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Abstract. Two problems concerning maps ¢ with point singularities from a
domain QCR? 10 8% are solved. The first is to determine the minimum energy
of ¢ when the location and topolegical degree of the singularities are
prescribed. In the second problem £2is the unit ball and ¢ =g is given on 802; we
show that the only cases in which g{x/jx|) minimizes the energy is g =const or
g(x)= 1 Rx with R a rotation. Extensions of these problems are also solved,
¢.g points are replaced by “holes,” R?,5? is replaced by RY,S¥"! or by
RY, RP¥, the latter being appropriate for the theory of liquid crystals.

I. Introduction

Suppose U C R?is open and a € U. Consider maps ¢ : I/ —+ 5 which are continuous
except (possibly) at a. If § is a sphere in U centered at a, ¢ restricted to S defines a
map from $* to $? and so has a topological degree in Z (also known as winding or
covering number). By continuity this number is independent of S and we shall
denote it by 4. If ¢ is also continuous at a, then d=0.

Suppose now that ¢ e C*{U\{a}; §%) and consider its energy

E(g)= .I, Weol? (1.1}

possibly finite or infinite. The fact that E(p)<oo does not imply that ¢ is
continuous at a or even that d=0. An example with d=1, U bounded and a=01is
@(x)=x/|x|. However if U = R* and E{p) < oo, then d must be zero (since ¢ goes to
a constant at infinity).

A natural problem is to minimize E(¢p) given the degree, d, of ¢ at a (assuming
U#R?. We shall prove that the minimum energy is

E=8xL, (1.2)
where L is |d| times the distance of a to aU.
* Permuanent address: Departments of Mathematics and Physics, Princeton Universiiy, Jadwin
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Another simple case is to consider two points d,,a; € R? and maps
peCR)\{a,,a,}; §%).

As above, one can define deg(e,a), i=1.2, by restricting @ to small spheres
around aj, i=1,2. Assuming that g€ C'(R*\{a,,a,};5%) and E{¢) < co, then we
must have d=deg(@,a,)= —deg(p,a,). A natural problem is to minimize E(p)
given d. We shall prove that the minimum energy is given by (1.2) with
L=la, —a,||dl. The infimum is not achieved; however if ¢° is a minimizing
sequence, we shall prove that ¢° tends to a constant a.c. and |[Pe™® tends to a
uniform measure on the segment [a,,a,] (afier passing to a subsequence if
necessary).

There are various generalizations of the two-point problem just mentioned,
and they all give rise to the same formula (1.2) provided L is interpreted
appropriately. We shall discuss four examples of increasing generality. Let U bean
* open set in R, Let H, ..., H, be k disjoint compact subsets of U, which will be

[3
called the holes. Let Q= U\( U H‘). If ¢ € C(82; §%), then it is possible to define
i=1

deg(, H), the degree of @ around H,. H H, is a point, deg(ep, H) is the usual
topological degree, as above. For gencral H, the degree can also be defined, but a
bit of analysis is required; this is carcfully discussed in Appendix B. Esscntially,
deg{q, H,) is the degree of g restricted to a surface surrounding H,.

Given integers d, ..., d; € Z (possibly including zero), consider the class

l={¢e C(f2; S)deg(o, H)=d; and g |v¢;=<m}. 1.3
Sct E=inf [ |Pol*. (1.4)
ped

[Note that E is unchanged if C(R2; §%) is replaced by C(f2; §%); this is explained in
Appendix A.]

Example I. U=R? and the H, are points g; in R3.

Example 2. U=R? and the H, are not necessarily points.

Example 3. U+R? and the H, are not necessarily points.

Example 4. This is the same as Example 3, except that we consider the smaller class

& ={pe C(O(UH);5%)|p £ and ¢=const on 3U}.

and let Ee "ﬂ !’ Wol?. 5)
In Examples 1, 2 (respectively 4), & (respectively &) is empty unless ¥ d,=0.
Our main result concerning this problem is

Theorem 1.1. In all four examples,

E=8nL, (1.6)
where L is defined in Sect. 11.
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L is a quantity which has the dimension of a length and depends on U, on the
relative distances between the holes and on the ds. It is easiest to visualize L in
Example 1 and when d,= 1 1 for all i. We shall say that 4, is a positive {respectively
ncgative) point if d,= + 1 (respectively —1). Since 3 d, =0 we can pair the positive
points with the negative points. This pairing, or connection as we call it in Sect. 1,
has a length which is the sum of the distances between the paired points. L is
defined to be the minimum possible length. If the d’s are not +1, then simply
repeat the point a; |d| times. -

In Example 2 the rulc is the same as for Example 1, except that one has to use
the following reduced distance between holes. Given two holes H,, H, we let dist
(H, H) be the usual Euclidean distance between the holes. Then we define the
reduced distance to be

D(H, H) =min )::l dist(H,_ . H, )

where iy, ..., i, is a finite sequence with iy =i, i,=j and the above minimum is over
all such sequences.

In Example 3 just pretend that Ho=R*\U is a hole of degree dy = — ¥ d, and
use the above rule to compute L.

The rule in Example 4 is the same as in Example 2 except that dist(H, H) is
replaced by the geodesic distance in U.

The proof of Theorem 1.1 has two steps. In Sect. ITI we show that E <8nL by
an explicit construction of an almost minimizer, which is obtained by gluing
together “dipoles,” ie. almost minimizers for the two-point problem which are
concentrated near the lines joining paired points. The lower bound E28xL is
more delicate. For this purpose, we introduce in Sect. TV a useful vector ficld D
associated to ¢ € £, with components

D=(0 P, AP @ P A PP PrAD). (1))

In all examples divD=0 in 2 and 2|Dj<|Pei®. We sketch the essence of the
argument for Example 1. In thai case,

divD=4dn :i:: dJ, =4=ng in F'RY, (1.8)
50 that
EZ8n inf{ I |D[|divD=g}. (19)

By duality, as explained in Appendix C,
inf{l IDI|divD=e}=max{l CdalceK}.
a! n

where

K={{:R*-R||{lg,=1} and  j{ly,=supK(x)}—{O/x— -
We conclude by showing that o

max {.!‘ {dall € K} =L (1.10)

with the help of a theorem of Kantorovich [20] and Birkhoff’s theorem [2, 26] on
doubly stochastic matrices,
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In general, there is no minimizer for the ¢ problem (1.4) for (1.5)] and thus we
are led in Sect. VI to investigate the behavior of minimizing sequences. However,
the D problem defined by (1.9) and its analogue for the other examples does have a
minimum as a vector-valued measure. Some properties of these D minimizers are
described in Sect. V; for cxample we prove that suppDCG, the union of the
minimal connections. Qur main result, in the context of Example 1, is that a
minimizing sequence ¢® tends (modulo a subsequence) to a constant a.c. and |Fp")?
tends to a uniform measure distributed on a minimal connection. This is a striking
fact since, if there is more than one minimal connection, a D minimizer can be
supported by the union of two (or more} connections, This quantization
phenomenon is based on the analysis in Appendix E.

A very different problem, one with a more classical flavor, is the subject of
Sect. VII. Instead of specifying singularities we investigate the problem of
minimizing E(¢) on a domain U CR® when ¢ =g is specified on U and we allow
as admissible functions all H* maps from U into S2. Clearly,

E@g)= lmn{lf, IPol*lpe HY(U; $%), p=g on 6U}

is achieved and it is known from the work of Schoen and Uhlenbeck [31, 32] that
any minimizing ¢ has only point singularities and there are only finitely many of
these. Our main result is

Theorem L2. These singularities always have degree +1 and more precisely, near a
singularity x,,

oAy %o @(x)= + R(x ~xg)/|x =X,
where R is a rotation.

This is a consequence of another result proved in Sect. VI, that if U is a ball,
then g(x/|x}) is a minimizer if and only if +g is a rotation.

It is obvious that in the foregoing resuits one can replace the domain of p by
three dimensional manifolds other than R3, but we have not investigated these
extensions. However other extensions are considered in Sect. VIII, for example we
have replaced R3, S* by R¥, 5" ! and by R, RP*~!. This replacement does not
change the conclusions in any significant way. The RP? extension is important for
liquid crystals as explained below. We also touch upon a minimization problem
where the minimum energy is proportional to an area (and not a length). A simple
example of this kind of problem is to consider a closed Jordan curve IF'cR?and
@€ C(R*[J"; $*) having unit circulation around I". The cnergy to be minimized is
E(p)=] |Fg|. We conjecture that the minimum E is 2nA, where A is the area of a
minimal area surface spanning TI'.

In order not to interrupt the main thread of the paper, we have placed many of
the technical facts in appendices. Some of these are of independent interest. For
example, Appendix D contains a proof of the uniquencss of a divergence free
vector-field supported on a curve. In Appendix E we present some noteworthy
properties of certain nonlinear expressions involving weakly convergent
sequences.

The mathematical analysis in this paper, summarized above, may be relevant
to certain problems in physics.
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A. Liguid Crystals
A nematic liquid crystal can be described by a vector field ¢ on a domain U in R?
(the container). The direction (optic axis) of the rod-like molecules at x is @(x)
(called the director), 50 |¢{x)] =1, and therefore we can view ®(x) as a point in $2,
Normally, the ends of the molecules cannot be distinguished, s0 @(x) should really
take values in RP? ie. the quotient of $? by the equivalence relation P=—gp.
Except for defects, which are points or curves in 0, ¢(x) varies continuously.
Frequently the liquid crystal energy is taken to be [7, 9, 13, 14, 17, 18, 21]:

Eg)=K, £(di\'¢)2+Kz£(¢'cuI1¢)2+K:£I¢AWﬂ¢I’. (1.11)

A special case that has been frequently studied is the one-constant approximation
K,=K;=K,= K. Then the integrand on the right side of (1.11) is

K{(dive) +icurtp'} = K{IP o +2D- 9} = K([V o +diviW}  (1.12)
with D given by (1.7) and
W=pdive—(p-Plp=gdivp+¢ acurlg. (1.13)

Both (1.12) and (1.13) hold in the sense of distributions for all ¢ with Fpe L2
Taking K =1, and integrating (1.12) we find

Elg)—E(p)= :I; div W='Iu W-n. (1.14)

It is casy to check that W n depends only on  and its tangential derivatives on
dU. Therefore, in all problems in which ¢ is prescribed on the boundary (such as
Example 4 or the problems in Sect. VII) the boundary integral, [ W-n, plays no
role; the minimization of £ and E are the same problem. However, in Example 3, ¢
is not prescribed on the boundary and the two minimization problems are
different. We shall discuss only the E(p) problem in this paper. It would be
interesting to analyze the E problem.

It is 10 be noted that ¢ —|F}? is SO(3) invariant, namely if R € S0(3) and ¢(x)
=Re(x), then [Pp')? =|Fg]*. Also, D is SO(3) invariant, i.c. D(x)=D'(x), where D*
is the D ficld of ¢". On the other hand, H(g)=(dive) +Icurlg|? is not SO(3)
invariant; it is only invariant under the simultancous action of SO(3) on ¢ and on
X, i.e. ¢(x)—+Rep(Rx). From thesc observations one can conclude that E<E in
Example 3. Indced, let dy be Haar measure on SO(3) so that [ du(R)D - Rep=0.
Thus, for all ¢

Jdu(R) :I: H(Rg)= [I’ Pel?, (1.15)

so { HR@) S|P o)? for some R.
Long lived point singularities are observed in nature (6] and have degree one,
consistent with our Theorem 1.2,
B. The Classical O(3) Nonlinear Sigma Model
The Euler-Lagrange equation corresponding 1o (1.1) is

~do=¢lFpl?, {1.16}
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which is the equation of harmonic maps. It is also the equation of the classical
nonlinear sigma model, but in the physics literature this is usually studied in R?,
namely ¢ :R?—82 Our analysis suggests that the O(3) nonlinear sigma model
from R*-+52 may be interesting, when singularities are included, although it is
known that the quantized version of such a field theory is non-renormalizable. In
any event, the expression for the energy needed to create two singularities
scparated by a distance L, namely 8xL, is amusing. This is precisely the energy
expression used in the semiclassical theory of quark confinement. Also, the fact
that supp|F¢"|* converges to a “string” is consistent with some pictures of quark-
quark interactions.

Previcusly, Parisi [28] described a classical, relativistic field theory having
some features in common with our ¢ ficld. In the static limit it reduces to
monopoles embedded in a superconductor. However, to obtain strict linearity for
the effective monopole-monopole interaction potential it seems to be necessary to
take the limit of infinite critical field for the superconductor. For our Example 1,
on the other hand, no limits are needed.

I1. Minimal Connections

This section is concerned with defining some geometric quantities associated with
a configuration of points or holes (disjoint compact subsets of R") in certain
domains in RY. From this construction we derive a number (with the dimension of
a length) which, it will turn out, is proportional to the minirnum encrgy.

A common feature of all the cases of interest to us is that we are given k disjoint
holes in R¥, H,,...,H,. According to the casc, a certain distance function
D(H,, H ) will be defined between pairs of holes. D will satisfy the usual properties
of a metric ((H, H)+D(H,,H,)=D(H, H,) and D(H,H)>0for i+jand =0
for i=j). The different choices of D will be defined subsequently.

Associated with each H, is a degree d, ¢ Z. We assume that

S d,=0. (2.1)

The holes with d, > 0 (respectively d, < 0) are called positive (respectively negative)
holes. Let
Q=3 d=-1% 4, 2.2)
>0 di<0

be the total positive degree.

Definition of a Connection and Its Length. List the positive holes with each H,
repeated d; times in the list. Write this listas Py, ..., Pg, with each P, being some H,.
Likewise, list the negative holes, with each one repeated |d)| times. Write this as
N, ..., Ny Note that the holes of degree zero are omitted from these two lisis. A
connection, C, is a pairing of the two lists (P,, N, ), (P, N.7) ... (Pg, N,g), where o
is a permutation in S

The length of this connection is defined to be

u0='3§1 D(P.N,). 23)
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The minimal length is
L= mcin L(Cy, (2.4)

and a minimal connection is a connection (which may not be unique) such that

LO)=L.

Example I. The holes are k distinct points, a,,...,a, in R*. D(a,a)=|a,—a/
= Euclidean distance. Note that in this case, holes of degree zero play no role
whatsocver. We denote the minimal length by L(RY, {a}, {d}).

Example 2. H,, ..., H, are k disjoint compact subsets of R™. (H; could be a point or
an object of any “dimension” from 1 to N.) D(H,, H ) is defined as follows. First, let
dist(H,,H,)) be the usual Euclidean distance (ie. min{|x—y|ixe H,ye H}.
Consider a chain K =(ig,i,,...,i,) with each 15i,Sk and iy=i, i,=j and let

A(K)= il dist(H,__H, ). Then
D(H, H)=min A(K). 2.5)

Note that holes of degree zerc that are not points may now play a role in the
definition of D since their presence may reduce D (see Fig. 1). Also, one only has to
consider chains K without repetition, so the minimum in {2.5) is over a finite set of
chains. We denote the minimal length by L(R", {#}, {d}). If all the H, are points
this notation is consistent with Example 1, :

Example 3. Let U+ R" be an open set in RY. Let H,, ..., H, be disjoint compact

subsets of U with degrees d,, ..., d, but we do not assume (2.1). Introduce one more

hole, Hy=RWU (which is closed but not necessarily bounded), and let
k

dy=— Y d;. We repeat the construction of D and L in Example2 (on
=1

Ho H,, ..., Hy). Note that even though H, may not be compact, D{H,, H,)>0 for
i+0. Also note that even if d, =0, the presence of H, influences D and therefore L.
We call the minimal length L(U, {H}, {d}).

Example 4. Let U + R be a connected open set in RY. Let H,, ..., H, be disjoint
compact subsets of U with degrees satisfying (2.1). For x, y € U let dist(x, ) be the
geodesic distance within U, which will be defined in a moment. Distg(H,, H s
defined as in Example 2, but with the Euclidean distance |x — y| being replaced by
distg(x, y). Then D(H, H ;) is given by (2.5), using dist; in A(K). The minimal

+1

Fig. 1 -1
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length in this case will be denoted by Lg(U, (H}, {d}). The geodesic distance
distg(x, y) is defined as follows. Let k= {x,, ..., x,}, with x,6 U and x,=x, X =)
be a chain with the property that every line segment [, x,. ,]CU. Note that such
chains always exist since U is connected and hence arcwise connected. Let

A(K)=‘§:l 1x,~y —x} and
distg (x, y}'—_'ilzl' A(x). (2.6)

Note that there exists a function X : [0,1]— O with the properties that X(0)= x,
X(1)=y,and |X(1) — X(s)| S |t — s| distg(x, y) for alle, s€ [0, 1]. This follows easily
from Ascoli's theorem. Furthermore the length of the curve X([0, 1]) equals

distg (x, y) (lhc length is i[:IJ&” {t)ldt).

