)~invariant set and

nix = (s, o .
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§ 4 - The generalized Morse index.

Lat H®{+,*} denote the Alexander-Spanier cohomclogy with coefficients in
some field F (cf. [Sp:h.
We rscall that the Alexander-Spanier cohomology satisfies the following proper-
ty which is not shared by the singular cohomology theory.

Th. 4.1. Let {X,A) and (Y,B) two pairs of topological spaces. We suppose that
X and ¥ are paracompact Hausdorff epaces and that A and B are closed in X and
Y respectively. Morecver suppose that X - A and ¥ - B are homeoworphic. Then

B*{X,A) & H*(Y,B) .

Proof. See [Sp], Th.5, pag 318, i

Now for every pairs of closed spaces (X,A} we set

PUGM = p M) = 7 [am e¥x,m] o
g0

pl(X,A} is a formal series whose coefficients are cardinal numbers; these num-
bers are known as Betti numbers.

If X is a compact manifold with boundary A, then p(X,A) reduces to a polyne-
wium, called Poincard or Betti pdlynomium.

P(X,A) is a topological invariant which carries part of the information con-
tained in the cohomnlogy algebra H*(X,A).

When A = ¢ we shall write p(X) instead of p(x,$).

Will shall dencte by S the set of formal series with cardinal coefficients.
The following properxties of p(X,A) will be used to study the generalized Morse

index.

Leoma 4.2. Let (X,A) and (¥,B) be couples of closed subspaces of a metric spa-

ce. Then
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(1} px,Al = px/afa]
(11} £ X QY = ¢ then
p{X v ¥, AU B =p(X,A) + plY,B)

(1i1) p((X,A) x (¥,B)) = p{X,Al*p(¥,B)
where (X,A) x (¥,B) » (X x ¥, X x B U¥ x A)

{ivl 1f B < A ¢ X then there uiﬁti Q(tle 5 B.t.
Pt(x.l\) + P‘;_ll.!!) = Pt(!.n) + (1+5)Q(t) .

Proof. (i) Let w ; X + X/A be the projection map. Then T 1is a homeomorphism

batween X-A and X/A = | A]. Thus the conclusion follows tl:-lm. 4.1,

(11) trivial.

(ii1]) Since (X,A) and (¥,B) are closed pairs, there is an exact Mayer-Vietoris
sequence for the HY cohomology (cf. [:Sp] pag.291) .

But every closed palrs of Hausdorff-paracocmpact spaca; is a tout pailr for the
Mlexander-Spanier cohowology (cf. | Sp] pag.315),

Therefore E‘ = H* on such pairs. Therefore the Kunneth formula can be applied

to such pairs (cf. I:Sp] Pag.249) and we get
H*{(X,A) x (¥,B)) = B*(X,A) & H*(Y,B).

From the above formula the conclusion follows.
(iv) Let us consider the exact sequence relative to the triple BC A € X ¢

8 L Eh 8
ety e B gl W s < dlgg e

and set a = dim (ker 1i%)
q q
b = dim (ker 1*)
q q

c = dim (ker &)
q q

By the exactness of (4-1) we get
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dim Bq(x,.\) - cq-l + aq {with the convenction that ¢ 1- [+]]
atm B3(X,B) = a_ +b
q q

aim 83A,B) = b + ¢
a q

Then we have

PIX,Ab = F (e +a)t
q=0 1

piX,B) = F (a+blt
oo 9 4

w

piAB) = § (b+c)t?
q=0

PIGAL + p(AB) = px,B) + §F (e +eittapmp ¢ 1oty T el
a1 q
qro q=0

The conclusion follows setting Q(t) = Fc td,
q~0

Notice that the forwula {iv) holds even ' if some of the coefficients are in-
finite cardinal numbers. /Y

Wa can now define the generalired Morse index H
Def.4.3. The generalized Morss index (GIM) is a map

i:ZI(n +s5
defined by

i -
¢ x,n} P, (N;NO}

where (N,No) is an index pair for x.
When no ambiguity is possible we ghall write i{X) instead of 11:“"“] .
Using Th,1.4. we could define the GIM in the fo llowing (formally) simpler way

T
Lt(x.m = lim p (G (x).rT(x))
ety t



30

Example 4.4. Let n, ;c_, U be as in the Example 2.9. ‘Then

T nq{sl(x) 0ed « tm(xl

q=0

by 3.9]

{0} 1f£q#k
since we have B (S , *) =
F fifqgq=Xk.

Remark 4.4', By lemma 4.2 (1), p(N,Nol = p(N/No, [Ho:l 1; so the generalized
Morse Lndex deperds only on hiX): thus it is well defined by (1-1) (a} and (b).
The above remark implies that the GIM carries less information than the homo-
topic index. Nevertheless is more usefull since it is much easier to deal with.
The following theorem illustrat.m-; the firat properties of the generalized Mor-
e index :

Theorem 4.5. The GIM satisfies the following properties

(1) if X € and for every x € X, there is t>0 such that x°t § X, then i(X)=0;
(11) 1f X € L is contractible and positively invariant, then i(X) = 1;

(11f) £ X, Y e L and X n Y = § then £(X V Y} = L{(X) + 1(¥) H

(iv) if I'|1 is a semiflow on Mlti-l.ZJ, then a semiflow 1'|xxn2 is defined on

Hlx H2 as follows
(nlx nz)lt.(xl. xzi) = (nl(t.xll, nztt.xz)) 3

th if X
en L € Z(ni) (1=1,2), we have that xlx Xz 4 E[Hlx "2' l‘lixnz)

and

i(xix xz. ﬂlt “2) - uxl. fll)-i(xzo n2) .

Proof. {1} follows from theorem 1.11; (ii)} follows by the fact that

B1X) = 1 if and only if q = oO.

(til1) and (iv) follow by lemma 4.3, (if) and (iii] respectively.

Next we are going to prowe a property of the GIM which is a generalization of

k/l/;(l - X
)(t \"(”t i 31
X | SN Y

the classical Morse inequalitias,

Def.4.6. Take xl' xz - L with i n x = &. We say that )( is over x if there
'1‘
exists T > 0 such that xl neG (x u x} i{» positively J’.nvarianr. wit.h respact

f_oG(x ux)

It x2 is over x1 or xl is over x2 then wa say that xl and x2 are n-connected.

Otherwise we say that they are p-disconnected.
Example 4.7, T : If xt n x2 = §, then x1 and x2 area n-disconnected.

IT ; Lat £ be a Liapunov function for {M.,n) and let c be a constant
which is a regular value for f{i.e. #{x) = c => £'(x) £ 0). Wo set

xll"{xt'lllf(xJISC} 1 X, {xen| £ 2e} .

Then xt' x2 € L and xz is over xl.

Def.4.8. Let X € L. A family of sets {xk}kiu is called a Morse decomposition

of X if
U

{i}) X= X1 xi
(11} xk ¢ L for xsi,...,N

-] L]
111 XN = ¢ £ k#h
(141} . xh or
(iv) xhﬂ is over JHI xk for h=1,...,N-1.

Example 4.9. Let f be a Liapunov function for (M,7) and let cl< c2< ees & CN 1

be a sequence of reqular values for f. Lat ¢ = -o and cu- += and
o

x ={xex| Cpy S £1x) 3 )

then {xk} is a Morse decomposition of X.
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The next theorem states one for the most important properties of the index

{as far as the applications are concerned).

Theorem 4.10. If xk is a Morsa decomposition of X, then there exists Q¢ s

such that

T L) =1 v Qe ¢ és

h=1

In order to prove Theores 4.9. some lemmas are necessary.

Lempad, o' . .Let X - XI u Xz and suppose that xz is ovexr xl' Then there exist
. N), {N_,N N ind irs
closed spaces Noc Nl < llz such that IH‘z, o)' { o 1), (Nl' 2) are ex pair

for X, X, and ‘Kl respectively.

2
Proof. Take T big aencugh in order that
T T
(a} xl A G (X) is poeitively Iinvariant with respect to G (X}.
T T
(4-4) by (G (X),I' (X)) is an index pair for X.

T
€) 6 1x) ¢ ftl .
We set

N = I‘T(x)
=]

T
N e XN G U T (X

T
Nz G (X).

We want to prove that NO'NI'N satisfy the required properties. We now prove

2
that (NI,HO) is an index pair for X. Let us check (i) of Def. 1.1.Since N-Nc -

T
-xlnG (X)

_— T
(4-5) ey N-N) e GUX e ) € GT(XIl c.il by (4-4}(c).
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Also by lemma 1.3 (i),(iii) and (iw]

(4-6) (W) e W = ¢ ¢ ane [T ]
Then by (4-5) and (4-6) .
. —
G { N-N ) € int(N-N ).
(] o

(11i} of Definition 4.8. holds since (xl 0 GT(XH is positively invariant in
GT(x) by Definition and l‘T(x) ie positively invariant in GT(X) by Th. 1.4.
Now let us check {(iii) of Def.l1.1. If X ¢ "1 ,and it leaves Nl at some times,
it has to leave GT(x) also, since N, is positively invariant in GT(K) . Thus
there exists t* such that x=t* € I‘T(x) since I'T(x) is an exit set for GT(x} .