Il U is convex then distg(x,y)=|x—y| and therefore Lg(U,{H]}, {d})
=L(R~! {H}, {d}) -

Properties of Minimal Connections. In each example we introduce a distance
D(H;, H)). Inis to be noted that this distance can be realized as the length of a finite
union of continuous paths (which may or may not be unique). In Example 1 the
path is the line segment [a;,a;]. In Examples 2 and 3, there is always a certain
minimizing chain K in (2.5) and the paths are just line segments which realize
dist(H,__,H, ). In Example 4 the line scgments are replaced by curves in U of
length distg(H,__ . H, ).

Definition, A string is a continwous curve X(¢):[0,1]-+T with the following
properties:
i) X(0) belongs to some hole H, X(1) belongs to some hole H'.

ii) The length of the curve is D(H, H).

iii} For te(0,1), X(t) belongs to ncne of the holes. The string carries an
orientation from H 10 H'.

In Examples 1-3 a string is just a directed line segment running from H to H".
Given an arbitrary pair (H, H’) there need not be a string from H to H’, but
D(H,H’) can always be realized as a finite chain of strings with the obvious
consistent seguence of orientations.

Let C be a minimal conncction: it has a pairing of the positive and negative
holes and a length L given by (2.3). In an obvious way we can associate a finite
union of strings with C, namely, first realize D(P,, N,,} as a union of strings as
above, and then take the union of all those strings including multiplicity. The sum
of the lengths of all the strings is just L.

For descriptive purposes we can think of putting an arrow on each string in the
direction of the orientation of the string. Some properties of the strings are the
following:

a) For each hole H, the number of arrows pointing out minus the number of
arrows pointing in is just d,.

b) Ifmore than one string runs between H and H ", all these strings are oriented
in the same direction.
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¢) Given two strings in a minimal connection in Examples 1, 2 or 3, either

1) they are identical, or

2) they do not intersect, or

3) they intersect precisely at one point x with x in some hole.

The reason for this is the triangic inequality. Suppose S, (respectively § J)isa
string running from H, 1o H,, (respectively H, to H3). Possibly some of these four
holes are identical. Suppose z € 5,1, and z does not belong to a hole. We claim
that §, =§,. Let x,, y, (respectively x,, y,) be the end points of §, {respectively §,)
on H,, H| (respectively H,, H). Consider the two paths T, =[x,, z]u[z, y;] and
Ty=[x3,2}u[z,y,]. S, (respectively $,) is part of a path joining some P,
{respectively P,) to some N, (respectively N,). If we replace S 1 (respectively §;) by
T, (respectively T;) we obtain & new connection in which P, (respectively P,) is
paired with N, (respectively N,). The length is the same since |T;|+|T;|
=|$:}+|5,|. But T, and T, are not line segments unless §, = §,.

In Example 4 the situation is more complicated. Two different strings can have
a non-empty intersection.

11l. Upper Bound to the Energy

For simplicity we restrict our attention 10 R, In each of the four examples we
have:

Theorem 3.1, E < 8zL with L given by (2.4).

_ The proof requires a consiruction, which we call the basic dipole. Take two
distinct points a,,a. in R? and some positive integer d. Given any e>0 we
construct a function g€ C(R*\fa,,a..}: S such that:

a) E(¢)<8adla, ~a_|+¢. (3.1)

b) ¢ is constant outside some set N {a,,a. ), which we will henceforth call the
support of @, and which will be defined later.

c) deg(p, {a, })e +d. (3.2)

Without loss of generality take a;=(0,0, £ 0). Given £>0 we fix a smooth map
w:RZ 82 gych that:

]'3 IPwl® < 8nd +¢/2, (3.3

R

w=Const =e¢ outside the unit disc, (34)
degw= —d, (3.5)

Here, degw is defined to be the degree of w considered as a map from
§%~R?*U{w} (by stereographic projection) to S%. The existence of such a map is
standard (see ¢.g. [4, proof of Theorem 2, Part C] used with u=const). The idea for
constructing «w is the following:

) Let o(x, yy=(Re(x+iy)™%, Im(x+ip)™). (ii) Let w(x,y)=(T-v)(x, y),
where I is stereographic projection from R ? 10 S2. One finds that(3.3) and (3.5) are
satisfied with ¢=0. (iii) Replace v by yv=4, where 0<y=1 and y has compact
support and y=1 on a large disc D. Equations (3.3) and (3.5) are satisfied if D is
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chosen large enough. (iv) Now replace &{x, y} by &(dx, 1y)=4 with 1 large enough
so that supp #Cunit disc. The left side of (3.3) is independent of 4.
Next, define @ :R3—5§% by

if lzjz!

ol(x,y,2)=1° (3.6)
lm(L L) if Jz<i

P _32

.and then set
@ulx, ¥, 2)=@(nx, ny, z). (3.7

@, is smooth on R*{a,,a_} and satisfies (3.1) (if n is large enough) and (3.2).
Finally, ¢, =¢ outside the set where z2 +n(x2+ y*)!* < 2. This set {for n large
enough) is the N, in (b) above. Note that the opening angle of N, ata, and a_ goes
to zero as e—0.

Proof of Theorem 3.1 for Examples I-3. Let C be a minimal connection. As
explained in Sect. 11, C can be thought of as a finite collection of strings, each of
which is a directed line segment running between pairs of holes and which carries
some multiplicity, m. Suppose a string runs between xe H and ye H’' and has
length I. Then the open ball of radius ! centered at y does not intersect H and,
similarly, the open ball of radius [ centered at x does not intersect H’. Thus, for
small enough &, we can insert a basic dipole (of degree m) between H and H'. Il two
or more different strings intersect at 8 common point x€ H we can insert the
required number of disjoint dipoles if ¢ is small enough. Inside each N, we take ¢ to
be given by (3.7), and we take ¢ =e outside (WN,). Then E(p)<8nL+e-(the
number of strings in ). 0O

Proof of Theorem 3.1 for Example 4. The difference with the previous case is that
the strings are now curves instead of line segments and, moreover, they can
intersect each other outside of the holes. However, any string between H and H’
can be approximated (in length) by a polygonal path in U\(UWH)) (not ).
Moreover, we can also assume that any two such pelygonal paths intersect at most
only at their end points. To imitate the above construction we have to find the
analogue of the basic dipole construction for a polygonal path, I', with end points
a,. That is, we want to construct a function ¢ satisfying (a) E{(¢) < 8=d|I"| +¢; (b)
@=e outside N(I); (c) deg(p,ay)=+d. Here, N{I') is contained in an ¢
neighborhood of I” and has an ¢ opening angle at a,. Let " be the union of line
segments [x,_,,x,] with xo=a,, x,=4a_ and all x,e U. We can, by passing to a
refinement if necessary, assume that all [x, _, — x| are ¢qual and have the common
value 2. Think of the points x;, i=1, ..., p—1 as holes of degree zero and construct
the function ¢ as in the end of the above prool, i.e. construct disjoint basic dipoles
of degree d, one for each segment [x,.,,x,]. Use the same n in (3.7) for all the
intervals. Unfortunately, this function ¢ is not continuous at the points X,
i=1,...,p—1. However, p hasdegree zcroateach x,,i=1, ..., p— 1. To remedy the
lack of continuity we proceed as follows. Let B, i=1,..., p—1 be balls of radius
R <lat the x; and with R small enough so that there are only two basic dipoles in
each B,. We shall modify ¢ inside the B,. On 9B, there are two disjoint circular caps
in which ¢ +e. These are the intersections with 28, of the two N,’s of the two
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dipoles that intersect at x,. Call the caps K, and K ,. There is a unique cylinder, C,
with elliptical cross-section, whose intersection with B, is precisely K, UK. If 4 is
a line in C parallel to the axis of C, then @(AnK,}=@(AnK,). The function @,
which is the modification of ¢ and which is continuous, is defined by G(AnB,)
=@(4nK,). OQutside UB, g=g. It is casy to see E(¢)—E(yp) as R—6. 0O

IV, Lower Bound to the Energy

Again, as in Sect. HI, we restrict our attention to R>. In each of the four examples
we have:

Theorem 4.1. E28xL witk L given by (2.4).

k
Proof. Let H ='U‘ H; and Q=U\H. Let ¢ satisfy the appropriate conditions,

namely @eC(Q;5%), Poel(R2), degip, H)=d, and, in Examplc4 only,
@€ C(0\H) and ¢ =constant =¢ on dU. As explained in Appendix A, we can also
assume that @ € C*(£2). We shall show that E(¢p) 2 8nL.

Construct the vector field De C*(Q;R?) as in Appendix B, namely

D=(‘p"pyA(pn(p'q’xA‘Pm(P'(Px’\‘py)

with @, = dp/dx, etc.

We claim that a.e. on 2:
ID| 24Pl 4.1)

To sec thisl supposc that @ =(0I 05 1 )' Py =(al) blv 0)» (py= (all b?' 0)- @, =(03v b:!t 0):
using the fact that ¢-¢,=0, etc. Then D=AAB with A=(a,,a,,a,) and
B=(b,, b, by). Therefore |D| <|A[|B| < 4(A* + B*)=HV¢|. Equality in (4.1) holds
ifand only if A-B=A2-B*=0. Let [ e C(U) with [F{|S1(in @) and {=(,isa
constant on each H,. In Example 3 we also assume that { € C({J) and { =0 on JU.
By (B.16) in Appendix B,

E@)22] D)2 ~2{D-P{=8x 3 {d.. 42)
n 0 i=1

Our goal is to show that with I{{) = " { d,, I =sup J{{) = L, whete Z denotes the
{6Z

appropriate above-mentioned class. We only require I > L, but it is easily seen that
{({)= L. Indeed, in Examples 1-3 (respectively 4), [[(x)—{(y)| S |x — y|, [respec-
tively distg(x, y)] for all x, y U and { e Z, since [F{] < 1. Consequently, in all cases

Q
16— &,| = D(H,, H)). Since ¥ cy,:}gl (PP —{(N) for any pairing (see Sect. II for

notation), /({) < L. Therefore we need only construct some { € Z with =L
First, suppose there are k numbers {{;} such that, with {; =0 (for Example 3),

|Ci“(ﬁ§ D(H,-, H}) , forallij. 4.3)
Then we can construct { € Z such that { ={, on each H,. One choice is
{(x)= max {{,—dist(x,H))}, Examples 1-3

=max {{;—distg(x, H)}, Example 4. (4.4)
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Here  dist{x,H) [respectively distz(x, H)]= inf, ylx—y| [respectively
inf,_ 5 dist; (x, y)]. To see that this { € Z, note that JS{x)=dist(x, H) [respectively
distg (x, H))] satisfies |Ff| < 1, and hence |P{|< 1. Ciearly {(H,)2{,, so we have to
check that {, 2 [, —dist(x, H,) [respectively distg (x, H pJlforalljand all x € H,. But
{—4SD(H, H) S dist(x, H)) [respectively distg(x, H p1b

To summarize, we merely have to find k numbers satisfying(4.3)and 3" {4, = L.
Since D(H,, H)) satisfies the triangle inequality, the following lemma establishes
the existence of 20 numbers {«;} and {B,} such that 4 =a, (respectively ;=g if
D{P,, P))=0 [respectively D(N,, N ;)=0]. With the P’s and N's corresponding to
holes repeated according to multiplicity, as in Sect. II, we can simply take {; to be
the common value of a, (or f) on that hole. []

Lemmad2 Let P, P,, wPoand N\, N,,...,N, be 2Q points and let X be their

union. Let D be a semi-metric on X (i.e. a metric withowt the condition that

Dx,y)=0 = x=y). Let L= Msin 2 D(P, N,), where Sy is the set of permutations.
LLET+)

Then there exist real numbers a,,a; ...ay and §,, 8, ... Bo such that

£ @=L, 45)

and for all i, j

le—ad<D(P,P),  |—BISD(P,N), |Bi—BISDWN.N ). (46
Proof. This is a consequence of the Kantorovich theorem {see [10,15, 20,297} and
the BirkholY theorem on doubly stochastic matrices {see [2, 26]). The Kantorovich

theorem states that if X is a compact metric space with metric D and v are two
non-negative measures on X such that [ du=Jdv. Then

Max ( fap—| fdv)= Min {{ D(x, y)dm(x, y), “.7

where L= {f: X -R|!f(x)—f(y)| S D(x,y)}, and where m is a non-negative
measure on X x X whose marginals are yand v. We apply this to our X and D with

Q [
ﬂ='=zl 5‘)' and v=[§| 5";‘
The measures m whose marginals are x and v are precisely of the form

2
’n=i El auép‘®6~1,

where A=(a;)) is a doubly stochastic matrix (denoted by DS), i.e. ay20and
Q e
2 a;=3% =1,
=l iwl

Q
foralli, j. The left side of (4.7) is Ma:x 3. (x;— B, where o, B salisfy (4.6). The right
.. i=1
side of (4.7) is ME} 2 a,D(P, N ). Birkhoff's theorem stales that every AeDSisa
As

convex combination of permutation matrices. Therefore the right side of (4.7) is
M;'n ZDP,NH=L. 0O
q6Sg
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Y. The D Problem

If we look back at Sect. IV we sec that the lower bound for E was obtained by
analyzing a problem that, in principle, is different from the original @ problem
about S%-valued vector fieids. In this section we shall explore that auxiliary
problem — which will be called the D problem - in more detail. Although the two
probiems give rise to the same minimal energy E in various cases (which
fortunately include the cases of interest 10 us), the vector fields involved are
different. At the end of this section we shall remark about the interzelation of ¢ of
D.

The D problem is defined as follows. It will be defined in R¥ instead of just R*
because the analysis is independent of N. As before we are give:: anopenset U cRY

and k holes H, (disjoint compact subsets of U). Let H= ) H, and Q=U\H.
iz

Associated with each H, is a real number d;(which now need not be an integer). We
shall be concerned with L! vector fields, D, on £2 and distinguish two cases which
we call 4 and B. Let Q, denote the lincar space of all functions { e C(J) with
F{e L=(U),{=00n 3V (no conditionif U = R™ and { is constant on each H, Let
Q5 denote the linear space of all functions {eCU) with ¥{e L>(U) and { is
constant on each H,

Let af, (respectively afy) denote the class of all vector fields DelL'(Q;RY)
satisfying s
- !, D.-¥V{=a, El d{(H) for all {eQ, (respectively Q). (51)
Here oy denotes the area of S~ ! in R¥(g, =4n). ,
Note that if U =R¥, then o, is not empty if and only if ‘Zl d=0.MU+R¥

k
then o, is always non-empty (even ifr ¥ d, #0). 'y is non-empty (for any U) if
[ =1
and only if ¥ d,=0. In this section we shall be concerned with minimizing the
=]

energy
E(D)= £ |Dj. (5.2)

Let E, (respectively Eg) denote the infimum of E(D) with D in the class o,
(respectively o). Formall y, Case A consists of minimizing | }D| over vector fields D
suchthatdivD=0inf2and | D-v= ayd; for each i, where v is the normal to the

oM,
surface 3H,. Case B consists c;l‘ minimizing { [D| over vector fields D such that
divD=0in 0, D-v=0 on U and { D-v=uoud, for each i. (If the holes H,; are

8H,
points a;, we have, as in Remarks B.2 and B3, divD=0oy ¥ d4,.)

Case A is relevant for Examples 1-3 of Sect. I while Case B is relevant for
Exarmple 4. In the following we shall refer to the distance between holes D(H, H")
and we shall adopt the convention that for Case A (respectively Case B), D(H,H)
is defined as in Examples 1-3 (respectively 4) of Sect. I1. If N=3 and the d/'s are
integers, the analysis of Sects. 11 and IV shows that

E4 g=max oy ZALHDIN Plies1, { €Q, (respectively Q}. {5.3)
In fact, (5.3) is always correct for all N and d,.
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Theorem 8.1. Equation (5.3) holds in all cases. Moreover, if d,,....d,>0 and
dpiys...ydy<0and 3 d;=0, then

Eqp=0y inf{ T Y abH, H,)}, (5.4)

i=] =g+
4 P
Wllh augo and E au=d‘, Z au=ldjl-
j=p+1 i=1
Proof. Equation (5.3) follows from the duality principles given in Appendix C.
Equation (5.4) follows from (5.3) as in Lemma 42. 0O

It is intuitively evident from the variational construction in Spcl. I, th?t a
minimizing D for (5.2) often does not exist as an L! function. This will _be clarified
later. However, a minimizing sequence {D,} for (5.2) does have a limit in th‘e sense
of measures on {J. More precisely there is a subsequence (which we continue to
denote by D,) such that D,—D in the weak * topology of measures on £2. This
measure D satisfies {IDISE, 5. (5.5)

o

Moreover D satisfies (5.1) except that we have to change the linear spaces Q,
(respectively Q,) into

Qu.a=1{{€Q, (respectively {e Q)P € CLD)},

so that, in particular, the expression | D- P{ makes sense. We denole by o
{respectively sf3) the class of all vector valued measureson {2, D=(D,, ..., Dy) such
that §|D|< 0 and

—”D- 44 =.:r,.,2k:l d{(H) for all {e Q) (respectively Q). (5.6)

Our problem is twofold: to establish equality in (5.5) and to identify these limiting

measures.

Definition. An open set U is said to be regular if the following holds. Let
U=U+B,={x+ylxeU, |y ze}.

We suppose that for any two points x, y € U, their geodesic distance relative to U,
tends to their geodesic distance relative to U as e—0.

Theorem 5.2
min {[ |D|ID e dj.} =E,. 5.7
1]

If U is regular then
min {‘[’ IDj|D e d;} =Ey. (5.8)

Proof. In view of (5.5} it suffices to prove 2 in (5.7) [or (5.8)]. Let Desf’,; we have

[1DIZ —[D-Pl=0y 3 di(H) (59)
1 [l i=1
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forall { € @7, with ||P{|| .~ £1. Therefore we have to show that the supremum of the
right side of (5.9) with { € @), and ||P{|| . <1 is given by (5.3). We note in passing
that, in general, the supremum is not achieved in the class Q- Thessituation hereis
“dual” 10 that of Theorem 5.1 where E, is not achieved while the right side of (5.3)
is achieved. We recall (sec Lemma B.5) that given any { € Q, with [|[F{|| .« <1 there
is a sequence {, such that {, & C*(U), {, is constant on every H,, Pl l,-<1and
{»—+{ uniformly on every compact subset of U/. This completes the proof of (5.7),

We turn now to the proof of (5.8). Let U, = U + B,andletH, ,=H,+ B, Let Ey,
be the right side of (5.3) for this £ problem. Since U is regular Ep —+Eg as -0 by
Remark 5.1. Let {, be a maximizer of (5.3) for the & problem. Without loss of
generality we may assume that {, € L™(U ) (otherwise truncate () Let{'=J,,+,.
Cleatly {'e CY(U), IW{|pww,S1 and [(H)=((H v Finally consider
{o=(1+C/m)~"x,’, where y(x) = y(x/n} and y € C*(RY)is any function such that
Ax}=1for |x|<1 with x|, <1 and C= Vx|l ') Note that & Qy(U),
WP iall oy =1 and {,~{" uniformly on every compact subset of ¥. [

Remark 5.1. Case B of Theorem 5.2 may fail if U is not regular, Take for example
U=R\{(x,y,0)|x20, yeR}.

For this U, the requirement that P{e C(0) implies that Qx(U)=04(R>, and
therefore the supremum of the right side of (5.5} can be less than the right side of
(5.3).

We now turn to propertics of the minimizing D measures.

{. Properties of the Support

Theorem 5.3. Let D be any one of the Jollowing vector valued measures
1) @ weak * limit of an L' minimizing sequence for (5.2),
ii) one of the minima referred to in (5.7) or (5.8).

Let G be the union (which is closed ) of all geodesics running between holes ( see
Sect. I ). Then

suppDCG. (5.10)

Moreover, if all the d;'s are integers, then suppD C G', where G’ C G is the union of
all minimal connections. Note that the definition of G' depends on the {d}.

Progf. Let B be a closed set in U such that BAG and BAH are empty. Consider
V= U\B. The geodesic distance between holes for the V problem is obviously the
same as for the U problem. Consider D restricted to P (respectively the Del!

restricted to V) and callit D (respectively B,). These vector fields satisfy all the right
conditions (for ¥), so

mfmIDIéE{V)=E(U)=£IDJ=mfﬂ115I+{IDI.

and thus D=0 on B, which proves (5.9). Note that E(U Y= E(V) by virtue of (5.4). A
similar reasoning works for the sequence D,, as well as for the case of integral d's
(see Lemma 4.2). 0O

Remark 5.2. Note that i) holds even if U is not regular.
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Remark 5.3. Consider Case A and assume D is a minimizer in (5.7). Then the |Dj

measure of {UH}) is zero.

Indeed
s- I ’D'Pc-__aNEdiC(Hi)

RM(UH) LR
for all {eC'(R") with |P{|=1, {=0 on 8U and { is constant near each H,.

Therefore
I IDigaySup X d{(H),
RN\l 4

where { runs in the above mentioned class. It follows that
[ IDIZE,=§ ID|.
Ry

RM(UH)

Remark 5.4. We conjecture that, for any U (regular or not) we have
min{!}[D[lDed;, suppDCG} =E,. (5.11)

2. The Two Hole Problem

We investigate here two simple cases:

a) Case A with U=R" and two disjoint holes H, and H, with d, +d,=0.

b) Case B with U+R" and again two disjoint holed H, and H, with
dl + dz = 0

In both cases D(H,, H;)=L.

Let us first analyze the case where there is precisely one geodesic, g, between H,
and H,. Let D be as in Theorem 5.3 so that suppD Cg. By Appendix D we know
that D must be a measure of the form

D=cD,. {5.12)
On the other hand,
[1D|=0yld\IL, (5.13)
where L is the length of g. On the other hand,

so that c=ay|d,|. In particular |D]| is the uniform Hausdorff measure on g and the
“direction of D is tangent to g.” We shall establish similar properties in the general
case where there are many geodesics between H, and H,. As before we denote by G
the union of all geodesics. In Case A, G is simply a union of line segments of length
L which are disjoint except possibly for the end points. Ln particular every point, x,
in G\(H,UH,) has precisely one geodesic passing through it. We denote its
direction (going from H, to H;) by n(x).

In Case B the situation can be much more complicated. Many geodesics can
pass through a single point and the tangent need not be defined at every point of a
geodesic. There could alse be many geodesics connecting two poinis.

Theorem 5.4. Under the assumptio;.ls of Theorem 5.3 and in Case A, the vector-
valued measure I and the scalar-valued measure |D| are related by

D=nD|. (5.15)
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Note that Eq. (5.12) relied only on the fact that divD =9, But in Theorem 5.4
we really need the fact that D is minimizing, Consider, for example, the case where
H, and H; are two cubes with paraliei faces so that G is a cylinder, C, with a square
base. Let g be any curve going from H, 10 H;in G. Then divD, =0, but (5.15) fails.
The requirement that D is minimizing forces the “integral curves™ of D to be
geodesics.

We believe that a similar result holds in Case B,

Conjectm:e 3.1. Under the assumptions of Theoretmn 5.3, and in Case B, D is such
that n(_x) is well defined a.c. |D| and D =n{x)|D|. Here B(x} is the common tangent -
when it exists — to all geodesics through x.

Proof of Theorem 54. Let H, ,=(x|dist(x, H 1) 56}, and similarly for H,, with
>0 and small. Note that dist(H, ,, H, ;)=L—25. Let

S(x)=min{dist(x, H, ,), L—26}. (5.16)

Let g be a nonnegative C* function with support in a ball of radius one around 0
and [g=1. Let g,(x)=¢ "~ ¥g(x/c). Set

Je=g.*f for e<$, 517

slc: that £ is a smooth function which is zero on H 1and f,=L—25on H,. Weclaim
that

V/i{x)—n(x) everywhere on G\(H ey ). {5.18)

Assuming that (5.18) holds, (5.15) follows easily. Indeed, since f is Lipschitz with
constant one, {Ff|<1 and hence

onL=[|D|2 [ D Ff,:=(L-20)s,. (5.19)

From (5.18), and dominated convergence, we have

D-Ff-—— D.n, .
G\(H,, qula,a) % 0 Guu..{uua..} ! (5:20)
and thus, combining (5.19) and (5.20) we obtain
D-nz{L-28)a,—

G\H gl g) ( ) N ‘"l.ﬂU"l.Id'\(HIUHI) IDI (5.21)
(note that f=0 near H, and f,). Passing to the limit in (5.21) as 60 we find

D nzLoy,.

GH, uHy)

B‘y Radon-Nikodym, we may write D=F\Dj for some function Fe L*(D|) and
IF|=1ae. |D|. Thus wehave F-n=1 ae. 1B, and so F =n a.e. |D|. We turn now to
the proof of (5.18). Let e be any unit vector in RY. We have

1
Uikt 16)~ £ = | e =1 LS+ 16)~F 011y

1
= ;I #u(xo — y) [dist(y +te, H,)~dist(y, H,)]dy



666 H. Brezis, i-M. Coron, and E. H. Lieb

for xo€ G\(H, ;0 H,,,) and e small enough. Given a point z we denote by a(z) any
measurable projection of z on H,. We have

dist{y +te, H,)—dist(y, H,}Z |y +te—a(y + te)| — [y —a(y + te)|,
and thus

! Ut 1)~ 1) 2 1S 0ixa v+ te) [y =)l = by te—al)].

On the other hand
ly—te—a(y)i=[ly—a(y)*—2te - {y—a(y + 1"

_ e'(y"'a(y))} C 2
§|y—a(y)!{1 ‘ﬁ_ly—aU)lz +Ct*.
Therefore as t—0 (and fixed ¢) we have
e-(y—a(y)
- -y ——dy.
7f-ezfglxo-y) b—atn ¥
Finally we observe that _
lim r=ay) =n(xy),
r=xo |y —a(y)|

since a(y)—+a(x,) because x, has a unique projection on H,. We conclude that
lim':)anL-ege-n(xo).
ot

Changing e into —e we obtain (5.18). O

As we remarked earlicr, when there is only one gcodes@c g between H, and H,,
then [D| is a uniform measure on g. The analogue of this when therc are many
geodesics is the following

Theorem 5.5. Let D be a measure as in Theorem 5.3 (for either Case A and Case B).
For 0Sa< B <L consider the slice

S(a, f= {x|a<dist(x,H,) < B} (5.22)
(with dist = geodesic distance in Case B). Then
| IDI=ald;|{p—a). (523)
Sa.;

Proof. Replace H, by H,uS(0, a). For this new problem E’'=g|d,|(L—a). But we
can use D restricted to UN\S{0,a) as a variational measure for E' and obtain

E'S | ID). Likewise, replacing H, by H,uS(a, L),

Sia. L)

oxd,|=E"< | |Bj.
5(0.0)

Adding these inequalities we obtain:
auldilLs | 1DI+ | |DI=auldiIL.
Sa, L) S(G.q}
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Therefore
I |D|=UN|‘11|“- O

(0, a}

3. The Many Hole Problem

We now turn to the description of all minimizing D fields in the general case with
many holes.

Suppose there are k holes H,, ..., H, with degrees d,, ..., d, (not necessarily
integral). Some of these may be zero. We assume Y d,=0 because, in Case A, we
can assume that the complement of U is also a hole with the appropriate degree.
First, let us consider the minimal energy E,, . I{ d,, ...,d,>0 are the positive d's
andd,,,...,d,<Qare the negative d's, (5.4) gives us E, 5 1n terms of a p x r matrix
A ={a;} (with r = g— p). The set of minimizing 4’s (call it af}is convex, as is the set
of minimizing D’s.

Recall that D(H,, H)) is the geodesic distance (different for Cases A and B), It is
realized by a finite sequence of strings (see Sect. II) running between a sequence of
holes. More than one sequence may be possible. To be more specific, let x;, =1 if
there exists a string between H;and H, and y;,=0 otherwise. For y,,=1, define 4, y
to be the set of all strings between H, and H), and L, their common length.
Likewise, for y,;=1, let 9, be the set of minimizing D fields (with d,=1, d;=—1)
constructed in the preceding section (the two-hole problem). if x,=0, ¥,
(respectively 2,) is a union (respectively sum) of the strings (respectively
minimizing D ficlds) connecting H, to H| (respectively with d;= +1, d,= —1),

Now given an A € o we can construct 2 minimizing D field as lollows:

P q
D=% ¥ a”D”, (5.24)
=t f=p+1
where D' € 2, Recall that when the d;’s are integral the extreme elements of o are
given by BirkhofPs theorem, namely by a minimal connection in which each
a;ed”.

Theorem 5.6. For Case A, every minimizing D field is given by (5.24).
We conjecture that the same is true for Case B.

Proof. Let M ={{i, )lx;;=1}. A little thought shows that we can rewrite (5.4) as
follows:

E =loy min§ T} PPN (5.25)

where the minimum is over p;= —p and F =4, fori=1, ...,k Pictorially, g,
i

can be thought of as the flux from i to ; it is not required that y; has any definite
sign.

Suppose that {(a,b)e M and (c,d)e M (all points being distinct) and that
geodesics g,y € ¥y, 9.4 € ¥, (these are line segments). Suppose also that g, and g,,
intersect at a point P. In this case, we claim that either p,, =0 or = 0. If not, we
can assume that u, 2 u, >0. Clearly, D(H,, H,) <dist(H,, P)+dist(P, H,) and
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D(H,, H,)<dist(H,, P)+disi(P, H,). If (a,d) and (c, b) € M, then DH, H)=L,
and D(H,, H,)}=L,,, and we can replace the four numbers Hapr Heds Haas Hey bY 0,
Hed = Baps Moy + Haps Hap + 1y and thereby strictly lower the energy. This construction
has to be modified in an obvious way if(a, d) or (c, b}¢ M. The conclusion we reach
is that whenever 9,19, is not empty, then every minimum of {5.25) has u,, =0 or
#e=0. The choice [(a, b) or (c,d)] is universal; if Hap ¥ 0 in one minimum and
#.4*+0 in another, thea by taking the mecan {which is still a minimum) we would
have a contradiction.

Let NCM be the set of (i, j) such that ,,+ 0 for some minimizer in {5.25). The
families of geodesics {#,,} for (a,b)e N are disjoint except possibly for the
endpoints. Let G =) ¥,,. Now let D be a minimizer. We claim that suppDCG. The

N

proof of this is the same as the earlier proof (5.10) that supp D is contained in the
. geodesics between the positive and negative holes. If x ¢ G then remove a small ball
around x (thereby creating a degree zero hole). If the ball is small enough nothing
changes in (5.25) (recall the strict inequality of the preceding paragraph). Thus E,,
does not change, but D’ =(1 — y)D, with z, being the characteristic function of the
removed ball, is an allowed vector field for the new problem, whence £|Dt=0.

For (a,b)e N, consider D,, = F,,D, where F a» is the characteristic function of
%0 I {eC'(RY) and {=1 on H,, {=0 on H, then, as is easily seen

—iDy Pl =0ya,, (5.26)

where a,, is some constant that is independent of {. From the defining condition
(5-1)on D we see that ay = —u,, and 3 a,,=d,. By (5.25), 1Stoy T laglLl,,
b la, ks N

On the other hand, §|D|=4 3= [|D,,| [since the |D| measure of the holes is zero
(a.b)e N

(see Remark 5.3)]. Thus | |Dlgicr~‘ E{l‘_ v leolles [bY (5.26)]. O

Remark 5.5 on the Relation of ¢ to D. Let Q be an open set in R*. In Sect. 1V, to
every g € C(2; §) with V¢ € L*(2) we have associated a D field with the property
that divD = 0in 2’ [for the generalization to RY, see (B.7)). Itis a natural question
whether any vector field D with divD =0 comes from z . The answer is no, as the
following, based on a remark of D. Sullivan, shows. Let S be a smooth closed
surface in £2. Let D a smooth vector field with the property that some integral curve
of D is dense in § (for example § could be a two-torus, and D restricted to § is an
irrational twist of the torus). Then this D can not come from a @, as we shall now
show.
From the definition of D in Sect. IV it follows that

D 7)p=0, (5.27)

since |@|*=1 [and thus det{p,, 9,, ¢,}=0]. It follows that ¢ is constant on the
integral curves of D and in particuiar ¢ is constant on S, Therefore D=0 on § since
D =0 whenever F @ yanishes in two orthogonal directions. This contradicts the fact
that D0 on 8.
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V1. Behavior of Minimizing Sequences for the ¢ Problem
As belore we an: given an open set U C R and & holes ; (disjoint compact subsets
of U). Let H= :9: H,and Q=U\H. Associated with each H, is an integer d,. We are
concerned with the behavior of minimizing sequences for the problem

E=inf[ e 6.1}

under the appropriate conditions on ¢, namely @eC(1;S%), Voel*(Q),
deg(e, H,)=d; and, in Example 4 only, g€ C(U\H) and ¢ =constant on 3U. In
Example 4 we also assume that U is regular.
Let ¢" be 2 minimizing sequence for (6.1) and let D” be the fieid cotresponding
10 ¢". By passing to a subsequence we may assume that D"—D weakly in the sense
of measures. We claim that
Pe"*—2|D)| (6.2)

weakly in the sense of measures. Indeed we have ID% =4|P p"?; let us assume that
lp"*~—vweakly in the sense of measures. Then we have

2|D|gv. (6.3)
On the other hand, by Theorem 5.2

JIDIZ4E. (6.4)

Since [ v=E, we conclude that v = 2|D|. Again, by Theorem 5.2, Disa minimizer for
E, or Ej, and thus we have the description of D given in Sect. V.