T
Finally since G (Xll CN -Ho. {iv) of Def. {.l. holds.

1
Let us check that ("2'"1) {s an index pajr for X

2

T T
NZ-NI - G(X)-Xl -G(X)ﬂxz.

T P
Then arguing as we have done for G (X) A xl' it follows that "2' N1 [N

{i1} of Def. 1.1. holds since N! is positively invariant in Nz and (i1} holds
T T
since Nl > T {X} and [ (X) is an exit set for N2'

{iv) follows by the fact that GT(le [ HZ- H!. V4

Corollary 4.11. If X = Xz U Xl and xz is over xl. then there exists Q
such that

i{xl) + .1.()!2) = i{X} + (I+t}Q(t).

Proof. By lemma 4.2, (iv) applied to the triple Ho,Nl,Nz defined in lesmma

4.10. we have

p(Nngl} + p(Nl,No) = p(Nz,NO) + {(1+£}Q(e).
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The conclusion follows by lemma 4.10. and the definition of the cohomological
index. ¥

Remark 4.12. It is easy to check that 1f xl and x2 are N-disconnected, then,

for T laxrge snough

T T T b T
G(xlule G(xllvclle -nda(xtlnc(le-e.

Then
T
1(x) = 1(G (XI v le by Corollary 1.8,
T T
= {(G (xln + 1({G {xzn by Th. 4.5 {i14)
- 1(111 + 1(x2) . .

Comparing this result with Corollary 4.11. wa deduce that Qit) = 0 implies that

!i:1 and xz are N-connected,

Proof of Th. 4.9. We argue by induction. Por N = 2 it is true eince it is no-
thing else but Corollary 2.11.

We can suppose that it is true for N-1; so there exiats Ql €L such that

N-1 -1
Pt =Gl e (1+t)Q (¢},
k=1 k=t

N-1
Now, since xu is ower xk' applying Corcllary 4.11. an other time, we get
k=1

N-1
ix) + 14 -
( N) ( l}.{l xk) 1(x) + (1+t)92(t) with Qz(t} € E.

Then the conclusion follows with Q(t) = Qltt) + Q2 ). /s

If wa have encugh compactness we can define the Morse index of an isclated in-

variant set as follows (cf. alﬂ; (3-1)1,
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Def. 4.13. Lat S be a (C)-invariant set (cf.Def.3.1.), then we Bet

1{8) = 1(u) where U¢ I is a sufficiently small neighborcod of §.
From the above definition and theorem 4.10 we get

Corollary 4.14. Lat X and X be as in theorem 4.10.
Morecover suppose that xk satisfy the property (C) (k=1,...,N) and set Sk- I(xk) .

Then we have

¥ 150 « 1m0 + temon Qes .
xke1 X

Observe that in Corollary 4.14. the property (C) for X is not required.

Example 4.15. Let 1 ba a flow as in Exampls 2.9, Suppose that X and the xl;s
satisfy the assumptions of lemma 4.14.Moreover suppose that each xk contains
only one nondegenerate critical point xk.

Therefore, by the Example 4.4. and Corollary 4.14,, we get

- l(!kl
4-1 £t = 1i(X) + (1+2)Q(t) L
k=1
More in particular, if F(X} = D #£(x), then m(x) reduces to the classical Morse

index and (4-7) reduces to the classical Morse inequalities.
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§ 5 - Variational systems.

Lat £ ¢ Cl(u, R] and suppose that £' is bounded on bounded sets. If T is a
samiflow on N we dsnots by Df(x) the Dini derivative of £ at x i.e.

fix.t} - £{x}

Df{x} = max lim
+ t

t+0

K(X} will denots the set of the critical points of £ in X, i.e.
KiX) ={xeX: f'(x) =0} .

We need also an othar notation

Def. 5.1. A variational system relative to f is a couple

{n,L ()}  such that

(i) ifxEInndfx:l.shoumiad,thanUe>036>o such that

DEf(x} § -6 vxeX-NE(K(xl)

{in particular Df(x} S O ¥V x € M).
(11} d(x, nit,x)} £ a(|t|) where a is a monotone function such that afl0) = O.
b
{111} K(.A‘l } is compact.

We recall the conditicn (c) of Palais and Smale [P. SJ which is essential in
costructing variational systems.

1
Def.5.2. Let £ ¢ C {M). We say that f satisfies (P.S.) 1if any sequence {x }
— n

such that f£{x ) 1s bounded and £'{x } + O ig precompact.
n n
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If £ satisfies P.5. and we assume that

b 1 lTJ2 (M)
(5-21

ll£* ) § 5 m,

then the squation
(5-3) % = ~£'(x)

has a unique solution for every x ¢ M and t & R,

If n is the flow relative to (5-3) then it is not difficult to check that
{n,L} is a variational system for f.

However it 1s not necessary to assume (5-2} in order to construct a variatio-

nal system relative to f.

Prop. 5.2. If f satisfies P.S. then there exists a variational system {n,I}
relative to f.
Proof. In [P] Palais has proved that f admits a pseudogradient vector field

{i.e. amap F : M+ T M such that

{i] the equation x = F(x} has a unique solution for every initial
point x € M
(5-4) (il) < P(x}, £'(x) > 2 al "f‘“ } uh?ra o is a strictly monotone
function with a{0) = O
{ii1) |F] is bounded .

Now, if n is the flow relative to the equation (5-4) (i), it is not difficult

to prove that {n, M} is a varjational system relative to f£.

We now need a technical lemma :

Leoma 5.%2. 1Lat {n,F} be a variational system relative to £. Then we have
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T b,
1) 3 >0 such that G (8 1 1s bounded

b
{ii) lat c and B (a <@ 3 8 < b) ba two conatants such that R(A: u AB = &

b
Then 3 T >0 such that GT(A‘ 1 C a:

(i1i) 4if a and b are regular ulu-; for f, then A: £ zo -(Eo is defined in § 2)

b
(1v) if ¢ i3 the only critical walue of £ g Xelx £ 4 1. then
I{X} = K(X) and X satisfies the property (C).
b
Proof. (i} Take r big enocugh in order that K(A‘ l e Br (this is possible by

(i11) of Def. 5.1.}, and set

b
§ = inf {fDEix} ] s xed -B1.

By (1) of Def. 5.1., we have § > 0.

Now take
. b-a
§
We claim that
(5-5) X E GT(Ab ) 3 t e|"—-r,-r] such that x ¢ B_n Ab .
a - r a

In fact if x[-7,7] ¢ A:’ - B_, then Df(x+t) S -§ for every t ¢ | -T,T] .
Therefore b - a 2 £(x(-T}] - £(x(T)) 2 7(1' Df (x=t}dt 2 274 2 2(b-a).

The contradiction above implies (5-5).

Now if % ¢ A: - B: with R > r + aiT), by (i1) of Def, 5.1. we have that
x> [-1,7]n 2= 9.

By the above formula and (5-5) the conclusion follows.

(1) It follows easly by (i} and (1ii) of Def.5.1.

(Lii) By (1) and (ii) it follows that there exists €,R > O such that

bie b-g
a

We claim that

b-€ b
"emus nBe)c A.

Suppose that the above formula does not hold. Then there exist sequences
b b-€

¢ ¢ A andz €A nbB such that dA(¢ , z) + 0.

n a n ate R 1 n

Then, by the mean value theorem we have :
a3 - L]
e < | £y ) t(xn)| s |t (Eh)ld(yn, x )

The above formula is absurd since we have -uppo‘aed that f' is bounded on
bounded sets.
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(iv). Let U be any closed neighborood of K({X). We have to prove that a T>0

T
such that G (X) ¢ U.

Now let ¥ ¢ U be any other closed neighborood of K(X) with

(5-6) da(v, du) > o
and set
(5-71 § = intlfore) [ x e x -~ v 1.

By (1) of Def.1.5, we have 6 > o.

Now suppose that x ¢ X - U and that x*t ¢ V. By (5-6) and (iii) of Def. 5.1.,

thers exists T > O such that

el > 1.
Then by (5~7)
{5-8) £ - gtxvey| 2 61 .

Now we set €=8T and 8§ = inf{ {lpri)f : x € (Ab Y Ac—e 1nx k.
1 c+E a



Since ¢ is the only critical value of £ in X, then 61 >0,
T
Now we set T= S5 +T.Weclaimthat x { U ==> x 4 G (x}.