The conclusion of all this is that any minimizing sequence for the ¢ problem
inherits all properties of minimizing sequences for the D problem that we studied in
Sect. V. In particular, since D js supported on G, the union of all geodesics running
between holes, (6.2) implies that " converges strongly in H* to a constant on cach
connected component of the complement of G. However, the fact that D comes
from a D*, which comes from a ¢* leads to some additional properties for D
beyond those implied by the fact that D is a minimizer for the D problem. To derive
these additional propertics, Appendix E wilt play an essential role. .

For simplicity we shall restrict our investigation 10 Examples 1-3 and with the
additional assumption that there are only finitely many sirings between any two
holes.

Theorem 6.1. There is a minimal connection, C, which we write C = ug,, where the
4;'s are strings (which are repeated according to their multiplicity in C), such that

D=dx¥ D, . (6.4)

i

D, is defined in Appendix D. In particular,
ID|=4n34, , (6.5)

i

where 3, is the one-dimensional Havgdarfl measure on g. Consequently [by (6.2),
(6.5)],

Pef—8233,,. (6.6)
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Remark 6.1. The point of this theorem is the following. If there is only one minimal
connection, then the D problem has a unigue minimizer and Theorem 6.1 does not
give any additional information beyond that contained in (6.2). The interesting
case is where there are several minimal connections, say C, and C, for example,
Let D, (respectively D,) be a minimizer with support in C, (respectively C,). Any
convex combination of D, and D, is also a minimizer, but this cannot happen for
the ¢ problem. |F¢"[* must converge either to 2|D, | or 2|D,| but cannot converge to
ID,{+1D,|, for example. This is a consequence of the quantization condition of
Appendix E.

Proof. We recall that
suppDc U gy,
(. )sN

where g;; is a string running between H and H (ie.ilisaline segment_). 'l_"he set N is
described in the proof of Theorem 5.6. N has the property that two distinct strings
in N can intersect only at a common endpoint. We can write D as

D=(}}4n “3;; " viiDy,

where g, is oriented f[rom H, to H; and v;;= —v;. By Theorem E.5 we know that
v;€ L. Moreover the divergence condition implies that 3 v,=d, for each
i=1,2,...,k. The energy is given by i
“D| =i4ﬂ z |"fj|Lij:
. jreN

where L;; is the length of g;;. Since the energy is minimal, it follows that v;; is a
minimizer for (5.25). We claim that this set of v;; defines a connection (which must
be minimal since the encrgy is minimal). Take any positive hole, say H,. By the
divergence condition there must be at least one v, >0. Go to H,. Ifthis is a negative
hole, then stop and replace v;; by v,;—1. If H, s a zero or positive hole, then keep
going until a negative hole is reached. Along this path replace all the v's by v— 1. By
repeating this construction @ times (where @ is the sum of the positive degrees), we
obviously have a connection. We claim that the remaining v’s are all zero. This
follows from the fact that v is a minirnizer for (5.25) and that replacing the residual
¥'s by zero would lower the energy in (5.25) and preserve the divergence
condition. O

VIL Minimizing the Energy with Specified Boundsry Conditions

A problem that we have so far not addressed in this paper is the minimization of
the energy when ¢ is specified on the boundary of a domain (except for the special
case where ¢ is constant on the boundary). Our analysis of the D probiem in
Sect. V is a useful guide to understanding the solution to certain open problems of
this genre. In particular we shall answer the following questions.

Let B be the open unit ball in R? and let

Ci={9e H'(B;S))|p(x)=x on 8B} . (1.1)
Let E(p)=]IPoi*, (7.2)
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and
E,= inf E(¢). (7.3)
vel,

Question 1. Is yp(x}=x/{x| a minimizer for E,?
Answer. Yes {see Theorem 7.1).
Next, let
C,={pe H'(B; $))ip(x)=g(x) on 8B},
where g: 52—+ 57 is a given smooth map. Let
E,= inf E(p).

[ 21w

Question 2. Is g(x/|x|) a minimizer for E,?

Answer. No, unless ¢ is an isometry (i.e. +g or —g is 4 rotation) or g is a constant
(see Theorems 7.3 and 7.4).

In other words, if g is any smooth map from $? to 52, and if g is extended
radially to B, the extension is unstable unless g happens 1o be the constant map
(degree zero} or g is the identity map modulo an isometry (degree +1).

We recall that a (smooth) map g from $? to $? is called harmonic if it satisfies
the equation, — Ag=g|Fg|?, where 4 is the Laplace-Beltrami operator on 52,
Harmonic maps from 5? to §2 have been classified (see e.g.[22, 35]) and their form
is given in the proof below of Theorem 7.4. They all have the property that they
minimize sj}ll?gl’ subject to the condition that the degree d of g is prescribed. In

particular this integral is 8x|d|.

We also recall a result of Schoen-Uhlenbeck [31,32] that il we take an
arbitrary domain 2 and minimize E(p) in H'(Q;S?) with specified boundary
condition, then any minimizing ¢ has at most finitely many point singularities.
Our result implies that these singularities always have degrees +1 (see
Corollary 7.12). In an carlier work Hardt et al. [19] showed that the degrees of
these singularities are bounded by some universal constant. This confirms the
observations on liquid crystals that stable point singularities have degree + 1 [6].
It also confirms numerical studies by Cohen et al. [8] showing that singularities of
degree two or more are unstable. Our first result is the following:

Theorem 7.1. w(x)= x/|x| is a minimizer for E,; in fact, it is the unique minimizer.
An obvious consequence of Theorem 7.1 is the following:

Corollary 7.2, Suppose g(x) = Rx, where R is a rotation in SO(3). Then p(x)= Rx/|x|
uniquely minimizes E,.

Qur second result is:

Theorem 73. If g has degree +1, then g(x/|x]) is not a minimizer for E, unless
g(x)=Rx, where R is a rotation in SO(3).

Our last main result is:

Theorem 7.4. If g has degree d with |d| 2 2, then g{x/)x|) is not a minimizer for E 2
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Proof of Theorem 7.1. Clearly we have
E, S E(x/|x])=8x. (74)

[n order to show that y{x) =x/|x| is the unique minimizer for E, it suffices to show

that
E(p)>8n forevery peC,, p+1p. {1.5)

This leads us to the question of finding lower bound for the energy.

A. Lower Bounds for the Energy

There is always a minimizer for E, and, if ¢, is a minimizer, we know from [32}
that ¢, is smooth on B except at most at a finite number of points in B. Therefore it
suffices to prove (7.5) for ¢ in the class

C={¢eC,jp is continuous on B, except at a finite number of poinis in B} .

This will be achieved using the D field associated to . [An alternative to using the
result of [32] about minimizers is to use a theorem of Bethuel-Zheng (in
preparation) which states that € is dense in C, for the H* norm.]

Let ¢ € H'(B; 5%) be smooth on B except at a finite number of points in B (we
do not assume that @(x)=x on JB). Let D be the D field associated with @asin
Sect. 1V.

We have

HILC R EINE VC=;.(D-H)C-£(diWD)C

forevery { e C(Bywith P}, . <1.RecalithatD-n depends only on the values of
restricted to 48 and, more precisely, D - n=¢- @, A ¢,, where x, y are orthonormal
coordinates on $2. On the other hand

divD=4n A_‘E ds,
with d;e Z and a,¢ B. Consequently o
5, (D-n)=4ndeg(p,5%) and ‘f_‘l d;=deg(yp,5%).
Therefore we have
[ IPol? 2 87 max {{; fo. n)C—'f_'l d{(@) € C(B) with |P{ll,e s 1}- (7.6)

A basic lower bound for the right side of (7.6} is given by the following
Theorem 7.5. Let M be a compact metric space with distance 8{x, y), let p be a
P P
probability measure on M and let v= % dd,, where dieZand 3 d,=1.
=1

i=1

Th
o) max(f - [, S D 2min K M), (1)

where I!CIIu,=§31:IC(x)-C(y)I/6(x'y)-
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Note that the right side in (7.7} is independent of v and that (7.7) is obvious if
p=1, namely y=9, [take {(x)=4d(x, a)). 1t follows that
min max {§ {du—§ {dv} =min{ 5(x, c)du(x).
v [

Combining (7.6) and Theorem 7.5 we obtain

Corollary 7.6, Assume ¢ restricied to OB has degree one and satisfies D- 120 on 0B,
then

JIveirz2 121‘1 a[’ la—c|(D-n)do . {(7.8)

A generalization of (7.8) is given in Remark 7.5 below.
Proof of Theorem 7.5. An easy approximation argument shows that it suffices to
prove (7.7) in the case that y= Z': o,0,, with ¢; 20, i a=1, and b;e M. Write
v=‘=ﬁ1 5,,——-:;: d,, (some poinls‘;rlc repealed accord‘i:llg to their multiplicity d,).

We shall use induction on k. As we have already indicated, the conclusions is
obvious for k=1,
As in Sect. IV and V it follows from the Kantorovich theorem [see (5.4)] that

. A k-1 k q
I=min {‘;l j?l L5(p,n ")+J)-:| E:l 5;5(p. b j)} . (7.9)

L}
the minimum being taken over the set of constraints 1;20,5,20, ¥ ¢;=1forallj
k—} 4 * I
19jsk—1, ¥ 4+ ¥ sy=11forall i,1Si<k and X sy=a,forallj, 1gj<q.
i=1 izt i=1

)
Fixing the matrix §=(s;;), consider the set t of all matrices T= (¢,;) satisfying the
above constraints. The set 7 is compact and convex, therefore

m'mEZ t,5(p,n} (7.10)

is achieved by some extremal point of 1. The following lemma, which is a variation
of Birkhofl’s theorem, gives a useful property of the extremal points of 7.

Lemma 7.7. Let y=(c,,...,c,) and ¢ =(ry,..,7y) be n+m given nonnegative

numbers satisfying ¥ c,= " r,. Assume m<2n and let M, (y.0) be the set of mxn

matrices with nonnegative entries and having the ¢; and r; as column and row sums.
- L]

l.e. Te M,, (y,0) means T= {th 1,20, 3 ty=¢, & Lj=ri. My (1, 0) is clearly
i=1 i=1

a closed convex subset of (R*Y™. If T is an extreme point of M_ (7. ¢), then some
column of T has m—2 zeros, i.e. for some je {1, i}, t;=0 for at least m—2
different i's.

Froof. We can assume that m=2n simply by adding 2n—m rows of zeros. The
lemma is trivially true forn=1, m =2 and we shall use induction on 5. Let n 2 2. If
T docs not satisfy the lemma then each column of T has at least 3 posilive entries.
Since T is extremal, it is obvious that every submatrix, 4, of T must be extrematl
(with respect to fixed row and column sums for A). Our goal will be to show that T
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has a k % n submatrix, A, that is not extremal, for some k2. Let R denote the
number of rows of T having n — 1 zeros. The total number of positive elements of T,
call it X, satisfies 2= 3n. Then R+ (2n—R)n= X 2 3n. This implies that R<2n
—[n/(n—1)]<2n—1,50 RS2n-2. Hence T has k 2 2 rows with the property that
there are at least 2 positive clements in the row. 4 will be the submatrix of T
consisting of those k rows.

We claim that each column of A has at least 2 positive entries. Let je {1, ...,n}
label some column of T. Suppose there are 2 rows of T with the property that each
row has one positive entry and that entry occurs at a common position j. If this is
true we are done, for it suflices to consider the (2n—2) x (n— 1) submatrix, B, of T
obtained by deleting those 2 rows and the j*® column. By induction, B is extremal
and thus has a column with at most 2 positive entries. If 5 labels this column then
column s in T has the same property (because column s had zeros in the 2 deleted
rows). This contradicts our assumption that every column of T has =3 positive
entnes.

Thus, we have found a k x nsubmatrix, A, of T with the property that every row
and column of 4 has at least 2 positive entries. This matrix cannot be extremal as
we now show. Pick some positive entry of A, walk along the row to anocther
posilive entry, walk along that column to another positive entry, and so on until a
point (I,.J) that has been previously visited is reached. We thus obtain a closed
path, starting at (I, J) through positive entries of A. Let F be the matrix that is + 1
at (I, .J), {—1) at the next point in the path and so on. Off the path, Fy;=0. Clearly
all the row and column sums of F are zero. Morcover, for small
Ty =T+eFeM, (y.¢),s0 T=KT, +T). O .

Proof of Theorem?7.5 Completed. Let T=(t,) be an cxtreme point of © that
achieves the minimum in (7.10). By Lemma 7.7, there is some j, 1 £j<k—1 such
that ;40 for at most two values of i. Suppose, for example, j=1, t, , =0 when
i+1,2,and 1y, £¢,,. Nowfix T and Sin(7.9), but replace the point n, by p,. By the
triangle inequality, (7.9) is not increased by this replacement. This means that
H(v)z I(¥), where ¥ is the measure with n, replaced by p,, namely ¢ has only k — 1
positive terms and & —2 negative terms. The conclusion follows by induction.

Remark 7.1. One may give an alternative proof of Theorem 7.5 using Graph

Theory - more specifically a result of Hamidounc-Las Vergnas [16]. By

approximation, we can always assume that u=3" ady, withe, 20, a;=1,b,e M,
J

. . 19
and also a; € Q. Therefore, it suffices to consider the case where y = p 2. 8, (where
i=

L H
the points b, are not necessarily distinct). As above, writev= ¥ 8, — 3 4, sothat
the left side of (7.7) becomes i=1 i=1

:;max{j' (du'~§ Ldvlih, S 1},

L) k-1 k

where p'= ;ZI 8, +4q ‘S‘_I d,and v'=g¢ ‘Z d,. Using the Kantorovich and Birkhoff
- = =1

theorems as in Sect. IV we find thal this maximum equals

min rg HP,N,),
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where the system (P,) consists of the points (P 5454 cach repeated g times, and the
system (N) consists of the points (1), ¢, <, - , each repeated ¢ times together with
the points (b)), ¢, <, (counted with multiplicity one). It follows from the result of
[16], that in any connection g, there exists some point Pi, which is joined to every
(b)) 554 by disjoint paths. (Two paths are disjoint if they have no strings in
common.) In particular we have

ie
Z8PuNDZ 3. 8(pib)=a] 805, p M) Z amin] a(x. Mu(x),
which leads to (7.7). O

Remark 7.2. Suppose M = B (the unit ball). It is easy to see by going back to the
proof of Theorem 7.5 that (7.7} is a strict inequality if Suppy is not conained in a
single line and v has at least three atoms.

Proof of Theorem 7.1. From Corollary 7.6 we obtain
E 22 min [ |o—cldo=8=
kls1 o8

(the minimum is achieved when ¢=0). Next we claim that y is the unique
minimizer. Let ¢, be a minimizer for (7.3) and let D, be the corresponding D field.
In view of Remark 7.2 we know that div D, consists of a single Dirac 4, and c must
be zero (othcrwise ZJ,L |o—clde >81:). Therefore, ¢, has only one singularity with

a nonzero degree, and that singularity is at x=0. Finally, we have doofor=>0

because )
Oof? O

=[P 2_ 2 0 0

Sr= ool = 1Frgol* + |20 28x+[|-22

(since @ restricted to every sphere, r§?, has degree one). [

Corollary 7.8, Assume ¢ : B—S? has the following properties:

@¢(—x)=—p(x) ondB, (7.11)
D-n=J,=¢-¢,Anp,20 ondB, (7.12)

and
deg(p.5%)=1. (2.13)

Then [ |Po|* 2 8.
Proof. We already know, by Corollary 7.6 that
Hivel'z | lo~c(D-mda (119)
for some ce B. Thus, we also have [by (7.11)]
%If%i’aol'I—d—CI(D-n)(—aM6=aLla+cl(D-n)(a)da. (115)
By adding (7.14) and (7.15) we find
1 IV¢I’§GI’(D-n)do=4u- O
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Remark 7.3. We conjecture that the conclusion of Corollary 7.8 holds without
assumption (7.12).

Corollary 7.9 (Extension of Theorem 7.1). Let 2 be any bounded domain in R? , then
wx) = x/ix| is the unique minimizer for ‘L]thl" under the constraini that ¢ =y on 912,

Proof. Let By be any large ball containing R and consider the problem of
minimizing E(¢p) subject to gp(x)=x/|x| on d8,. By Theorem 7.1, the minimizing ¢
for By is uniquely x/|x). Now let ¢ be the minimizer for the 2 problem. If ¢ differs
from y in £, then there would be an alternative minimizer for the B probiem,
namely f(x)=g(x) for x&2 and f(x)=x/|x| for x¢ Q. This would contradict
uniqueness. O

Theorem 7.10 (Extension of Theorem 7.5). Lei M be a compact metric space and let
14
# be a positive measure with total massde N, and letv= ¥ dd,, whered e Z and
L4 =1
T d=d

i=1
Let 10)=max {f {du—f (vl IClip <1}
Then inf1(v) (where the infimum runs over all p's, a;'s, and d;'s) is achieved by a
measure v of the form
k+d

k
=3é —% 3,
4 i*EI ] ng 7]
Jor some 0£kgd—1.
Proof. Follow the same argument as in the proof of Theorem 7.5, [1

Remark 7.4. For the purpose of Theorem 7.5, it would suffice to have Lemma 7.7
only for the case m=n+1. The reason we proved it for mz=2n was that this
extended version is needed for Theorem 7.10.

Remark 7.5. Theorem 7.10 gives us a way to compute a lower bound for the
problem
min {i7g)?,

*=goondB g

provided D - n 20 on 88, but without the assumption that ¢, has degree 1. As far as
the D problem is concerned, it can happen that when 4 =2, for example, the
minimum of I(v) occurs for three plus points and one minus point (i.e. k=1). Just
take D -n to be three Dirac masses of strength # placed in an equilateral triangle
around the equator. The minimizing v consists of three positive unit masses at the
verlices of the triangle and one negative unit mass at the origin.

B. Proof of Theorem 7.3 .

First note that if v(x)=g(x/|x]) is a minimizer for E,, then g must be harmonic.
Indeed vsatisfies the equation — 4v = v}¥v|? in B and since v is independent of r, we
have — dg=g|Vg|*. We shall construct explicitly a map, u, which coincides with ¢
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on 0B and whose energy is less than 8n. Let 0<a<1 and let A =(0,0,a). We
introduce polar coordinates centered at A with the direction (0,0, 1) as the pole.
Thus a point x in B has coordinates (r, , ), where r is the distance to A, 6 is the
polar angle and ¢ is the azimuthal angle. For a given angle ¢ e [0,n], let R(8)
denote the maximum allowed radius (in B). The points (R(8), 0, o) with 8 fixed and
@ €[0,2n) all have a common polar angle yw(¢) relative to the origin 0. We casily
compute that

R(O)sinf=sin[p(0)], tand=sin[y(0)] (cos[y(0)]~a)~*. (7.16)
Our choice for u is

ulr, 8, @) =g(y(6), @), (717)
50 that its energy is

] In Ri®
E(u)={sin0do ‘I’ de E ridrir 37, Jul?), (7.18)
[

where F, ,=(0/00,(sin6)~ '3/dp). The r integration gives R(#)sin8 which equals
sin[y(6}], so (7.18) becomes
® Fi]
E(u) =£ sin[y(6)}d0 £ dptlg2(w(6), @)"[sind] " * + |g,(1p(6), @)W (BN} .
(719

Here g, and g, mean derivatives with respect to the first and second arguments.
Using (7.16) it is easy to compute ’

v(0)=[1~2acosp(6)+a*}/[1 —acosw()], (7.20)
sin® [y(@))/sin0 =1~ 2a cosp(0) +a*. (1.21)

Inserting this in (7.19) and changing variables from 0,9 10 y, ¢ (with Jacobian
w1 "), we have

n ix
E(u)=£ siny dy £ dollg:(p, p)*[siny] ~*(1 ~acosy)

+ g (v, @)*[(1 - 2acosy +a*)/(1 —acosy)]} . (7.22)

If we set a=0 in (7.22) we obtain E(g(x/|x|))=8n. To prove the theorem, it
therefore suflices to show that E(u) <87 for small a. Expanding (7.22) in a near
a=0, we need to show that

] 2x
g sinpdy (I, dpligaw, @) (sing) 2 +1g,(p, @)} cosp 0.  (7.23)

However, (7.23) can be expressed in coordinate free form as follows. Let e(o)
=|Vrg(o)|’, where o € S? and Py is the tangential gradient. Then the left side of

(7.23) is
Ha)= s[ e(o) (x - o)da , (7.24)

where a=(0,0, 1)and de is the uniform measure on §2 with | do = 4. Itis now clear
that Hd) is the change of E if we replace A =aa by A =ad, d€ 5%, Thus, to complete
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the proof we must show that every harmonic map g:S$*—S§?, other than
g(x)= + Rx, has the property that, for some a € 5%, I{x) %0. In other words, we
have to show that for some ie {1,2,3},

N=Je(a)ado+0. {1.25)

Equation (7.25) means that the center of mass of e(c) is not at the origin.
Let IT denote stereographic projection from €—5%, If z=x+iy,

I2)=(1 +[z1?)~'(2x, 2y, 1 — %) (7.26)
Clearly we have do=4(1 + |2/ dxdy, 727
and if h:5*=C and H=h-IT:C—-C, then
[Vrhl* =4V HI*( + (212 (7.28)
g:8*+52and f=M""'-g-II:C—C, then
173gl? =P +1717) 721 + 1217 (7.29)
If f happens to be holomorphic, then
(=21 (2); (7.30
g is harmonic of degree one if and only if
f@=TT""ogo i) (2y={az +b)/(cz +d) {(7.31)

fora,b,c,de@,seee.g [22, 35]. By arotation of $ we can assume that co— oo, i.e.
¢=0,d=1. By a further rotation, z—ze", we can assume a = Ab with A > 0. Thus we
may assume f(z)=b(z + 1).

From the above formulas

N =8[dxdylf @)*[1+|/ (@] 2[1 +12*] ' W(z) (7.32)

with
Wi(z)=2x, Wy(2)=2yv, W(2)=1-[z*>.

By symmetry, N,;=0. If 2>0 then N, +0. To seet this, let K(x,y) denote the
integrand, and note that for x>0, K(x, y)< K(—x, y) for all y when 1>0. Thus,
N, =0 implies 1=0. Finally, it is easy to see that N,=0 il and only if |b]=1. But
f(z)=¢"z corresponds to g(x)=Rx with R being a rotation by the angle w about
the north pole. O

Remark 7.6. The proof of Theorem 7.3 shows something about harmonic maps
generally (even those of degree # +1). If g(x), for |x| = 1, is given on the boundary,
then g(x/|x[} can never be a minimizer if the center of mass of &{c) is not at the
origin, x=0. Here, e=|Prg|*.

C. Proof of Theorem 7.4

Let d be the degree of g and assume v(x)=g(x/|x|) is 2 minimizer for E,. As we
remarked, g must be harmonic, and this is the case ifand only if f(=1T"'cg. [1)is
P(2)/Q(2) if d20 or P(2)/Q(2) if d <0, with P and @ being polynomials and with
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)= max {deg P, deg 0}. By assumption we have
{IVvI2 é{l"lpl’, YoeC,. (7.33)

We have clearly fIvo)2= jz (Prg)? =8n|d|. (7.39)
I 5

In order to prove that |d|<t we shall choose special functions ¢ of the form

described below. Let £ (0, 1) and let 8: [0, 1] [0, co) be any smooth function such

that &1)=1, 6()=0 for 1€ [0,£] and 0(1)>0 for te(e, 1] Let

1
81x)

(with the convention that 6/0=oo). Note that ¢ equals N=(0,0,1) on the ball
B(0,¢). Moreover ¢ is smooth on B except at the points ex; with g(x)=5
=(0,0, —1). Also ¢(x)=g(x) for |x|=1. We claim that

e(x)=11 { for '(xIIXI)]}

' ) £ dE dn
E(@)=8=|d|(1 — 161 d .
=t -a+16ldr | ronasa 0
where { = ¢ +in.
Indeed we have

dep|? o [?
E(p)= | (|Prcp:’+ 'a—"" ) =8ndi(1-o)+ { [P, (736)
g r r>e|OF
A direct computation shows that
do[* _ AL
| =y 1.37
ol = @O+ 30
2
where { =17~ *(x/|x]) and r=|x|. In order to compute | g—’f we change variables
and instead of x =(x,, X3, x,) we usc the new variables (r.&,m), ie
r=)/xi+x3+xi, &= ud I n= 2
r—x, r—Xx,
Therefore we obtain
del? 2o|?
r:]:. e dJc,dx,dx,—I_Ldr'{z = JdEdn, (7.38)
where J is the Jacobian determinant, ie.
= a(xl’ xZ; xl) _ 4’2 (7.39)

ar. &) (+IEP+ )

Combining (7.36), (7.37), (7.38), and (7.39) we obtain (7.35}. Going back to (7.33)
and (7.34) with (7.35) we obtain

_ t 01 1rdg dn
Bd) SBrldI(1 —2) +16 | dr | @+
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[for simplicity we write f instead of f({}] that is

)| f PrdE d 740
""85{ ar L @O G (740)

We change variable and set ¢ =¢g/r, a(r)=8(§), te[e, 1). From (7.40) we have

(012 2dE d
sl s s (41
Note that (7.41) holds for any function a: [, 1]-+[0, 00) such that ale) =1, &(1)=0.
Passing 10 the limit in (7.41) we find
()2 f2dE d
5 bt g iy (142
for any function a:[0,1]-+[0, 0} such that a(0)=1, «(1}=0. Set
| 1f1*dE dn }' "
w2 (@ + /(1 +I()?
(it will follow from later computations that F<w.) We choose now
a{t)=F " '(F(1)(1 —1)) and so we obtain from (7.42), nl I < F(1)%, and thus

Idl yi _ { lflzd‘fd" }112 743
[ sro-lell ot - oo

Let Re S0(3) be a rotation. Set gp=Recg: 5252, f, =1 ! ogg 1. Since u(x)
= g(x/lx|) is a minimizer, it follows that ug{x) = g 4(x/|x|) is also a minimizer for the
boundary condition gg, and therefore we have [from (7.34)]

)] { Ualde dn }”’ 744
[“7] Sy sy (.44
for every Re S0(3).

We shall average (7.44) over ali rotations in SG(3). Let m be the Haar measure
left invariant on SO(3). We have by (7.44)

Nk { Lful2dt dn }”’
["?] <lds J RN G+ e

1
|
[t
- Ufuldm(R) }”‘ i
"Ei“’{,{:"‘f""sis,(s’+|fn|’)*(1+m’)’ - 08

F(s)=ida{

e-—-.-

Note that for every function k: 5?2~ R and every ae 5%, we have

1
= - 7-46
s [3] k(Ra)dm({R) s];k(rr)da { )

[clcarly the left side of (7.46) is independent of @ and so it equals its average on $2,
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P |
ie. — | dm(R)| k(Ra)du]. Also note that by changing variables we have
4 si(3) 52

iz ko= [ unzy e (147)
oz 4

(recall that the Jacobian determinant

). We use (7.46) and
(7.47) with

AX,Y)  (1+]zp)
T~ Yo)?
(s*+11 Ya)?)?

and we obtain, for every (,

Se({)*dm(R) 1 | IZ1dX dY
50 (82 +H/OPY¥ 7 g (T ZPV (1 + 1277
A direct computation shows thal the righl side of (7.48) equals

((:, “)), (ns)= ), =G(s). (7149)

ko)= and a=[1-£(),

(7.48)

Going back to (7.45) we obtain

] Y, 1z
x5 S [[G(s)]'ds,
0

and thus 1 2
g2 { | G{s)“zds} ]
0

We conclude with the next lemma that M<2 O
Lemma 7.11. With G(s) defined by (7.49),
i
‘I’ G(s)'*ds<1. (7.50)

Proof, Note that .
oof. Note tha [ Gs)"2ds=| Gis)2ds
0 1

(since G{1/s)=s*G(s)]. Set

2 b2
b(s) = {;j: lns—l} for s>1,

s0 that, for s> 1,

G(s)'? = s—!gb(s) . (7.51)

We claim that the function

s—b(s)/(Ins) is decreasing on (1, w). (1.53)
Letting ¢t=35* we have to check that’

(2((? 1)) 1) / {Inr)? is decreasing,
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that is

(1-1)

= ——lnt4 = (t (7.53)

{nt)* z

Differentiating both sides of (7.53) it suffices to verify that

3(2—1)

2 507,
2 e

which holds since

2_ ’ 1)
[ll’lt— kl{; 1)] _ {t—1)

2 44r+1 W+ 4e+1)2 =
Thus we have proved (7.52). In particular, we deduce from (7.52) that
b(S) sb(l)—— for ail s>1

[since b{1)=0] and also that

o) o1 _ (L _ @) H(s—a) (7.59)

Ins = Vj I/j Ina
for all s> 1 and all a> 1, where H is the Heaviside function [H(t)=1for t=0 and
H()=0 for t <9]. It follows from (7.54) that, for all a>>1,

®  b(s) 1 ¢ lIns 1 bla) Ins
{ = I_ sw(ﬁ ll’la)j

/3

B °I° Ins ds_ﬁ(Lﬂ_b(_a))(lHna}
T3 ) l/j Ing a
Finally, we recall that
® Ins r?
IEh®=7%
which may be obtained by applying Fubini to T T ——‘btwd—{m-—] Thus wefind,
oo {1+ (x*+y)

for all a>1,

© ? 1 bla)\{1+Ina
-2,

and we conclude that T G(s)"*ds <1 by choosing for example a=¢*. O
1
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Remark 7.7. Theorem 7.4 shows that if g has degree |d| 2 2, then u(x)=g(x/}x]) is
not a minimizer. In fact the construction above shows that it is not even a local
minimizer.

Corollary 7.12. Let u be a minimizer for E(p) in a domain 2 with specified boundary

condition. Then each point singularity of u has degree +1. Moreover, for every
singularity x, in ) we have

!L".} ule(x —xq)) = £ R(x — xp)/Ix — x|,

where R is a rotation.

Froof. Without loss of generality we may assume that u has a singularity at x =0.
We know from [31, Theorem I11] and [33, Sect. 8] that u(ex) —ug(x) in H'(B) and
uniformly on every compact subset of B\{0}, where uy(x)=g(x/|x|) is a non-
constant minimizer for E,. It follows from Theorems 7.3 and 7.4 that g has degree
11 and that 14 is a rotation.

Remark 7.8. The fact that x/|x| is a minimizer for E| {but not uniqueness) could also
be deduced from Theorems 7.3 and 7.4 and the Schoen-Uhlenbeck result. Indeed
let w be any minimizing harmonic map that happens to have a singularity, say at
x={0. By [31] we know that u(ex) converges (modulo a subsequence) as e—+0to a
map @(x) with the properties that: (i) ¢ is a minimizing harmonic map with a
singularity at x=40, (i) ¢(x)=g(x/}x|) for some g. Our Theorems 7.3 and 7.4
eliminate all possibilities except g(x)= +Rx. This shows that Rx/lxl is a
minimizing harmonic map and therefore so is x/|x|.

VIII. Various Extensions

A. The N-Dimensional Case

A natural generalization is to replace R? by R¥ with N22 and 52 by S¥~!. The
quantity which has the homogeneity of a length is now

E@=]IFo/""! (8.1)

(and not |F¢|*) where ¢ is a map defined on a subset of R with values into S¥~!
and

_ {9 :
(Pel*= E(B_x,) . (8.2)

The analogue of Theorem 1.1 is
Theorem 8.1. In all four examples
E=g(N-1"-12L, 8.3)
where
ey=2"2r(N/2) Y 84)
is the area of S¥~' in R”, L is defined in Sect. I1.
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Proof. As before we construct upper and lower bounds for E. For the lower bound
we define D as in (B.7) and note that

ID|S(N—1) W3 pg¥-1, (8.5)

Indeed, suppose that ¢ = (0,0, ..., 1), then ¢, = (), ,, 2, ; ... 2, y—,,0)', since ¢, is
orthogonal to ¢. The matrix
(@sps Pay s 92,)

has its last row zero. Replace the last row by (ay,a,, ..., ay), and call M this new
(N x N) matrix. We have detM =a- D, 5o that

D1= Sup {det M.
On the other hand s
idet M| 3 Ja JI:I‘ B

N-1
where §}= ‘)_:‘,l a} , and thus

N—1 1 ¥N-1 N 1 _
ICk!lMI’ﬁlﬂ!l:‘Jl__Il ﬂfSiﬁiz[(N_l) E; ﬂ}] =|a|’W_-ﬁ|p¢|2w n,

Indimension N, inequality (8.5) replaces the R? inequality |D| < 4jF ¢{*, and for the
remainder of the proof of the lower bound we proceed as in Sect. IV,

For the upper bound we imitate the dipole construction of Sect. III. Let
I :R¥'~8¥1 be stereographic projection, namely

H(x)=(H,(x), aney HN(x))!
Ox)=2x{1+jx)"t for i=1,..,N~1 and Hyx)=(}—|x2)i+}x)*.
A straightforward computation yields

PO =2(N— 131 +|x{¥)~*. (8.6)
Recalling (8.4) we obtain from (8.6)

J PPN Y=gy (N—1)¥- 112, (8.7

RMN-1

Given &> 0 we first construct a smooth map w: R~ *-+§¥"! such that
J P SaN -1y, (8.8)
R¥-i

w=Const=e ouwtside the unit ball, 8.9)
dego=1. (8.10)

The idea for constructing w is the following. Let v(x) = x/]x|? so that IT - v satisfies
(8.8) with =0 and (8.10). Next, replace v by yv=4, where 0=y <1 and ¥ has
compact support and y=1 oa a large ball. Finally, replace if(x) by #{4x) with i
large enough. In the general case, d > 1, we glue together 4 maps @ as above (with
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disjoint supports) and then rescale x. Analogously, for degree —1 we take v(x)
=|x|"*{(—x,, X3, ..., xy—,). Finglly, having constructed w, the basic dipole is
coastructed as in (3.6) and (3.7).