In order to prove ths claim abowe we luppou £ix} S c (if £(x) 2 ¢ we argue

b-a
1

in the same way).

By (5-8) we have that f{x-T)§ c-¢ .

Now arguing indirectly we suppose that

Then we

2+[tT]cx.

have

b-a > £(x*T) - £(x°T) 2 {T Pf(x £] At 2 (T-T)8 = b-a .

The contradiction above implies the conclusfon. V4
Now set
i5-91 X = (% ¢ K() |+d(K,K(X)-K) > O and K consists of a finite pumber

Theorem 5.4. Let (M,N} be a variational system relative to f. Then

(1)

(id)

(111)

{iv)

o

of connected components }.
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ifxe 3%, then it is a (C)-invarfiant set; in particular i{X) is well

defined.

A a
if {n,L} 18 an other variational system, and K ¢ .1;, then

"
LK,m = £(x,N).

This means that i(K) depends only on £ and not on 1.

ifX, K €% andk
2 o

1 1

i X €I, £l is boundeq below X(X) & '5(0. then

L(K(X})} = L{X) + (1+t) Q(K)

n KZ = ¢, then “Klu Kz) - lel + i(Kz).

b1

Proof. (i1} is a trjvial consequence of lemma 5.3.(iv}.

(il} To semplify the proof from unessential technicalities we suppose that M
N

ie a {(may be infinite dimensional} manifold and that n and n respectively are

the flows relative to the following squations

"

. "
X = F(x) = Fix) .

Now let nl be the flow relative to the following equation
X = (1-XF(x) + AF(x) A€ [o01].

Clearly for every A € [O,l:l ' {n.n’t) is a variational system relative to F and
K is a (C)-invariant set for nk.

Take I é [0,1:] and let Uy bhe a neighborood of K which satisfles the property

{C)s 1t exists by (1).

By proposition 3.7., U € E .

Then by the theorem 2.1,, i(Uy.ny) i{s constant for ) ¢ Ty where l‘x is a sui-
table neighborood of X .

This implies that 1(K,nl) is constant for A ¢ 'y for every ; € [O,l] .

Thus it follows that

~
£(n,X) = i(nor‘” = itnltx) = i{n,kK) .
(1ii) It follows by Theorem 4.5.(iii).

{iv} Since K(X) has a finite number of connected components, f X has only a

finite pumber of critical values cI,..., cN.

Set

a = inf F(X)
o

a, any number in (& ,:z

L 2 £+1) for L= 1,...,N and a = tm

N+t



k2

Now set

xg-A" nx for L=0,...,N .,

Then [xl} is a morse decowposition of X (cf£.Ex.4.9.). Then by theorem 4.9.

we have

N
(5-10) T LX) = 00 + (1et) Qee) tes.
P

By lemma (5.3.) (iv), 1(!!) - 1(x(xln. Using proposition 5.4.(iii)}, we have
1oy = 00 kxg) = 7 ormexy - ¥ 1)
£=0 g=0 1=0

By the above formula and (5-10) the conclusion follows. J

Now we suppose that M is \Hilbert manifold modeiled on a space £ {i.e.

Tx" S E Vx ¢M) and that n is the flow relative to the differential equaticn

x = Plx} .

Suppose that x is a critical point of F such that £"(x) : T M+ 7 M 1g defined,
X X

If
(5-11) £"{x} : T'n - 'rxu has & discrete spectrum , we set
m(x}) = dimension of the space spamed by the aigenvector of £ (x)
corresponding to negative eigenvalues
(5-12)

i = B “
a*(x) = m(x) + din |ker f (!to}]

We recall that a critical point x is called non-degenerate if ker £"(x) = {0}.

In this case m(x) = m*(x).

Theorem 5.5. If x is a nondegenerats critical point of f, then {x } € X ana
[ o
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m{x }
1x)=¢t ° .
o

Remark. Observe that in theorem 5.4. we do not assume that £”(x) is defined in
a neighborood of xo:l.t is sufficient that it {s defined in X, A similar result
has been cbtained in the contest of the classical Morse theory by Mercuri and
Palmieri [Me?] .

Proof. Since x is nondegenerate, it is isolated; thus {:o} ¢ !o. Now let ?{

be the flow relative to the differantial equation
X = = {x )o{x-x ) .
o o

", .
If U is a small encugh neighborood of xo, then {n,u} i{s a variaticnal system
relativa to £,

Then by Proposition 5.4. (ii)
1 ) = Lx_,m
({xo}-n XO-I'I .

But we know by Example 4.4. that uxo,?f) .t #

The next Corcllary follows straightforwardly :
Corollary 5.7. Suppose that X ¢ [ and that X contains only nondegenerate criti-

cal points of f, xl"""ﬂ' Then

N -
I i(x ) = L(X)} + (1+t) Q(t) Cel
k

ksl
Remark 5.8. Notice that in the Corcllary above we require only that £"(x) is de-
fined only when x is a critical point of £, This situation occcurs quite often
when we apply the Morse theory to P.D.E's,
We now need some other notation. If K is a set of critical points of f, then

wa set



bl

m(K) = inf m{x) be the eigenvalue of the cperator q:: {x] where 9. i3 a function as in lemma
x4k
{5-13) 5.10.
m*{K) = sup m*{x) Now chose £ < €, small enough that
xéK 1
. £ €
The following theorem is quite useful in applications : {5-15) 1-{11 <0< Ar(x) ¥x ¢ ue {x).

1
Theorem 5.9. Suppose thet U & Eo. that £ u is boundad and that £ ¢ 02(0) + Then

Thus we have that all the critical points xl. ...,xu of qE are nondegenerate,

* contained in N and by {5-15)
1(U) = "zm : £’

at &, 20 :
; 1
=u(K) L *

{5=16) 6 Smix ) sr-1 k=1,...,N
where K = K(U). k

The proof of theorem 5.9. is based on soma results of Marino and Prodl |_H.P.:| where m(x.) 1s the Morse index of x for g .
K k €

which can be summarised in the following lemma : | Now if ng is the flow relative to the equation
Lemna 5.10. Let £, U and X as in theorem 5.9. Then for every € > O there exists
a function g € C2(U) such that : xe -g'c(x)
P and if € has been chosen small enough, U ¢ Eotng) and
(1) le-9]2 se¢
¢ (u) . (5=-17) i(u,n) = 1(u,nqi
(i1} g _has only a finite number of critical points in U and they are
£ by virtue of theorem 2.1.

not degenerate
By Corollary (5.7)

{iil} all the critical points of 9, in U are contained in NE(U).
N
Proof of Th. $.9. Let A (x} $ A (x) S ... (w) & ... (5-18) poilxg) = 1O} + () Q(e) Q¢es
k=1
be the eigenvalues of f"(x). They are continuous functions of x in U since where the x_ s are the critical values of g.in U.
£ e cz(u) .
By theorem 5.5. and 5.13. we have
Now let 8 = m{K) and r=m*{K) + 1 . mix }
N R r-1 L
By the definition of m(K} and m*(K} we have that i) = 7ot = L oar.
k=1 k=1 L=g
{5.14) lslx) <0< lr(x) for every x € X,

By {5-17), 5-18) and the above formula we have

Now take EI swmall encugh in order that (5-14) holds for every x « Ne {X). This
r-1

! r & et 1{U,n) + (1+1) Q(t) .

is possible since the ll: (x}] are centinuous in x and K is compact. Now let =3 L

Af x) 3 1:(::) ... % l:(xj s ... ) Frow the definition of & and r the conclusion foliows. //
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Introduction

The generalized Morsc-Conley Index was recendy generalized to infinite dimensional
spaces by the suthor [BI} The purpose of this paper is o apply the generalized Mocse-
Conley index to problems in differential equations.

Some results are known and they ace presented here just to give different proofs using
the generalized Morse-Conley theary. However, there are some new results as Theorems
3.10, 3.14, 4.7 and relaced results. it seems vo us that these results are nos casy to obtain
using other methods,

This paper is arganized a3 follows. In sections 1 and 2 we recall basic definitions and
review results on the generalized More-Conley theary as peesented in [B1] in section
3 we give some abatracy critical point theorems and apply them to obcsin exiscence results
for elliptic pde's. In section 4 we present some critical point theorems for symmenric func-
sional snd apply chem to prove the existence of periodic solutions of a second order aystem
of ode's. ‘
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1. Definition and main properties of the generalized Moese-Conley Index.
Lec M be s metric space (with distance d(: , -)} on which a semiflow 7 is defined i.c.

3 continuous map
niRY xM-+M

such that (0, ») = x and glt,. 7{s; =) =ity + 6 %) {1, 1, € R* x €M). When no
ambiguity is possible we use the shorthand notation x - ¢ instead of nt, x). If & semiflow
is defined also foc negative 4, it is called & flow. If X is an apen subset of M and Ta positive

constant we set

GT(X)=GT(X, ) =[x EM|x |-T, 7] isdefined and - {— 7, T] C X}
where X denotes the closure of X

IMTX)={x€CT(x)|x- [0, T} N 3X % ¢}

where 3X denotes the boundary of X.
Abo we set

L = E(n) ={XCM|X isopen and 3T >0 such that GT(X) C X).

Swill denote the set of formal power series in ¢ with nonnegative coefficients (o to be
mare precise with coefficients which are cardinal aumbers).
The generalized Morse-Conley Index (GIM) is a map

it-,n): L%
defined as follows
1) LXm)= lim  J" dimiBHGT(X ), FT(X, Ak
=0

where H*(- , -} denotes the Alexander-Spanier [Sp] cohomology with coefficients in some
field K.

The limit in (1.1) exists in a trivial sense; in fact in [B1], it is proved that, for T large
enough, H*{GT(X), I'T(X)) does not depend on T. When no ambiguity is possible we
shall write i(X) instead of i (X, ).

Now we shall list some of the properties of the GIM which have been proved in [B1].

-3

THEOREM 1.1. The GIM satisfies the following properties’
{i) if X€ L then GT(X) €L and i(GT(X)) = i(X) YT>0
(ii) if X € E then (T, X) €L and i(n(T, X)) = i(X) YT >0
(iii} if X, Y € £ and 3T > 0 such that GT(X) C ¥ and CT(¥) € X, then i(X} = i(Y)
{iv) if x € X and for every x € X 31> 0 such that x - + § X, then i(X) = 0
(v) if X € E is contractible and positively invariant, then §(X) =1
{vi) ifX, YEZ snd XN Y m ¢, chen i(X UY) = i{X) +i(Y)

(vii) if 0, is a semiflow on M, ({ =1, 2), then a semiflow 9, x 7, is defined on M, x M,;
in this case if X, EE{n,) (i = 1, 2), then X, x X, €Z(n, x1n,)and

i(X, x X,) = (X, n,) - {0, 9,).

We need now some other definitions:

DEF. 1.2. Let X, X, € Z with X, N X, = ¢. We say that X, is over X, is there exisus
T > 0 such that X, N GT(X, U X, ) is positively invariant with respect to GT(X, U X, ).

DEF. 1.3. Let X € L. A family of sers { X, }, ., is called & Morse decompasition of X
if

-— N -
U] X= ) X,
k=]
{id) X €F for k=1,....N
(iii) X NX =¢ for kah
&
(iv) Xy, Bover ) X for h=1,,.. ,N—1,
. 1

Example. Let f be » Liapounov function for (M, n} {i.e. a function srictly decreasing
on non-stationary trajectories), and let ¢, < ¢, <...<ey_, beasequence of regular
values for f(Le. fix) =c, = f(x)#0,i=1,...,N—1). Nowsetc, =—and ¢y =+ o=

and ¢
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X, =(x€X[¢,_, <fix)<c,} h=1,...,N; XEE.
It is easy to check thas { X, } is s Morse decomposition of X.
THEOREM 1.4. If {X, }, . is 2 Morse decompasition of X, then there exists Q€ & wuch
that ’
N
i(X, ) = i(X) + (1 + 1)Q{e).

hw]

Now let Z,{n) C Z(n) be a family of sets which satisfy the following properties
(i) 37,8>0 such that N, [GT(N, (XIC X

.2)
(i) 38 >0 such chat n(-, T)|~. () uniformly continuous in X,

If X € Z(n}, then i(X, %) does not change for “small* perturbation of X and g

THEOREM 1.5, Let X € T, (n). Then there are constants ¢ and T depending on X and
0 with the following property.

1 X and  satisfy the following inequalities

(i) d,, (X, X)<e where d,, (-, )denotes the Hausdorf distance

(i) dinit, ), %t x)} <¢ VxEX, VE[-T,T)
then

W Xex,m

(ii) i(X, W) = i(X, n).

From theorem 1.5 it is not difficult to prove the homotopy invariance of the GIM:

THEOREM 1.6. Let X, € Z (ZC M; h €0, 1]) be a family of sets depending continuously
on M with respect to the Hausdorff meszic and let u, be a family of flows uniformly con-
tinuous in [~ T, T] x Z, depending continuously on A with respect to the topology of

the uniform convergence in [— T, T] x X for every T > 0.
Then, if X, € E,(n, ), the index

itX, n,)
does not depend on A.
We end chis section defining the index of an invariant set {(when possible ).
DEF. 1.7. We say that § C X is a (C)-invariant set if
{i) S is an invariant set

(i) S has a‘neighborhood U such chat for any other neighborhood ¥ of S there exists
T>0such hat GT (V) C V.

Definition 2.6 is justified by the following
THEOREM 1.8. If U and V are sufficientdy small open neighborhood of a (Clinvariant
set S, then U, VEX and
{U) = i)

The following definition follows is 2 natural way from theorem 1.8,

DEF. 1.9, I{ 5 is a (C)-invariant set then we set
i3) = ily)

where V is a sufficiently small open neighborhood of 8,
A study of flows where all the invariant sets are (C)invariant has been done in[RY}

2. The Generalized Morse Index and Variational Systems

We now suppose that M is a Hilbert manifold and we take f € C! (M, R), moreover we
suppose that {7 is bounded on bounded sets. We shall use the following notation.

,fjg-gxeu|a<f<b}
Pa=fsf =

K(A) = K{A, ) = (x €4 f(x) = 0},

DEF. 2.1. A variational system relative to fis a couple 5, I' with I’ C E(n) such thas



(0) /|, is bounded
(i} VXET, Ve>0 36>0

Dfix})—8& VxE€X—N,(Kix)

Dﬂ;) = max li w .
i~ t
In particular £ - fix - 1) i strictly decreasing unlem x € X(X).
(i) dix, n(t, x)) S af t| ) where o is # monotone function with a(0} = 0

{iii} K(X)is compact for every X €T

The interest of variational systems as defined sbove relies on the following theorem.

THEOREM 2.2. Let f € C' (M, R) satisfy (P- §) in lg, b], i.e.
21) {mry-uquenu x, such that flx )+ ¢ €[z, b) and f'(x,) =+ 0
has & converging subsequence.

Then there exists a variational system (T, 3) relative to f, whete I' = L(n) N 2 (f}).
In particular, if f sacisfies (P §) in (— o, + o) (i.e. for every ¢ € R) then T" = {x € E(n)
| £l is bounded}. The proof of this theorem is essentially contained in [B1}.

We set

X'={K = K({X)| XET and K has a finite number of connected components).

Norice that the definitior of K deperds only on f but not on the particular variational

system we have chosen,

PROPOSITION 2.3. Let {n, I} be a varistional systemn telative to f. Then we have the
following

(i) if aand b are regular values offu:df:El", thenf2E€E,.

.

(ii) for every X E T, 3T > 0 such that GT{X) is bounded.
(iii) if K €X', then it is a (C) - invariant set; in particular i(K) is well defined
(iv}) if {5, T} and {7, T} are two variational aystems relative to f then
HK, ) = i{(K )
{v) suppose that x €T, and that x, is the only critical point of fin X.
Then{x,} € Xand
#X) = ifxy)
(vi) if f|, is bounded below and K{X) = ¢, then i{X) = 0
(vii) if @ and b are regular values of f then i(f*) = E_ dim [H,(f*, f*)}¢" where H,

denotes the singular homology.

Proof. The proofa of (i), . . . , (iv) can be found in [B1). In order to prove {v), it is suffi-
cient to observe that for every neighborhood U of x with U € X, there exist 7> 0 such
that GT(X) C U, The conclusion follows from Th. 1.1 (iii).

{vi) If X does not have critical poinu, by (i) of definition 2.1, every trajectory x - ¢ (with
x € X) exist from the set X. Then by Theorem 1.1 i{X} = 0.

{vii) Since @ and b are regular values of f the Alexander-Spanier cohomology of the pai
(f*, ) coincides with the singular cohomology. Moreover since our coefficients are ina
field,

dim H*(f*, f*) = dim H_(f*, f*).
Then the conclusion follows from the fact that (f*, f°) is an index pair for f* (cf.
eg (B1]). O

The following definition is very important in our generalization of the Morse theory.