Another consequence of the construction in the proof of Theorem 8.1 is the
following striking fact.

Theorem 8.2, For maps ¢: SV 1 +8¥~1, et
= N-1
E('P)—sJ_lerPI .
Then
il E(p)=|djoy(N—1)¥- 1 .11
degp=d

When N 23, the behavior of minimizing sequences for (8.1) is the same as for
N =1 as given in Sect. VI, namely if there are only finitely many strings between
any two holes and if ¢ is a minimizing sequence then, for a subsequence, [PV !
converges in the scnse of measures to )N —1)¥=135. where C is a (single)
minimal connection. However when N =2 the situation is different, as shown by
the following example.

Consider four points

a=(1,1), a;=(1,0, a,=(0,0), a,=(0,1)

with the degrees d,=(—1). Here, we have E=2al.=dn and two minimal
connections C,,C, given by C, =[a,,a,]u[a,.a,] and C,=[a,,a,]u]a,, a, ]
There exist minimizing scquences " such that, for example, |7 " — 2n(de, + 8c,).
Such a sequence can be obtained as follows. Let w; : R—S? be any two maps such
that @, (—)=(%1,0), w,(+ ©)=(F1,0),w, constant far outand | |[Few .| =n.
With w, we can associate “half dipoles™ which we glue in an appropriate way on
each of the intervals [a,,4,), [a;,4,], [as,a,], [a,.a,]). The corresponding
sequence " has the property that ¢®—(1, 0) outside the square [0,1] x [0, 1] and
@"-+(—1,0) inside [0, 1] x [0, 1]. This lack of quantization in two dimensions is
also discussed at the end of Appendix E.

B. Replacing S¥ by RP¥-1

For physical reasons as explained in Sect. I, it is interesting to replace S¥ ! by
RPY™! which is the quotient of $¥~! by the equivalence relation x=~ —x, The
metric on RPY~! is that induced by $¥~ L. The energy is still given by {8.1).

The problem we face is to define the degree of a continuous map ¢ : Q—RP¥ ¢
(with @c R} around a hole in Q. Unfortunately, RP¥~ ! is orientable if and only if
N is even and therefore the problem will be more difficult when N is odd. The
orientability of a manifold implies that the degree can be defined as an integralof a
Jacobian. However, the degree for N even (as we shall define it) is in 1Z, and we
shall be able to solve the minimum energy problem only when the given d,’s are
integral, except for N =2 in which case RP is homeomorphic to S* and a special
trick allows us to handle al d,'s.
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a) N even. Suppose QCR" and § is a smooth surface in Q without boundary. Let
@ be C! in a ncighborhood of § with values in RPY !, The vector field D can be
defined as in (B.7). Note that D in (B.7) is uniquely defined for N even because D is
net changed by -+ — . We define.

dédi‘ib-u. (8.12)

Since D -n is the Jacobian, | D-n must be an integer times the area of RPY 1,

s
which is 4a,. Therefore ded .
Thus, given ¢ e C(Q; RP¥~!) and P e L*1(Q), with 2=I"\(UH)), we can
{by modifying the analysis in Appendix B) define the D field and deg(e, H)eil
For the lower bound to E the D field analysis goes through as before and hence

E((p)g‘}du{N _I)(N‘ ”nL(Ul {Hl}l {Zdl})! (8'13)

where L is the length of a minimal connection (with d, replaced by 2d)). Note the
factor 4 in (8.13).

For the upper bound we can reproduce the dipole construction of Sect. I
when all the d, € Z as will be explained. In this case (8.13) becomes an equality for
the infimum, and pur problem is solved. Also, the obvious analogue of the results in
Sect. VI go through. If some d,¢ Z the problem is open.

The rcason that d,€ Z is special is the following topological fact.

Fact. Let ybe a continuous map from X —IRP¥ !, where X is a simply connected
topological space. Then there exists a map : X —+ S~ such that p = P, where
P is the canonical projection of S¥~! +RPN~!, (See the lifting theorem in [34,
p. 76].) If X is also connccted, there are exactly two choices for  related by
V1= —V¥a.

To construct the dipole when deZ, first construct the S¥~! dipole as in
Sect. I11 and then compose this with P, However, if d ¢ Z we cannot do this because
by taking X =5""! in the above, we would end up with a continuous map
$:S¥ 8% of degree d ¢ Z,; this is impossible.

The topological fact also allows us to conclude that if a hole H, has a
neighborbood wC U such that w\H, is simply connected then necessarily d,e Z.
Simply take X =w\H,. In particular, if H, is a point and if N2 4, d;eZ.

b) N=2. In thiscase every hole, even a point hole, can have d, ¢ Z. However RP!
is homeomorphic to $* and we can 1ake advantage of this fact to solve the problem
in all cases. We identify S with {zeC||zj=1}. Definc Q:5'+RP" as follows:

Q(z)=P(z"), where z?%=z (8.19)

with P being the canonical projection as before.
Clearly Q(z) is independent of the choice of z'. Define R: RP' —S! to be

R(P(z))=2* . (8.15)

(again, R is well defined). Note that R=0"1,
Let ¢:5'-+RP! be a continuous map. We have

degp=13deg(R+ ). (8.16)
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Given a map ¢ frem £2 into RP! (respectively §') we have ¢

IP(Ro9)|=2|Fp| (respectively |[F(Qo)=4IFol). (8.17)
Given reals d,, d, ..., d, €1Z, then .
E=nl(U,{H}, {2d})). (8.18)

¢) N odd. Here we shall confine our attention to cases in which 2=U\(VH)) is
connected and simply connected. This includes the case in which all H, are points.
Given a continuous ¢: 2—+RP¥"!, there exists a continuous @: 2—+S""" with
@=Po . Since there are exactly two choices for ¢ (¢, = — @,), we can define

deg(o, H}=|deg(¢, H)|eN. (8.19)

(The need for the absolute value is that deg(p,, H)= —deg(@,, H) when N is
odd.) We also have that |[F@l=|Fe|.

Given nonnegative integers d,, ..., d;, we easily conclude from the above that
the infimum satisfies

E=ay(N-1)¥-12f (8.20)
where L is 1o be computed as follows:
L= min LU, {H,}, (=), (8.21)

where g,= + 1, all i. In particular, we emphasize that (8.21} solves the minimum
energy problem for liquid crystals with point defects and with the simplified energy
given by (8.1).

C. Energies with the Homogeneity of an Area

Let F'¢R? be an oriented, rectifiable Jordan curve. Consider the class of maps
o : R3\T"=+5" (not $§*) which are continuous. Associated with each ¢ in this class is
aninteger d € Z defined as follows. Let C be any small circle which links with I'. On
C there is a natural orientation which is consistent with the orientation of I", Define

d=dcg(¢, N =decg(p restricted to C).

The right side is the usual degree of a map from S! to §'. Note that deg{p, ') is
independent of the chaice of C. The energy

E(@)= | Vol (8.22)
| YV

now has the homogeneity of an area (and not a length).

By analogy with the results of Sects. III and IV we expect that given de Z

inf = .
dmf.‘m-t E(p)=2n|d|A, (8.23)

where A is the area of a minimal area surface spanned by TI.

More generally, if M is an oriented manifold without boundary, of dimension
m, imbedded in R”, and @: RMM—S$"~™"1 is a continuous map, then one can
define (in the same way as above) deg(p, M). The energy

E@)y= { \.IVGPI" et (8.24)
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has homogeneity (m+1) and we expect that given de Z,
E{@)=c(N,m)|d|V, (8.25)

inf

degle, M)=~d
where V is the volume of a “minimal” manifold of dimension (m+ 1) whose
boundary is M. Note thal the case m =0 corresponds to two point holes and (8.25)
reduces to (8.3). We could also consider a finite number of such manifolds
M,,..., M, and maps ¢ : RM(UM,) into ¥ %! which are continuous except on
M;. It is a nawural question to look for inf E(¢) in the class of maps ¢ such that
deg(p, M,)=d, is prescribed. Presumably, the answer is a formula similar to (8.25)
where V is a kind of “minimal volume conncction™ associated with the M;'s and
the d;’s.

We have not investigated the validity of (8.23) (or {8.25)) in full generality, and
we shall discuss here only the case of a planar curve I'=8U, where U is some open
setin R?. Again, we split the argument in two parts: the upper bound and the lower
bound.

1. The Upper Bound. Let @ be any continuous map from R to S' such that

[ || =2nld], (8.26)

| 3
degw=d, N 8.27)
w=e outside [—1, +1]. (8.28)

Let @, : R\ S be defined as follows:
e, 2y =alnzfl) il (x,y)eU,
Pulx, y,2)=e if (xyeU,

where [ denotes the distance of (x, y) to aU. Clearly deg(p,, N=d and [|Fg,|
~+2nA|d), where A is the arca of U,

(8.29)

2. The Lower Bound. The divergence-free vector field D is now replaced by a curl-
free vector field H as follows. To every map ¢ we associate H defined by

H=(pr0.0r0,0n00,).

An easy computation shows that if ¢ is smooth on R*\I", then curl H =0 on R3F
and, moreover, if | |F¢p| < oo, then

culH=2rdD, in P(RY), (8.30)

where Dy is the basic divergence-free vector field over the curve I defined in
Appendix D. The proof of (8.30) is similar to that of the analogous formula (B.10)
for the D field. Moreover, (8.30) extends (by density) to maps ¢ which are
continuous on R¥J" and with | |{Fe| < oo. Evidently, we have the inequality

| “HIS e, (8.31)
which plays the same role as 2|D| < |V @]*. Therefore we have
§ IPolz | jHI2 — | H-curll{=2rd|D,-{ (8.32)
| 5 | B | 3
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for every smooth { such that |curl{j < 1. On the other hand, by Siokes’ theorem
{ Dy-{=[curl{- ndo (8.33)
| & I

for any surface I spanned by I', where # is the unit normal to L. Choosing
Z=Ux {0} and {(x, y, z) = +(0, x, 8) we obtain curl{ = (0,0, 1) and from (8.32),
(8.39) and the fact that n=(0,0, 1},

{ IP@l22nid|4, (8.34)
.l

where A is the area of U. [

Remark 8.1. The upper bound construction presumably extends to nonplanar I,
at least if the minimal area surface has no self-intersection. M. Gromov has
suggested that the lower bound construction might also extend by using Whitney's
duality theorem [37).

Appendix A: Approximation by Smooth Functions

Let QCRY be any open set. For the purpose of this paper we are interested in
knowing whether we can approximate continuous $*-valued functions on £2 with
derivatives in L? by C* S*-valued functions, both for the uniform norm and energy
norm. We present here a result more general than we need.

Lemma A.1. Assume ue C(Q; R). Then for any £>0 there is some geC(; R)
such that
lg—ul-<e. (A1)

Moreover if we also assume Pu e L*(Q) for some finite set 1 EP<P<. .. Pe<®
(in the distribution sense), then the above g can also be chosen to satisfy

Jor all i IV —u)lL, <e (A2)
or ali 1.

Proof. This is essentially the same as the Meyers-Serrin theorem (see [25] or [1,
p. 52]). The only variation is to note, in the notation of [1], that p,ue C (2} and,
therefore, we may choose ¢, such that

1o * Coa)—ll = S/28. O

Lemma A.2. Assume w satisfies the hypotheses of Lemma A.l and, moreover,
ue C(2; 5*). Then there is a g e C*(R2; $*) satisfying (A.1) and, if appropriate, (A.2).

Proof. By Lemma A.1 (applied to each component of u) there is a sequence {h,} in
C*(£2; R** '} such that

Wy —ull =0  [and (P(h,—u)|..,—0].

Assume that ||h, —ull . <1/2,all n. Let F: R**' - §* be the radial projection, that
is F(x)=x/|x|. Note that F is smooth for x+0. Let ga(x) = F{h(x)). Since h,—u
uniformly, so does g, [and Vg, =F ‘(hy) - Fhy—F'(u)- Pu in L?, since F'(h)—F “(u)
uniformly and Ph,—~Puin L*]. 0O
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Remark. In Lemma A.2 it is essential that u is continuous. Suppose that
Q={xeR*||x{<1}and k=2and u(x)= % . This u has Pu € L2. However, there is

no sequence {g,} with g, € C(2; 5*)nH"(f2; 5?) such that g,—u a.c. and Fg,—Pu
in L2 See [32].

Appendix B: Generalities About Degrees of Maps

Let UCRY be an open set and let HC U be a compact subset {called a hole). Let
¢ : U\H—+R" be a continuous map such that ¢(x)+0, all x € U\H. We shall define
deg(e, H) as follows. Let

H,={x|dist(x, H) <1}, (B.1)
and assume ¢ is small enough so that H,,CU.
First, let y be any function in C(U; R¥) such that y=¢ on U\H,,. (Such
functions certainly exist. For example let y € C(U) be such that
_j0 on H,
=1 on U\H,,

then take = x(p) .

From the general theory of degrees of maps (see e.g. Nirenberg [27] or Lloyd
[24]) the integer
d=deg(y, H,,0) (B.2)

is well defined. Part of this general theory is that d depends only on y restricted to
OH,,, but this is independent of the choice of y (by construction). Conceivably 4
could depend on & However, it does not depend on & (because if ¢, <€, and y,
corresponds to ¢, we may take p,=y,).

Hence we are entitled to define

deg(p, H)=deg(p, H,,,0). {B.3)

It follows from standard properties of degrees of maps that if ¢, — ¢ uniformly
on every compact subset of U\H, then deg(p,, H)—deg(op, H).
Let us note some explicit formulas for d in (B.2). We can easily construct y such
that ye C'(H,,; R¥) and w+0 in U\H,. For such yp,

L d= | fOp(x) xdx, (B4)

where' f:R¥—R is any continuous function with compact support contained in

the connected component of 0 in RMyp(8H,) and such that IN J(ydy=1. Here
| 3

J (x}=det(dy /0x,) (B.5)

is the Jacobian determinant of . Another formula for 4 can be obtained if one
chooses p with the aforementioned properties and additionally w=0 a1 only
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finitely many points x, ..., X, in H, and J,,+0 at these points. (Such a y exists by
Sard’s lemma.) Then ’

d= _:El sgnJ (x). (B.6)

Examples. U=(x/Ixi<1} and H={0}. Let ¢,(x)=x and @,(x)=x/lx} Then
deg(e,, {0})=deglyp,, {0 =1.

Now suppose that g € C(U\H; R¥) and P e L*~*(U\H) (in 2'). To such a ¢
we associale a vector field De L'(U\H; R"), with components D, as follows.

do dep do é‘(p)
=det Ty ey .
Dymdet(52 g 052 02, (B.7)

which is obviously in L'(U\H). 11, in add:uon. we assume that P e L¥(U\H), then
J . given by (B.5), is in L\({U\H) and

divD=NJ, in D(U\H). (B.8)

(This is clear when ¢ is C*; the general case follows by density, using Appendix A))
MNow suppose that g e C(U\H; S¥ ') and Fpe LY~ '(L7\H), but we do not .
assume Fo € LY(U\H). Then

divD=0 in @'(U\H). (B.9)

[Reason: By Appendix A, we can approximate ¢ by C? functions ¢, with
leu—@lie—0, IP(@,~ @)llpx —0and @,(x) € S* ' Notethat J, =0,sincep- ¢
=1 = ¢-dp/0x,=0 = the N vectors d¢p/dx; are linearly dependent By (B.8),
divD(e,) =0, but D(p,)~D(¢)=Din L")

Theorem B.1. Assume pe C(U\H; S¥ 'y and Foe LY (U\H), (in 9’). Then
- | D.-VP{=aydeg(p, H) (B.10)
nH
Jor every { € Lip(U) with compact support in U and { =1 on some neighborhood of
H. Here oy denotes the area of S* " in RY (0, =4n).

Proaf. By Lemma A.2 we can assume that g€ C*(U\H; $¥ 1. Clearly we may
also assume that { € C™(Lf). With K({) denoting the left side of (B.10) we first prove
that I({} is independent of {, and thus that it suffices to prove (B.10) for one (.
Indeed,

1€ —-1{)=~ I D-¥(1—{y)= f (dIVD)(C. (=0 (B1)

{because {, —{, has compact support in U\H)
Now observe that for all 0e C*(INH) =~

NJ,,=D-V0* + NO"J =D - VO, © (B.12)
which follows from a trivial calculation. Hence

NiJu-ge=[D-9(1-0"
={D-PLU-"-(t=)1+ D F(1-0=~ | D-P{, (B.13)
v u U\H
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where we have used that (1 —{)¥ — (1 —{} is a C* function of compact suppott in
UNH [l (B.9)]. Take [ with the properties that 0 S({=1and {=00n L\H,. Then
the left side of (B.13) is IEO’N,‘! SpM,, where p=(1 - )¢ and f(x)=N/ay for

Ix|£1and f(x)=0for |x|> 1. (R::call that J,=0o0n U\H,.) Since  f=1and |p|=1
on 0H,, we can apply (B.4) together with an approximation argument using
dominated convergence, to conclude that /=g, deg(p, H). 0O

Remark B.1. Let U CR" beopen, let HC U be compact andlet ¢ € C\(U\H; S 1Y),
Let ¥ be open with PCU and with HC V. Assume that V is bounded and that 3V is
(piecewise} smooth. Then

| D-v=aydeg(o, H), (B.14)

where v is the outward normal to 8¥. [To prove this, apply (B.10) 10 any { e C*(U)
with {=1 on V. Integrate by parts and use (B.9).] Equation (B.14) is the classical
formula for the degree. Note that

D-v=deu(p, 9rs - 0sy_,), (B.15)

where x,, ..., x,_ , are orthonormal coordinates in the tangent space to V. On the

other hand, we can think of ¢ restricted to 0¥ as a map from the N — t dimensional

manifold M =3V to S !, This map has a Jacobian determinant, which is nothing

other than the right side of (B.15). Thus [ D - v can be identified as the right side of

(B.4) [with f(y)=1 for || < 1] with the integrating being over M, and not aver V.

Alternatively, { D - v/a, is the number of times (including sign) that ¢ covers §¥ -1,
Here are some consequences of Theorem B.1:

'l‘heor::mB.z. Let UCR" beopenandlet H\, H,, ..., H, be disjoint holes in U and let
H= U H,. Let & C(U\H; $*~*) with Vp e LY~ (U\H). Then
=1

k
— § D-F{=ay 3 {(H)deg(p, H) (B.16)
vl i=1

Jor every [ e C(O) with V{ e L*(U) (in the distributional sense), { =0 on 8U and
{=((H) is a constant on each H,.

Theorem B.3. Let U, H,, and H be as in Theorem B.2. Let pe C{O\H; §¥ ') with
Pip € LY~ Y(U\H). Assume also that @ is constant on 3U. Then (B.16) holds for epery
{e C(U) with V[ € L™(U) (in the distributional sense) and {={[(H ) is a constant on
each H;. Note that here we do not assume that {=0onal.

The proofs rely on the following lemma.

Lemma B4. Let VCRY be open and et FCRY be closed with F CV. F need not be
compact. Let ¢ € C(P\F; 8" ') with Ve € L¥~\(V\F). Assume that @ is constant on
OV (no assumption is made if V=R"), Then

| D-P{=0 {B.17)
Wiy
Jor every { & C(V) with VleL*(V)and {=0o0n F,
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Proof. The intuitive reason that (B.17) hoids is clear. Indeed, sct 2= \F; we write
fD-¥{=§ (D-w){— [divD),
] o 0

where v denotes the outward normal on (2. However, 20 consists of two disjoint
parts, namely ¥ and 0F. On 0V we bave D - v=0 since ¢ isconstant on 3¥), while
on OF we have {=0. On the other hand, divD =0 on Q {by (B.9)].

Since, in general, we do not assume that 3V and 4F are regular, the integration
by parts is not justified and the proof becomes more delicate. First, without loss of
generality, we can assume that { e L=(V). Otherwise, consider

i i Risn
c"")‘{nsgnax) it (Col>n.

Clearly [ D-¥V{,— | D-¥{ (by dominated convergence).
[r] 1

Second, we can also assume that { vanishes outside a large ball. Otherwise,
consider a sequence {,=a,{, where a (x}=1 for Ix|€n, a,(x)=2—(|x|/n) for
n=1x|=2n and a,(x)=0 for |x| 2 2n. Again, [ D-F{,— | D-P{ since De L'($2).

0 12

Next, we can also assume that /=0 on a neighborhood of F and that ¢ is
constant on a neighborhood of 3. Indeed let g : R~ R be a smooth function such

that g{t)=01or |t| 1 and git)=tfor |t|=2. Consider { {x)= ig(m{(x)). It is clear

that {, & C(V)nL*(V), {, vanishes outside a large ball, }¥L, |l S CYPLlm, [, =0
on some neighborhood of F (namely {x[}{(x)l <1/n}) and P{,—V{ ae. on V. We
proceed in the same way with ¢. Let G: R¥~ R be defined by G(v), = g(v,) for all i

(9 as above). Let e be the value of ¢ on JV. Consider wox)= % Gn(¢(x)—e))+e. It

is casy 10 check that p,e C(P\F; R¥), y,=¢ in a neighborhood of 3V [namely
{x]lo(x)~e <1/n}], |wa~ @l < C/n and V.~V in L¥"1(\F).

Finally, we choose ¢, = y,/lw,| (for n large enough), so that ¢, satisfies the same
properties as y, and, moreover, @, takes its values in S¥ !, Clearly D,=D(¢,)
=D(@)=D in L\(\F) and therefore [ D, P~ |D-P{ {by dominated
convergence), 7 n :

In conclusion, it suflices 1o establish (B.17) with the additional assumptions
that [=0 outside a large bg|l, {=0 on a neighborhood of F and D=0 on a
neighborhood of V. Since K = Supp D Supp{ is a compact subset of Q we may fix
a function w e C2(2) such that a =1 on some neighborhood of K. By {B.9) we have
| D-P@{)=0, and on the other hand, D P()=D-F{ ae. on 2 (from the
n

definition of ). O

Proofs of Theorems B.2 and B.3. If {, and { 2 are two admissible functions with the
same values {(H,) for every i, then by Lemma B.4, applied to [ ={, —{, we have

§ D-P{,= { D-P, [choose ¥=R? and F=Hu(*U) for Theorem B.2 and
U\l H

V= U, F=H for Theorem B.3]. Thus, it suffices to prove (B.16) lor one admissible
1
(. Take {= ¥ {; with each {;={(H,) near H; and Supp{; is contained in a small
i=1
neighborhood of H,. Then apply Theorem B.1. []
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Remark B.2. Let UCR" be open. Assume that all the holes H, are points a, in U.
Let D be any vector field in L'(U; R¥). Let d, be any real numbers. Then the

relation .
-{b.¥{= “N‘g.l di{(a) (B.18)

for every { € C(U} with #{ e L™(U) (in the distributional sensc), { =0 on U, is
equivalent to the relation

k
divD=cy ¥ d3, in @), (B.19)
i=1

where J, is the Dirac measure at a € R™. [In particular the D field in (B.16) satisfies
(B.19) for point holes.] Equation (B.19) looks weaker than (B.18) because the class
of testing functions for (B.19) is more restrictive, namely C2(U). The equivalence of
(B.18) and (B.19} follows from the following general density lemma.

Lemma B.S. Suppose { is a function in C(U) with V{ € L*(U) (in 2'(1N), { =0 on
OU and [ is a constant on each H,. Then there exists a sequence [, in CP(U) such that
{u—{ uniformly on every compact subset of U, |P{ [l = S |Vl pw: PL,—F{ ae.on U
arnd [ is a consiant on each H,.

The proof uses the same techniques as in the proof of Lemma B.4 and therefore
we shall omit it.

Remark B.3. Assume the same conditions as in Remark B.2 except that (B.18)
holds for every { € C(U) with ¥{ € L*(U), as in the setup of Theorem B.3. Then, the
analogue of Remark B.2 is that (B.18) is equivalent to

k
divD=0y ¥ dg, in @WU), D-v=0, on AU, (B.20)
i=1

where vis the normal to 8U. The relation D - v=0 has to be interpreted in a formal
sense since dU need not be smooth and since D is only L'.

Appendix C: Duality for Vector Flelds
We recall a classical abstract duality principie (sec [12, 30, 36]).

Theorem C.1. Let E be a Banach space and E* its dual. Let M CE be a linear
subspace (not necessarily closed) and let @ be a convex function from E into
(— 0, +00] such that #(0) % + a0 and @ is continuous at 0. Let * be the conjugate
Junction on E*, namely

P*(f)y=sup{{/f, u) - (u)|ueE}. (C.1)
Then
inf®= — min $*, {C.2)
o Wi .
where
M*={feE*|{f,uy=0 for all ue M}. {C.3)

The following lemma will also be used.

e _—

— — L . AT T
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Lemma C.2. Let E be a separable Banach space and let N be a linear subspace in E*
that is sequentially closed in the weak * topology. Let

N'={ueE|{f,u)=0 for all fe N}. (C4)
Then (N*) =N.
Proof. It follows easily from the Hahn-Banach theorem that {N1)! is the weak *
closure of N. To prove the lemma, therefore, it suffices to show that N is weak *
closed. In view of the theorem of Banach, Dicudonné, Krein, and Smulian (seee.g.
[11, Theorem V.5.7]) we have only to check that N = N B is weak * closed, where

B is the unit ball in E*. But N is metrizable for the weak * topology (see e.g. 3,
Theorem 111.25)) so it suffices to note that N is sequentially weak * closed. [J

Theorem C.1 will be applied in the following two cases (A and B). In the
notation of Sect. V, we take

E=L'6, RY), E*=L=(Q;RY, (C5)

and M, s=(DeE|[D-P{=0forall [eQ, (respectively Qp)}.  (C.6)

Fix any D%e of,, (respectively «/,) and let
®(D)=[ID+D"|. (o))
o
Clearly,
E p=inf{P(D)|De M , (tespectively M,)}, - (C8)
and, for every fe E*,

— [ F.po o I AT O V1 IS
()=~ f-D"+ sup{[ £-D Iwn-{w0 i1, €9
Lemma C3.
M4 s=1{P(I{€Q, (respectively Qg)}. (C.10)

Proof. We shall omit the A, B subscript. Let NCE* be the right side of (C.10). By
the definition of M, N* = M so that (N*)* = M. We claim that N is sequentially
weak * closed, whence, by Lemma C2, N=(N)t =M *, which is precisely (C.10).
To check that N is sequentially weak * closed, let {, be a sequence in @ such that
V{,—f € E® in the weak * topology. We wanl to prove that f=P{forsome{e.
By the uniform boundedness principle we know that | Pl L= = C. We can always
assume {,(xo) =0 for some fixed xo € U. By Ascoli’s theorem {n,—{ uniformly on
compact subsets of U {respectively U) in case A (respectively B). Clearly, { € Q and
S=F{ 0O

Applying Theorem C.1 and Lemma C.3, we find that

E,p=max{[P{-D°|§¥(},-<1, (€@, (respectively Q,)}
=max{oy Xd{(H) | IP{ll =S 1, (€ Q, (respectively Qp)). (C.11)
This is precisely the statement of Theorem 5.1.
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Appendix D: The Basic Divergence-Free Vector Field on a Curve

Let g be a rectifiable curve in R” with no self-intersection and end points a and b,
a+b. Let L be its length. To be more precise the curve can be parametrized by a
Lipschitz function X(¢): [0,1]—R" and we can always assume that X(¢)+0 ae.
Among the choices for X(¢) there is a canonical constant speed choice denoted by
X (1), so that |[Xq(0)]=L ae.

Now consider the problem of finding an R¥-valued measure, D, on R" such
that

suppDCyg, (D.1)
divD=4,-3, in 2Z(R"). (D2)
Theorem D.1. There is precisely one solution to the above problem, namely

Due>= i @(X(0)- X(1)de (D.3)

Jor all pe CARY;R"). Here X () denotes any parametrization of g and (D.3) is
independent of the choice of the parametrization. Moreover, |D,| is the one-
dimensional Hausdor(f measure of g, denoted by &,. In particular

J ID,i=L. (D4)
.N’

Proof. It is obvious that D, given by (D.3) is independent of parametrization and
satisfies (D.1).

Let us check that D, satisfies (D.2). Choose { € C2(R"). We have
d

@, Y= [P @) Xt = | LUK OM=I0)~1@.  (©S)

-

The last equality follows from the fact that Lipschitz functions are absolutely
continuous. Next, we establish unigucness. Consider D — D,and callit D, so that D
satislies

suppDcg, (D.6)
divD=0 in 2(R". 0.7

We have to show that D=0. It follows from (D.6) that there is an R -valued
measure, m, on [0,1], such that

(0,0)= | #(X()-dmit (D8)

for all e C(RY; R"). The existence of m follows from the fact that for any
continuous function, &, on {0,1] there exists some ¢ € C{R"; R™) with ¢(X{(1)
=ulf) and || =|af. Thus, D can be viewed as an element of the dual of
C([0,1]; R™), but these are measures.

Next, we claim that

EVC(X(l))-dM(I)=0 (D9)
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for every { € C°(R™; R) and a.c. T. Assuming that {D.9} holds we conclude easily
lhal 'mmO (and so D=0). Indeed, by differentiating (D.9) in the sense of
distributions we find

PUX@)-m)=0 in 270,1).

Choosing {(x) = x,0(x), where f& CE(R™ and =1 on some neighborhood of g,
we see that m=0,

To establish (D.9) we fix Te (0, 1) such that
m{{T})=0, (D.10)
and X(T) exists and X(T)+0. (D.A1)

For any £>0 (small enough) let A=X ([0,T]) and B,=X({T+¢,1]). Set
d,=dist(4, B,). There exists a function F,e C*(R") such that

F,=1 neard, F,=0 near B, (D.12)
PFIsC/d,, (D.13)

where C is a constant independent of ¢. By {D.7) we have
0=CD,P({F)>={D,[FF,>+{D,FF{> =I,+1, (D.14)

with
L=D.PFy =" (X O FAX()-dms)
=1 G F - am) + sy 'R0 )- .
The last integral is (D, FF,>=0. We claim that I, -0 as e-+0. Indeed

T+s +a
IISC | X~ XDIPEX @m0 S C [ dmo).

T+s
Since £ idm{t)|—0 as ¢—0 (by dominated convergence) it suflices to check that

&/d, remains bounded as e, Suppose not. Then there exists a sequence £,—0such
that d, /e,~+0. Thus, there are sequences ,2T+¢, and 5,<T such that
1X ()~ X (5,))/e,~+0. Clearly ¢,~+ T and s,— T since X is one to one. Observe that
X(t)— X(T)=(t,~ T)X(T)+olt,~ T) and similarly X (s} — X(T)=(s,— T)X(T)
+o(T—s,). Thus,

1 L=, olt,— T)+o{T—s,)
—(X(t)—X(s))=2—"" n
5 KE)= X)) == (Xm+ T )

Sim; t,~5,2¢, and X(T)+0 we have a contradiction, Therefore I, —0.
ext,

T *e
I;={D,F F{>= ‘f’ PL(X () - dm{t) + :[ FLX@OWUX () -dm(z).