DEF. 2.4. Let X € Mand K = X(X).
A finite family of sets {”;};m is called an e-Morse covering of K if




G l_ljilcomcudfaj- Lo N

N
@) k€ U UcN, K
=1

N
(i) UJEI‘md ‘Z:l i(UJ)-i(X)-I-(l +¢) 1) Qe ¥

The above definition is justified by the following theorem
THEOREM 2.4. If X €T, then for every ¢ > O there exists an ¢-Morse covering of K{X}.
Proof. Fo every ¢ € f{X) there exiats 5(c) > 0 such that [} )T and chat
(2.3) GTEN et e N (k)
Since f(X) is compact there exists » inite cavering {(c, — 8(c,). ¢, + (e, ).y of Fi%).

Now let by, . . ., b, an increasing sequence of regular values of f such t.hnbo-igff;
b_-agyfmdfumy!-l....,u—l.

2.2) +llc)ab,_, <bymc +8(c) forsomeiml, .. N
Now we set
{2.3) Ag=Xnfu R=1,...,n

By our construction we have that A, is s Morse decomposision of T' {cf. Def. 1.3) and
by (2.1}, (2-2) and (2.3) we gas

(24) GT(A)CN_(K)  for Tlarge cnough.
By thearem 1.4 we have

{2.5) Y A = iX)+ {1+ Q) QEY
| TFY

Serting

o={2)4, NK$e)
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by (2.5) and Th. 1.1 (iv) we have

(2.6} Y A =iX) + (1 + 1) Qi) QEY
1o

Now set

@7 U, = 4, ON,(K)

Then by (2.4) and the fact that A, € T we have that
T cU, and GT(Y,)Ca,
Then, by Th. 1.1 (i), we have
ilA,) =i(U,)
Using the above formula and (2.6) we get
(2.8) g i{U,) = i(X) + (1 + ) Q(1) QEY

Now for £€ 0, 1et {U, , )4 < oy be the family of connected components of U,.

We claim that {U, L)eeq usn, 1 & ¢-Morse covering of K(X). (i) and (ii) of the Def.
2.4 are urivially satisfied.

U, , €F since U, €T. Mareover, since

O,,N0, , =0 fukwst

By theorem 1.1 (vi}, we have

?i‘ iU, o) = ilUy)-
=1

By the sbove formula and (2.8) we get

' Y iy, =iX)+ (1 + 1) Q).
::-:g

So we have praved the theorem. O




-10 -

COROLLARY 2.5. Suppose that the assumptions of theorem 2.4 are satisfied. Moreover

suppose that K(X) contists of & finite number of connected components K, ., . , K .
Then :
N
Y k) =ax)+ 1+ n Q.
i}

Proof. It follows from Th. 2.4 (a) and Proposizion 2.3 (iid). O

COROLLARY 2.6. Suppose that f satisfies (P.S.) in [c, + o) and suppose that K(f,) -

cantains only a finite number of connected components X, , . . ., K. Then

N
Y Uk =itf)+(1+1Q QEY

=1
Proof. Let ¢, = max f|. = ¥ 1. Then f:' €Tl and !“ € I. By theorem 2.4, we get
) +ilf, )=itf)+(1+0Q, Q€Y

By theorem (1.1) (iv) and the definition of ¢, ,

(2.9) itf, }=o0.

By corollary 2.5

(2.10) {ff )= ): iKy) = (1 +1)Q,-
i=)

The conclusion follows by {2.9)and (2.10). O

Now we are going to relate the Generalized Morse Index with the differential structure
af (M, f). Suppose that x is a critical point of f such that .

frix): T, M->TM
is defined.

For the rest of this section we shall suppose that the nonpositive part of the spectrum
of f consists of isolated cigenvalues of finite multiplicity and that fsatisfies P.S. Now we set
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.m{x) = dimension of the apace spanned by the cigenvectors of f”(x) corresponding to

negative eigenvalues

m*(x) = mix) + dim [ker f"{x)].

We shall call m{x) the numerical Morse index of x.

We recall that & critical point  is called nondegenerate, if £"(x) exists and it is invertible.
In this case we have m(x} = m*(x). If f|, has only nondegenerate critical points then it

is called a Morse function (on X).
we recall a theorem of Marino and Prodi [MP).

THEOREM 2.7. If f; T is a variational system, then for every X €T and for every
¢ € (0, 7] {where # = #X)) there exists a Morse function on X such that ) f—f, v () S#
and f, satisfies .S, in X.

The following theorem characterizes the index of nondegenerate critical points.

THEOREM 2.8. If x, is a nondegenerate critical point of f, then{x,} € X and

i(xg) = g™ (=e),

Proof. See (B1] Th. 5.5. O

Notice that in Th. 2.8 the fact that f"(x} is defined in a neighborhood of x, is not
needed. A similar result has also been obain by Mercuri and Palmieri [MP). Theorem
2.8 suggests the following definition:

DEE. 2.9. A critical point x is called ropologically nondegenerate if {x}€ N and i (x) = 1
{i.e. if i(x) = ™ for some m € N). As a consequence of Th. 2.8, we can write the *classical”

Morse relations:

COROLLARY 2.10. Suppose that X € I’ contains only topologically nondegenerate
critical points of f Let a(m) denote the number of critical points having Morse index
m. Then '

i: alm)t™ =i(X)+ (1 +¢£) Q) QY
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Proof. It follows from Corollary 2.5 and theorem 2.7. O
From Thearem 2.7 and Corollary 2.10, we get the following results:
COROLLARY 2.11. If X €T, thea i(X) is finite (i.e. 6 (X) <+ o).

Proof. By theorem 2.7 and theorem 1.5 we can find a Morse function f such that
itX. f) = i(X, [)- Since f, satisfies P.S. and f, |, is bounded, then f, has only a finite number
of critical points. Then the conclusion fallows from Corollary 2.10. O

Theorem 2.7 suggests the following definition.

DEF. 2.12. If x is a critical point of f, the number i, {x) will be calied the multiplicity of /.
Notice that the definition 2.12 (as well as definition 2.9} can be extended alo 1o critical
sets K € o, Using this definition we have:

COROLLARY 2.13. If X €T, then f|, has at least i, (X) critical points if counted wich
their multiplicity. Proof. Obvious.

Notice that Coroilary 2.13 does not need the funcrion f 1o be of class C?,

We end this section with a result which is useful in some applications. If K is a set of
critical points of fwe set

miK) = inf m{z)
(2.11)
m*(K) = sup m*(x)

THEOREM 2.14. Suppose that UE P N £, and that f € C3(U). Then

meK)
iv) = agt
tem(K)

where K = K{U).

Proof Sec {B1]Th.59. O
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3. Some existence theorem.

Let f€C! (£, R} and suppose that
() f= 51'- {Lx, x)— y(x) where L is an invertible bounded selfadjoint operator.

(f,) i }im V'(x)=0, where y'isa compact operartar
xfrt =

It is easy to check chat () and (£, ) imply that f sacisfies (P.S.). Thesefore, there is a

flow 5 such that {1, I'}is a variational system relative to f Such a flow can be chosen

of the form
{3.1) g=—Lx+y(x)

where § is 2 Lipschitz continuous compacs operator (cf. e.g. [B3]).

LEMMA 3.1. There is R >0 such that B, =:{x €E|| x| < R} € E{n) and i(B,) = (" <
where m(s) = # |necgative eigenvalues of L counted with cheir multiplicicy}.

Proof. Let P~ be the projectors on the span of the negative eigenvalues of L and ler
Pt = (F ) Let L*, L™ and x*, 5 be the corresponding decomposition of L and x respec-
tively,

Now consider the family of flows g, relative to the family of equations:

3.2)

it =Ltxt — 1P ()
rejo, 1]

=L x —1F §(n)

For 7'= 1 equation {3.2) isequal to equation (3.1).

Now it is not difficult to check that for R large enough, by virtue of (£,), 37 such
that GT(BI 1) €8y and such R and T are independent of r, Therefore, 8, €L (n )
for every 7 € [0, 1]. By Theorem 1.6, this implies that (B, ., n ) is independent of r.
Therefore i(By) = i{By, %) = i(By, 7y ) But i(By.my) = ™" by Proposition 2.3 (v)
and theorem 2.7. O

THEOREM 3.2. Suppote that (f,) and (£;) hold, then f has at least one critical point.

Proof. It follows by Lemma 3.1 and Propasition 2.3 (iv).
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THEOREM 3.3. Suppose (f, }and {f; ) and that
J'10) =0 and i{0) = ™1°} with m{0) % m{o),
Then f has at least two other critical points x,, x, % 0 (which may coincide if they
are degenerate). Moreover, if they are not degenerace we have

i, ) =™ =), iy ) = g™ 0)21,

Proof. By theorem 2.4 we have that, for ¢ sufficiently small

N
i, (0)) + ): (U = ix) = (1L + 1) Q1) QEY
=1
By lemma 3.1 and by the fact that i{0) = ¢ (*) we get

10 4 i iUy = S+ +gQu)  QeS

j=1

Now, since m{se ) v« m(0), then the above formula is satisfied if Q contains the term
N

18 or ™1 1ar us consider the first case. In this case T i(U}) must contain
=1

the terms ¢™ (9)* 1 3nd ™), Now there are two possibilicis. First possibility:
there exists ¢ sufficiently small

1] L] H
BUh and U” with

c'(U;. 1=1"0) 4 ather possible terms

and
i{Ur ) =™ (=} 4 other possible terms.

Then there are at least two critical points x; and x,, and if they are nondegenerate
ifx =m0 gnd lx ) g™ im,

The other possibility is that for every e, AU} such that

I'(U;) = (®) 4 (=043 4 other potsible term.

In this case U} contains a degenerate point with multiplicicy ar least 2. If Q(f) contains
the term ™ 1%1} we argues is a similar way. 0O
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Example 1. Consider the problem

w € HL(R) £ C R" smoath and bounded
(3.3)

Bu + gu) = 0,
Suppose that

with £ & o(— A} where o(— A) denctes the
(34) lim g(x) =2
Fosw spectrrum of — A in LA (%)

we define L as follows:

(Lu,u)ﬂn.m)-I[(Vu. o)+ tu-vldx  w, vEHL(A}
a

and ¥ as follows
Wiu) = J [Giu) + 2u* ]} dx where G{s) = f gle) de.
0 2
Then we have

1 1
flu) = ; (Lu, u)— ${u) =I[; | VMlz —C{H)] dx.

n
{3.3) are the Euler-Lagrange cquation for the functional f. Thus the critical points of f

are the solutions of {3.3). Clearly the assumptions of theorem 3.1 apply. Thus we have

THEOREM 3.4. If (3.4} holds then {3.3) has at least one solution,
Now suppose that

(3.5) "g(0) =0 and g'(0) € o(— A).
‘Then 0 is # critical point of fand

i(0) = m(0)

where




—16 -

(3.5") m(0) = # {cigenvalues of -A in L3(£3) bess ot equal to 2}
Thus if .
(3.6) the interval [2'(0), B) (resp. [ & g'(0)])

contains at least one eigenvalue of — A

we have that m(0) v m(ee). Thus the assumptions of Theorem 3.3 are sarisfied. So we get:

THEOREM 3.5. If (3.4), (3.5) and (3.6) hold, then the equation (3.3) has two nontrivial
solutions which may coincide if they are degenerate,

REMARK 3.6, While theorem 3.4 can be casily proved using the Leray-Schaudertopologi-
cal degree, this is not the case for theorem 3.5 when m(0) and m(e) are both odd or even.
However, since the aperator in (3.3) is asympeotically quadratic, theorem (3.5} can be
proved wing a finite dimensional reduction argument and the standard Morse-Conley
theory (cf. e.g. [AZ]).

The next theorem will describe a situasion in which the finite reduction method cannot
be applied. We consider a case in which ¢ has a superquadratic growth ie.

)  3p>2 3p, >0suchthat (¥'(px). px)> p¥(px) >0 Vp> o, VX ES °

where S = {x € E|fx|=1}.

It is well known that (f, ) and (£} imply (P.5.) in (— @, + ). Therefore, by theorem
2.2 there exists a variational system {n, I'} relative to f;

LEMMA 3.7. If f sacisfies (£, ) and (t'3 )» then there exists ¢ € R such chas
itf,) = 0.

Proof, Notice that {f, ) implies that
3u >0 suchshat P(px) > wvp? for xE€S and p large.

Thus, for p large and x € S, we have:

dp

<ol Ly |—vo" ),

d 1
—f(px) = p (Lx, x"‘W'(ﬂ*)."‘PILo I_ - ¥(x) <
]

Thus 3p° such that d/dp fipx) <0 Yx €Sand p » Py Thus it is possible to choose

— A——
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¢ € 0 such that for every x € S there exists a unique p = gix) > 0 such that
flplx)x) = c.

This allows us to define a function
¢:{B,S)~{f, f) B={x€E||x|<1}

as follows @{tx) = tp(x)x (x € S and ¢ € [0, 1]).
It is easy to check that y is 3 homeomorphism . Then we have |

W)= ) dim (A9, )0 = ¥ dim (2B, 5)}t =0
gm0 =0
since the infinite dimensional sphese S is contraceible. 0
THEOREM 3.8, Suppose thac (f, } and (f,) hold. Moreover suppose that O is a nonde-
generate critical point of f. Then fhas ac least one other critical point.
Proof. Let i{0) = ¢ (%), Then if no other critical paints exists, by Corallary 2.6 we get
0 =0+ (141 Q)
and this is a contradiction. 0
Example 11, \Vehtudy again equation (3.3), bue this time we suppose that g satisfies the
following asympiotic condition:
(3) 38>2, 3R >0, wchthat glt) - t>IG() >0 if 1] >R

(b) 3K,, K, >0 such thet | g(t)| <K, + K, | ¢|"

(a7
n+2
where a < e ; n=dim £,
We set
(3.8 Wix} = f Gix) dx. ;

a
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LEMMA 39, If (3.7) (s) holds, the functional (3.8) mtisfies (£, ) for every p € (2, 9)
in the space E = H}(§).

Proof. Take u € H}(@3), with | w | = 1 then

{3.9) (V' (pu), pu) = j :(M'mdr-[ 2(pu}pu + [ glpujpu dx

a [-1] £,

where @, ={x| p|u{x)| > R}and @, = 2 — £, . Thus using (3.7) we have

(¥ (pu), pulo» IOC_{pu) dx — M, [wit.h M = f glou)ou dx]
{117 oy

= j"GU’“)d‘“M’ [\vl’lﬂ‘eM: = ]OG(pu)dx‘l-Ml]

1] 1171
=ij(p-u)dx+(0—p)I Glou) dx — M, >
a n

>p vipu) +Ho —pl* K~ M,

[since G grows more than Kp* for some positive XK]. O

THEQREM 3.10. Suppose that g satisfies (3.7) and (3.5). Then the equarion 3.3 has at
least a nontrivial solution.

Proof. Consider the functional flu) = 1/2 f_ | u |*dx — ¥{u). By (3.7) (b}, fis a func-
tional of class CI. By (3.5), 0 is a critical point of f and f7(0) is defined. Then by Th.
2.8 i(0) = (%) where m(0) is defined by (3.6) Thus all the assumptions of theorem 3.8
are satisfied. O

Now we are going to use the generalized Morse theory to prove a well known theorem
of Ambrosetti and Rabinowitz (see e.g. [AR] or [R1]) with an additional infoemation
on the Morse index of the critical points.
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. THEOREM 3.12: Mountain Pass Theorem. Suppose that f € CY(E) satisfies (P.S.) and
that there is a set S in E which splits E — § in two connected components. Moreover,
suppose that there exist ¢, b € R (a < b} and € > 0 such that

(i) fixy>a+e VxES

(ii) flx,) <a {=1,2 wherex, and x, are two points belonging to different connected
components of E - §

(iil) flx) <b—e Vx€Q where Qisa curve joining x, and x,,

Then K = K{f*) % ¢ and if all the critical points of f in K are topologically nondegenerate
there exists a point 2 such that

ifx) = ¢,
Moreaver, if f € C*(N, (K)) there exist two points (which might coincide) such that
mix, ) <1< m¥(x,).

Proaf. We suppose that a and b aze regular value {otherwise replace o with a + e, and b
with b —¢, with e,, ¢, <e¢), Since f* has at least two connected componencs; thus H,(f*)
has at least two generators [=,] and Ix, )

Now consider the map iy % Hy(f*) » Ho(f") induced by the natural embedding. Since

x, and x, belong to the same connecred component of f*, then iy([x,] ~ (x,]) = 0.
Then, by the exactness of the sequence,

~H, (% MR M S 1.
it follows that [x, ] — [x,] € Im j. Therefore H, (f*, f*) % 0. Then, by Propasition (2.3)
(vii},

i(f®) = t + other pomsible terms.
Thus the first two statements of the theorem follow by Prop. {2.3) (vi) and Corollary

25 relpectivély. In order to obtain the secand part of the theorem use theorem 2.14 with
U=f : Then we have

meK)
a " = ¢ + other possible terms
ko (K )
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- and therefore

m(K) <1 g m*(K),

The conclusion follows from the definition m{K) and m*(K) (see (2.11)). O

REMARK 3.12. The interest of the above theorem is in the fact that we give some in-
formasion about the generalized Morse index of the critical points. A similar result for
C?.funcrionals has been obrained by Hofer (H] and Solimini [So).

The generalization of the Mountain Pass Theorem is the “linking thearem® (see e.g.
[R1] or [BBF}).

DEF 3.13. Let Q C E be & manifold homeomorphic to B* (n>>1) and lec S be a smooth
manifold in E of codimension n. We say that S and 3Qlink if, for every isoropy
k ; Q - E such that hi.q = Id, we have h{Q) N 5 # ¢. We say that 5 and 8Q link waversally
if they link and
3.7) 5NaQ= x, and 3N (5))N Q is diffeomarphic to the n-ball B”,
THEOREM 3.14. Linking theorem. Suppose that f satisfies {P.S) and that

(i) shere esists two manifold 3Q and 5 which link transversally {with dim Q = codim
S=n)

(i) g, b€ R ande >0 such that fl; >a-l-¢;f[.Q <aandf|Q <b

Then K = K(f%) # ¢ and if all the critical points of £ in K are topologically nondege-
nerate there is a point ¥ such that

i(%) = ",

Moreover if f € C*(N, (K)) there exist two points x,, ¥, € K (which might coincide)
such that ! ‘

mix, )< n & me(x,).

Notice that the Mountain Pass Theorem is a particular case of the Linking Thearem
whenn =1,

LEMMA 1.15. Suppose that § and 3Q link cransversally, with dim Q = codim § = n

=21~

i

Then H_(E, E ~ 5) = K and [9Q] is the generatar.

Proof. Let N be » neighborhood of 5. If N is chosen in & suitable way then, (N, 3N)
has the suructure of fiber bundle on § with fiber (8%, S"~1), Then by Thom isomorphism
thearem H, | (N, 3N) & H_(S) and in particular H_(N, 3N) @ H, (S} & K and by (3.7),
the generator will be {a] = [aN N Q). Also H,(N, 3N} a H (N, N — S) and by excision
H, (N, N - 5) ox H(E, E — S) and [o] is also a generator of H (E, E - 8). Since a is ho-
mologous to 3Q, 3Q is a generator in (B, E— 5). O

Proof of Theorem 3.14. Consider the map

H(f*, f) 3 H (£ E—5)

where i is the natural embedding. Then, since i, ([3Q]) # 0 by Lemma 3.15, then
H (f* f9=0.
Then by proposition 2.3 {vii) we have that

l'(f:) = (" + other possible terms.

Thus the firs: two statements of the thearem follaws from Prop. 2.3 (vi) and Carollary
2,5 respectively.

In arder to obtain the second part of the theorem, use theorem 2.14 with U = f2. Then
we have that

oK)
a t = + other possible terms

t=wiK)

and therefore m{K) Kn < m*(K). [
REMARK 3.16. As in the case of Th. 3.12 the interest of Th, 3.14 does not rely on the
existence resulc which can be obtained in an casier way with minimax methods fsee ..

{R1]). The interest lies in the information about the Morse index of the critical points
which is relevant in some class of problems (cf. ¢.g. [BF1]),

COROLLARY 3.17. (Saddle point theorem). Suppor that § € C(E) stisfies P.S. and
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let £ = E, ® E where E_ is a n-dimensional space. Moreaver suppose thas 3¢ >0
(i} fix)»a+e ¥x EF
(l) 3IR>0:fix})<a  V¥xEE, NaB,
(i) fix)Kb—e Wx€EB,.

Then the same conclusion of Theorem 3.14 holds.

Proof. Take S=Eand Q= B, . Then it ia well known that S and 9Q link (see e.g [R1]
or [BBF]), and it is immediate to see that they link transvernally. O

REMARK 1.18. A somewhat weaker version of Corollary 3.17 has been obtained also
by Laser and Solimini [LS] when f€ C*(E).

COROLLARY 3.19. Suppose that f € C'(E) satisfies (P.S.) and let E = E_,* E where
E,_, i an (n — 1).dimensional space (n 3 2). Moreover suppose that there exists canstants
PR Ry 8 >0 (and Ry > p)such that

(i) fix}ra+e .Wx eEnaﬂ,
() fix)<a VYx€IQ
(i} fix)Sb—e WxEQ

where Q ={y + tz|y€E,_,.|y]J<R, and t €{0, R, ]} and z € E with | 7] = 1. Then
the same conclusion of Theorem 3.14 holds.

Proof. Take 5 = E N 38,. Then it is well known that 5 and 3Q link (see e.g. [R1] or
[BBF]) and it is immediate to check that they link mansversally. Then the conclusion
follows from theorem 3.14. O

4. Some existence theorems for invariant functionals

Now we consider how to use the index in a symmetric situation. We suppose that &
compact Lie group G acts on E, i.e. thar there exises a map

¢:GCxE~E
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such chat wig, , (g, ¥)) = (g, - g5 %) As usual we shall write gx instead of wlg x).
We recall some definition, If x € E, the subgroup of G defined by

G, ={g€F|gr=x)
is called the isotropy group of x. )
We say that G acts freely on A C E if C_ = Jd for every x € A. A point x is called a fix
point if G = C. The set of all fix points of G will be denoted Fix(G). The set o, =
={glIgEG ;g = gx}is called the orbit of C paming through x. A set A C E such chat

g5 € A for every g €C and every x € A is called G-invariant. A functional f: E - R is called
G-invariant if

fe=f)  vgea

If the function f € C' (E) satisfies P.S., then it is pomsible to construct & variational system
{n. '} where n is a G-invariant flow, i.c.:
i gx)=gmit,x) YIER and VgEG

We shall call the triple (g, I, G} an equivariant vatiational system (notice that we do not
require that the sets in T are G-invariant).

If x is a critical point for a G-invariant function f, then all the points of the orbit are
critical points. Such an orbit is called “critical orbic®. We have the following propasition;

PROPOSITION 4.1. Let {5, T, G }be an equivariant variational system relative to f where
G is a group of finite order, and let O_ be an isolated critical orbit of f. Then there exist
# polynomial P(t) € & such that

odG
ord G,

(4.1) i(t, O ) = y- P{1) where y=
{notice chat v is the number of points of the critical orbit).

Proof. Letx = S AEERREA be the points of the orbit O_. Then by Theorem 1.1 (vi)

we have

{4.2) i(6,0,)=ift, N,(0 ) = 27: i, N, =, ))
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where ¢ is amall enough that-N, (xh) n N'(xh} = ¢ for 2, #* £,. Now since the index
is a local property, (N, (x,}) = i(N.(s,)). Then the conclusion follows immediately by
42). 0O o

PROPOSITION 4.2. Let {n, T, G} be an equivariant system relacive to f where G is a group
of finite order p, Take A €T such that
(i) A is G-invariant
(ii) G acts freely on K(A)
(iid) fis of class C? i1 s neighborhoad of K{A).
Then there exists m €N such that
ilp—1,A4)mp-m

Proof, Since the set of points on which G acts freely is an open set, it is posible to
choose ¢ > 0 such that Gacts freely on N, (K) whese K : = K{A). Also we can take € small
enough chat f € Cz{N. (K)).

Now by theorem {2.4) (b) we get

{4.3) iN,(K)=il4)+(1+1Q, Q€Y

By (iii) and the fact that G acts freely on N, (K) it is possible to choose a Marse func-
tion f arbitrarily close to f (apply the theorem 2.7 at the function fo x~! where x
N, (K)/G is the natural projecrion). Then by theorem 1.5 we have

(4.4) i{t, N (K), f,) = i(s, N (K}, ]}
and by Corollary 2.10, we have
N B
{4.5) Y emt =i N QS+ 1 40Q, Q€Y

Notice that all che w{m)'s are multiple of p since the action is free. Then by (4.3), (4.4)
and (4.5) we have |

N
Y em =ia) + (140 (Q, +Q,).
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Since all the w{m)'s are multiple of p, the conclusion follows taking t=p—1. O
Now let us apply the theary developed to some existence theorems:

THEOREM 4.3. Suppasc that on § = {x € E|] x| = 1} a group G of finite order acts.
Suppose that f € C'(S, R) is a G-invariant function bounded from below which satisfy
PS.in[mg m_)wherem, = n;infand m, = sgpf(m.is allowed to be + =),

Moreover, suppose that

{4.6) there exists v 3 2 such that every aitical orbis has
a cardinal multiple of 4.

Then f has infinitely many critical orbits.
Proof. Since $ is concractible the i(S) = 1. We argue indirectly and ‘suppose that f  has

only a finite aumber of critical orbits O,, . . ., O,. Then by Prapodition 4.1. and Corol-
lary 2.5 we get

]
Pr Y Py =14 (144 Qq).

i=1
I you take t = p —1, we get
p-lnumber)=1+pQip—1)

and cthis is a conwadiction. O

THEOREM 4.4. Suppasc that f € C'(E. R) savisfies (£, ) and {f,) and it is invariant for
the action of a finite group G. Moreover, suppose that

(a) 0 is the only fixed point of G
(4.7} . (b} 0 is a critical point of fand i{0) = * for some * EN
(c) (4.6) holds for any critical point different from 0.

Then { has infinitely many critical orbits.

Proof. Take ¢ small enough in order that, by lemma 2.7, we have
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(4.8) i(f,)=0.

Now we argue indirectly and suppose that f has only a finite number of critical orbits

0,.. .., O, inf,. Then by Corollary 2.5 we have

1

A
i0)+ Y #0) =if,) + (1 + 11 Qe).

=]

By (4.7} (b), (4.8} and proposition 4.1 {with the assumption (4.6)), we get

4y t my - pt)= (1 +1¢) Qit).

=]

Taking t = y— 1 we get

I
(y—1" =y m where m=Q(y—1)~ z M.P.(‘I—l)
=1

and this is a contradiction. 0

REMARK 4.5. Theorem 4.4 is valid also without the assumpiton (4.7) (b). The proof
is too involved and it will not be given here. However, it is not too hard ta prove the follow-
ing result,

THEOREM 4.6. Suppose that f€ C?(E) satisfies (fy), {f;) and ic is invariant for the
action of a finite group G. Moreover, suppose that (4.7) (a) holds and that every orbit
different from O has a cardinality muldiple of y. Then f has infintely many critical orbits
and the critical values are unbounded from above.

Proof. 0 is a critical value of £ since it is invariant for the flow by (4.7) (a). Ik could
be degenerate but we can ignore this situation arguing as in theorem 4.19. Then the proof
follows che same line of Theorem 4.4. In order to get the unboundedness of the crisical
values of f argue as in Thearem 4.19. O

Example. Let V(t, x} EC'{Rx R", R} bea T-periedic function, and consider che follow-
ing system of ordinary differential equations
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(4.9} E+ V't x)=0 where V'(t,x) =

wv 1
— .
o )

We look for T-periodic solutions of (4.9). We make the following assumptions on V;

{4.10) AR >0 and p > 2 such that {F'(t, x), x} > p V(x)> 0
for all x € R with | x| >R andall tER

411) V{t, x) is G-invariant, where G € O(n)} is a finite group
avhich satisfy the following:

(i} 0 is the only fix point of G
(ii) there existsy 3 2 such chat every orbit O, passing
through x & R® —{0} has a cardinality multiple of .

THEOREM 4.7, If {4.10) and (4.11) hold then (4.9) has infinitely many periodic solu-
tions unbounded in L=,

Proof, We set
E={x€HY (0, T: R"}| x(0) = x(TV}

and

T
(4.12) f(x)-[ ';M’ -, x4dt x€E.
[]

it is well known that the cricical points of f correspond to T-periodic solutions of {4.9).
We can apply theorem 4.6 to the functional {4.12). In fact, fix} has the form (f,) with

T
(Lx.ﬁs'f (Ey+xy)dt  x y€E
' 0

and

T
wix) -f {Vit, x) + =) dt.
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Also f satisfies (f, by virtue of (4.10)). (a) and (b) of theorem 4.6 follow from (4.11),
Then by Thearem 4.6 it follows that the cricical values of the funcrional (4.12) are un-
bounded. Standard estimates (se¢ e.g. [R2]) show that the corresponding critical points
are unbounded in L™, 0

Next we want to consider an example where the group G is continuous. We consider
the group 5 ={z €E¢||z| = 1] with the multiplicasive structuse.

PROPOSITION 4.8. Let {n, I', 5'} be an equivariant system relative to £, Take 4 € I"
such that
{i) A is S -invariant
{ii) K(4) N Fix(s') = ¢
{ii) fis of class C? in a neighborhood of K{A).
Then there exist a polynomium P(t) with cocfficients in Z such that
it A) = (1 + 1)P(1).

Proof, We claim thar 3 p such that Z, C 5% acus freely on'K(A) for every p (2, ={a™"''H
i=0,..., k—1}}. To prove this we argue indirectly and suppose not. Then there exists
a sequence p(k) — + o0 and points x, € K{4) such chat

W13 (g ) x =x, £=0,...,p(k)~1
where

20iipik) £ 4
o= €L uy

Since K(A) is compact, we can suppose that x, converges to some ¥ € K(A). Moreaver,
for every g € 5t there exists a sequence of R{k)'s such thar

(gp(”)“” —+g for k=40,
Then taking the limit in (4.13) with £ = (k) we get
(4.14) =i

Since g has been chosen asbitrarily, (4.14) implies chac € Fix(S') N K(A) against
our assumptions. So the claim is proved,
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Then, by propasition 4.2, for every p sufficiently large there exists m(p) € N such that
{4.15) itp— L A)y=p-mip)

By Corollary 2.11, i(t, A) is a polynomial, Then there exists a polynomial 'p and an
integer number a;, such that

i A)=(1+ 0P8 +a,
Then, by {4.14} and the abave formula, we get
;n =i(r, A) = (1 +)P(r) [for every £ E R)
=ilp~1,4)=pP(p—1) [for every p3> )
=plm(p}—Pp—1]] iby (4.15)}.
Since m{p) =~ P{p — 1) is an integer number, the above formula implies shat a) must be
O (otherwise|ay f=+w). O
Example. Let V€ C(R", R) and consider the following equation
(4.16) B4 Vix)=0 x ER".
We have the following theorem.

THEOREM 4.19. If {4.10) holds, then the equation {4.16) has infinitely many T-periodic
solucions for every T 3 0, and the set of solutions is unbounded from abave in the L™ .norm.

Proof. First we make an extra assurnption which we shall remove later, and we suppose
chae

{417)  all the eritical points of ¥, x,, ..., »,, are nondegenerate in R",

We want to show that (4.17) implies that ¥ has an odd number of critical paints. In
fact, by Corollary 2.10 we get

N

Y alm)e™ = iR} + (1 + 1) Q1)

n=i

which for r =1 gives

{number of critical points of ¥} = E a(m} = 1+2-Q(1)={odd number).

LE B!




Now, consider the functional
. LT ‘
4.18) Jrix) "'[ {x? — Vix) dt}
[

defined on the space

E, ={x €H'(0, T; R")| x(0) = x(T)}-

By (4.10), and well known results f,. satisfies (P.S.) on E. Moreover, f,. is invariant

for an $1.action, i.e. the action

(gx) (8) = x(t+s) where g=p3"0/T
and ¢ + 5 = ¢ + s mod T. The fix points of $! are the constants. Therefore, K(f;) N Fix
$' o |critical point of ¥ in R"} and this is true for every T > 0. Now take T € R such that
(4.19) x € K(fp)NFix 5! is not degenerate (i.e. f7. (x) invettible).

By (4.17}, (4.19) is wrue for every T > 0 except than a discrere set.

Now choose a T > 0 such that (4.19) holds, and take two regular values of £, aand b
such that

T
a<—[ Vix)dt &b forevery x ER" at. V'(x) = 0.
)

Now take € small enough such that N, _{x, ) N K{f,.) ={x, } for every x, € Fix s'n Kifr).
(This is possible by (4.19)). Now by theorem (2.4) we get

r

[}
(4.20) Y i+ Y U=+ nau

=1 =i

where j:l’l U, is a suitable neighborhood of K( f£)= Fix(8"). Also we have
(a) (N (x)) =1 by (4.19)
(b) i, (U)) = (even number) by Propasition (4.8).

Then by the above formulas and (4.20) we get

- -

(4.21) i,(f*) = (0dd number).

We claim that (4.21) holds even without assuming (4.17) and (4.19). In fact if f;. does
not satisfy (4.17) and (4.19), there is always an acbitrarily close function which does. So
{4.21) follows by Theorem 1.5,

Now we claim that the critical values of f are unbounded from above. We argue indi-
rectly and suppose that they are bounded by a constant c_. Take ¢ such that the conclu-
sion of lemma 3.7 is satisfied. Then by theorem 1.4, we have:

(4.22) i) +ilfN) + i fi=y =i f,)+ 1 +0) Q)
But
i, (f¢) = even number by Propauition 4.8
i,(f*) = odd number by (4.21)
iy (f§™) = even number by Proposition 4.8
ifi=0 by the choice of ¢ (cf. Lemma 3.7)

Then the inequality (4.22) gives & contradiction. Therefore there is a sequence c, of
critical values of f,. Standard argument show that the corresponding, critical points are
unboundedin L™, 0O

REMARK #4.20, Other proofs of theorem 4.19 can be found in [B2] (with some exira
assumptions) in [R2] and [BF2). However, theorem 4.19 provides also estimates on the

Morse index of the solutions.
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