698 H. Brezis, J-M. Coron, and E. H. Licb

T+e . .
The last integral is bounded by C | |dm(s)] which goes to zero. This establishes
T £l
{D.9) and hence (D.3). To prove (D.4) we use X o{1) in (D.3). First, we have

KDy 9315 | XLt = B,
and hence |D,} <8, On the other hand, | |D,|=L. Indeed we have
1D, =Sup {i P X o(D)- Xo(t)dt) @ € CR; RY) with |@| < 1} .
e e ey o fanion e R R sk 1
W Xo(1))=Y,(t) and |y}, ~ < L. Letting @, =(1/L)y, we have
§ pu (X Ral0M=01/L)] ¥ XoMi— L,

and therefore § [D,/2L O

Corollary D.2. Let everything be as in Theorem D.1 except that hypothesis (D.2) is
replaced by

divD=0 in 2(RM{a,b}). (D.15)
Then, there exists a constant ¢ and two vectors A and B in R" such that
D=cD,+Ad,+Bé, in Z(R"). (D.16)

Proof. From (D.15) and a standard result about distributions with support on a
point we have

divD= ¥, 0%,+ Y .6, in Z'(R"Y), (D.17)
where the sums are finite. Since D is a measure, the right side of (D.17) contains only

zeroth and first order derivatives. Since § div D=0, the zeroth order terms have to
be equal and opposite, namely c(6,—8,). Therefore,

div(D - cD,) =div(A3,) + div(B3,) (D.18)

for some vectors A and B. Transposing the right side of (D.18) to the left side and
then using the uniqueness part of Theorem (D.1) we derive (D.16). 0O

Finally, we mention another corollary which will be used in Appendix E. Let g
be a rectifiable curve in R* without self-intersection and end points e and b, a +b.
Let 2 be an open set such that g\la, b} CQ. Let D be an R¥-valued bounded
measure on £ such that suppDCyg, and divD =0 in 2(Q).

Corollary D.3. Under the above assumptions there exists a constant ¢ such that
D=cD, in @(6).

Progf. Extend D to alt of RY by 0 outside £2. Let  be the extension. Wc claim that
divD=0in %' (RM{a, b}). Let { € C*(RM{a, b}) and let 0 € C=(f2) withf=10n a
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neighborhood of gnSupp!. We have
§D-¥{=[D-v[=]D-P(33=0,
4} 1

since 6 € C(€2). We may now apply Corollary D2to 5. )

Appendix E: Quantization and Weak Limits of Vector Fields

Let ¥ be an open set in R” with N 21. Let ¢ be a map Irom V into " such that
FoeLYV). Set

A:del(cp.q:,.,...,rp,,,). (E.1)
Similarly let " be a sequence of such maps and set
A" =det(¢”, @%,,.... 0%} (E.2)

We are concerned with the following sitvation. Suppose "¢ a.e. and Py is
bounded in L*(V). Then 4" is bounded in L'(V) so that, by passing to a
subsequence, we can assume that 4" tends to some measure # in the weak *
topology of measures. In general u+ A unless Fp* Vg strongly in LY.

If one merely assumes that 9" —¢ a.e. and Fy" is bounded in L¥(F}and if one
replaces 4" by [P ¥, for example, then we may still assume that [Feo™¥ tends
weakly to some measure v. However, in this case one can say virtually nothing
about v—|F o[V It is a striking fact that despite the lack of strong convergence it is
possible to say something precise about u— 4. This is due to the fact that 4 has a
geometric significance. Lions [23] considered maps ¢ with values in R¥* ! instead
of $* and proved that y— 4 is a sum (possibly infinite) of Dirac masses but with
arbitrary weights. Qur result, Theorem E.1, uses the geometry of S and shows that
there can only be finitely, many Dirac masses and that they have integer weights.
Our proof is completely different from that of Lions.

A typical example is the following. Let y be a smooth map from R” into S¥
which is a constant C far out. Let p"(x)= w(nx)sothat "~ p=Ca.e and Pp" is
bounded in LY. Note that A" —ad,, where a= IN det{y,,,..... v, )dx and

)

/oy ., belongs 10 Z, since afay . , is the degree of y (cf. Appendix B). This example
displays a quantization feature which holds in the general setting.

Theorem E.I. Assume @™~ a.c., Fo" is bounded in LM(V)and 4* — y. Then there
exist pintegers d,,d,, ...,d, € X and p points a,,a,, vees @y in V such that
L4
P‘d=an+|‘21 did,,. (E3)
The proof relies on threc lemmas.

Lemma E.2. Assume Q is a cube in RY and let ¢, ¢ be two maps from Q to S such
that Voo,V e LNQ) and o, restricted 10 3Q belong to W'¥(2Q), so that, in
particular, ¢ and @ € C(0Q). Then there is an integer d such that

[ (4=2)=0x1 14 SClo = Flimvr (E.4)

where C depends only on the norms of ¢ and @ in Wh¥ 130y,
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Proof. Consider the cylinder @ x (0,1) in R¥"! and its boundary I'. I consists of
three pieces I = 0 x {0}, I, = 0 x {1},and [ = 8@ x [0,1]. We recall that it follows
from the density result of [32] that if 8 W'-M(I, $¥), then

1
Ox+1

where x,, X, ..., Xy are orthonormal coordinates in the tangent space to I [cf.
(B.14)]. Let 8(x, £) = tg{x)+ (1 —)p(x), x € {, t € [0, 1], and let 8= G/8). Note that
B is well defined, at least if | ¢ — @l =00, < 1/2; Otherwise, the conclusion is trivial.
Also, |8]>1/2 everywhere on I'. Clearly,

j det(olalli"'!axn)= I{A—Z)
Toul; Q

Now we estimate ’[ det(8,9, , ....9,,). Observe that
2

[det(8,6,,...0,)€Z, (E.5)
r

de1(8,6,,,....0,,)= ﬁ,:—ﬂde:(ﬂ, f.,...0,)

and §,=¢—@. Since we arc now on [}, one of the x; may be taken to be .
Therelore,

[l! det(al 6:.: ‘--)Bx,;)i §C"¢“@HL‘(6Q.V

where C depends only on W'¥"1(3Q). 0O

Remark E.I. Clearly, Lemma E.2 extends to domains other than cubes under
appropriate assumptions on the regularity of the boundary.
For every h>0, set

Gu={xeR"||xj<hf2, i=1,..,N}.

Lemma E3. Let f, be a sequence of functions on V which is bounded in L'(V). Let
h>0. Then, for a.c. ac R" there is a subsequence f,_ (depending on a} such that f,_
resiricted to (a+8Q)V is bounded in L'((a+2Q,)nV).

Proof. We consider only the case where N == 2 since the argument is the same in the
general case. Extend f) by zero outside V and for a.e. ye R set

#ly)= { (A, I+ =,y + W)dx

Note that .
0.0y < J1fitx, pldxdy C.

Applying Fatou’s lemma we deduce that liminfg,(y) < oo for a.e. ye R. Similarly,
if we reverse x and y. Therclore, for ae. aeR?, there is a subsequence f,,
{depending on g} such that f,_ restricted to a+ 8@, is bounded in L'(a+2Q,). O

Lemma EA4. Let 4, be a sequence of measures on V such that A,-> 4 and |[4,]—v ..

weakly in the sense of measwres. Let (2 be an open cube such that 3 C V and v(8Q) =0.
Then A(Q)—A(Q).
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The proof is straightforward; approximate characteristic functions by con-
tinuous functions, [

Proof of Theorem E.I. Without loss of generality we may assume that 4" —v
weakly in the sense of measures. We shail say that an open cube Qis a good cube if
@V and Q satisfies the following properties:
(1) thereis a subsequence @™ (depending on Q) such that ¥ ™ restricted to 0@

is bounded in L¥(8Q),

(i) v(0Q)=0,

(il)) @"—¢ ae. on Q.

The proof consists of three steps.

Step I: For every good cube ¢ one has

oo (MO [4)ez.

Indeed, Fo™ is bounded in L¥(8Q) and therefore @™ —¢ in L=(3Q) (by the
Morrey-Sobolev imbedding theorem). Applying Lemma E.2 we see that there
exists a sequence of integers d, such that

Ié(d""‘d)_ﬂxf 1y ~0.

The conclusion follows since, by Lemma E.4, we have | 4% u(Q).
¢

Step 2: ;—1~ #({a}) e Z for cvery a€ V. Let @, be a sequence of good cubes such
N+1

that ae Qd- for all j and |Q | -+0. Such a sequence cxists by Lemma E.3 applied 1o
Jo=IVe"" [for (ii) and (iii) the argument is standard]. We know from Step 1 that,
for all j,

o (0= [4) =2

Finally, we let j—+o0 and conclude, using the fact that | 4-+0.

Q
Itfollows from Step 2 that 4 has only finitely many alorjns. The atomic part of 4
L
will be denoted by oy, , ¥ 46, with d,eZ and g,e V.
i=]

P
Step 3. Letm=p—A—ay,, ¥ dd,,. We claim that m=0,
i=1

Indeed, by Step 1, we know that ! ,m(Q) € Z for every good cube Q.Let V'be
an open set with compact closure in ¥. Since m has no atoms there is some ¢>0
such that m(Q) =0 for every good cube, @, with |Q] <eand OV’ % {the argument
is by contradiction). Let h>0 be such that k" <& and A <dist(}V",d¥). Then
X * m=01in P(V’), since m(x— Q,)=0 for a.c. x€ V* (note that x —0, is a good
cube for ae. xe V', by Lemma E.3).

On the other hand, h™"y,, » m—m as h-+0 and thercfore m=0in V. O
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Corollary ES. Let ¢" be a sequence of maps from SV into SM satisfying the same
assumptions as in Theorem E_I. Then the same conclusion, (E.3), holds. (In(E.1) and
(E.2) one has to interpret the x, as orthonormal coordinates on S".)

Proof. Use two stereographic projections (for example north and south poles) and
note that the measure 4dx is invariant under diffeomorphisms. O

Finally, we consider the situation in which there is a sequence of continuous
maps " from 2CRY 1o SV~ ! (N 2 3) with Pg" e LY ~'(12). Associated with each ¢"
is a vector field D" given by (B.7). Let us suppose that Pe" remains bounded in
L¥~(Q) so that D" is bounded in L'{£2), and thus we may assume that D" — D
weakly in the sense of measure. Let us suppose that

suppDCyg, (E.6)

where g is a rectifiable curve in 2 without self-intersections. 1.¢. there is a Lipschitz
map X :[0,1]— which is injective and such that X((0,1))C . Since divD"=0
[see (B.9)] it follows that divD =0 in 2°(42) and thus, by Corollary D.3,

D=cD,, (E)

where D, is given by (D.3). Appendix D only telis us that ¢ in (E.7) is some constant,
but the fact that ¢" 1akes values in S¥ ! leads to the following

Theorem E.5. Under the conditions on ¢" just stated, the constant c in (E.7) is an
integer multiple of oy.

Proof. Without loss of gencrality we may assume that {D* — v weakly in the sense
of measures (in general, suppv need not be contained in g). Consider, as in
Appendix D, the cancnical parametrization, X(¢), of g and fix some T€(0, 1) such
that X(T) exists, v=X(T)%0 and also w({X(T)})=0. Set a=X{(T).

We wish to find a hyperplane T through a with the following properties:

(i) v¢ll—aq,

(ii} |¥¢"| restricted to I is uniformly bounded in LY~ '{(/Tn{2),

(i) v(IT)=0.

This construction is possible — indeed (i), (ii), and (iii) hoid for aimost every I1.
Using (i) we can find r>0 (small enough) so that

gniinB(a,r)={a}. (E.8)

Indeed suppose not; then there exists a sequence ¢, €(0, 1) such that X(t,)e I,
X(l)#a, and X(t,)—+a. We may always assume that t,—t€[0,1] and, since X is
injective, we must have ¢ = T. On the other hand, (¢, — T) " {(X(t,) - X(T) el —a,
and at the limit we find v € IT - a; this contradicts (i). Further, we may also assume
that B(a, r)C Q. Let { be a smooth function such that { = 1 on B(a, r/2) with support
in B{a, r). Let H be the open half-space determined by I7 and which contains a—v,
and let ¥ be the cutward normal to H, We have

for-vi={ (D9 (ES9)
L i

Using (i) and Theorem E.1, we know that (for some subsequence still denoted D)
D¥—=ftoyXdd, (E.10)
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with fe L'(ITnQ) and d;e Z. The reason that we can apply Theorem E.1 is the
following. Since |F*| restricted to /7 is bounded in LY " *(/InQ) and N 23, it
follows that, for some subsequence, ¢” converges a.c. (on [T to some limit y
and Fye LY~ '(I1n12). Note that this may fail when N=2. (The case N =2 is
special and will be examined subsequently.) We may always choose r so smail that
B(a, r) contains at most one a,, namely a. Let 4 be the coeflicient of &, in (E.10).
From (E.9) we have

| D ¥lopd+ | fL. (E11)
H n
On the other hand, by (iii) and Lemma E.4 we sec that ‘
fp vt~ {D-v[. (E12)
H H .
We claim that
D -Pl=c, (E.13)
H

where ¢ is the constant introduced in (E.7). To prove this, let us assume there exists
a4 0<T, <T and a radius r such that

(i) X(eH for T,st<T,
(ii) X(O)¢Bla,r)nH if 1¢[T,T).

If this is so then, with 1= {1} X(t) € B(a,r)nH}, it is easy to sec that
,];D- Fl=c{PL(X(e)- X(1)dt

(E.14)

T
=c TI PLX () X()de=c[{(X(T)—UX(T )] =c. (E15)

The theorem follows from (E.15) and (E.11) by letting r—0, so that the integral in
{E-11) goes to zero. '

Now to prove that (E.14) can be satisfied observe that X is differentiable at T so
that X(6)=X(T)+v(t—T)+o{t—T), so that (i) is satisfied for t< T and T—t<a
for some a. Likewise, if #> 1t — T>0then X(t)¢ H. The curve X() for 12128+ T
is closed and therefore has a positive distance from the point a. Call it &, . Likewise
[X{t)—al2d_>0 for 0=t<T-a. Choose r<min{d,,d_). For t2T either
X(t)¢ H or |X(t)—a|>r. For t<T, cither X(:)& H or |X{t}—a|>r. This accom-
plishes (E.14). [0

We turn now to the case N =2 which is not covered by Theorem E.S. Suppose
" is a sequence of continuous maps from QCR? to 5" with Pp*e L1{£). Let us
suppose that Fe" remains bounded in L*(2) so that D" is bounded in L'{£2), and
thus we may assume that D" — D weakly in the sense of measures. Let us suppose,
as above that SuppD (g, and therefore, for some constant, ¢, we have

D=cD,. (E.16)

Theorem E.6. Under the conditions on ¢* just stated, and also that ¢*—C a.e. on 2,
where C is a constant, then the constant c in (E.16) is an integer multiple of ¢,=2n.
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The proof is the same as the proof of Theorem E.5 and we shall omit it. The
assumption ¢"— C a.e. is essential, as the following simple case shows. Let 2 be the
disk {xeR?}|x|<1} and let g={(x,,x;)|x, =0, pxal=1}) be a diamcter. Let
J:R—R be any smooth function with f’¢ L'(R). The sequence @*((x,, x3))
=(cos f(nx,),sin f(nx,)) has all the right properties except that ¢* converges to
two different constants for x; >0 and x, <0 [provided f(+ o0)—f(—o0)is not an
integer multiple of 2x]. On the other hand, the limiting D fieid is cD, with
c=f(+m)—f(— ).
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EQUATIONS AUX DERIVEES PARTIELLES.

' Une remarque sur l'application xllxl.NouilatmdoninmeamIﬂu.doFaml-muN
présentée par Haim BREZIS.

On établit que 90x) = x /| x| est une application harmonique minimisante de R" dans

s™' pourtout na 3.

" PARTIAL DIFFERENTIAL EQUATIONS.
Aremarkonthemap x/|x| {mostly in English language).

We prove that y(x) = x /x| Is a minimtzing harmonic map from R" tnto 5™ for
all na» 3.

Hl est factie de vérifier que I'application yix} = x/Ix|: R" - g™! est une appltcation
harmonique pour tou_t n>J, c'est-a-dire vérifie I'équation - Ly =g Vy l’ - La question
était posée de savoir s1 cette application est harmonique minimisante, C'est-a-dire 5 y réalise
le mintmum de ]I V‘Urlz parmi toutes les applications U:B" — 5™ telles que (x) = x sur
38" (ou B" désigne 1a boule unité de R"), La réponse affirmative étatt connue pour n » 7
(voir (4] oG 1) est méme prouvé que ¥ réalise le m'inlrnum de I'énergie parmt toutes les
applications de B" gans 5" ) etpour n =3 (voir [1h. Nous montrons que 1a réponse est

arfirmative pour tout n > 3 Notre méthode est basée sur I'inégalité ponctuelle sutvante

¢

1
IPup . W[tr(vw’ ~tavw? s o
pour toute application U:R" - ™' onutilige ensulte \'identité

[ 2 ltaiv U - trUP)ax = tn-1) volume ge g1
.}

pour toute apptication U:B8" - 5™ teile que Ulx) = x sur ag"

1 ' [
r M

2

15 not hard to see that w(x}= x/Ix|:R"=S™" for n3 3. gefines a harmonic map
from &" to 5™' The question we shall discuss is whether it Is an energy minimizing harmonic
map of not.

W. Jager and H. Kaul {4] have shown that the map x /| x| . R" = 5" 15 an energy
minimizing harmonic map 1f ang enly 1T n > 7. In particular ¥ 1S an energy minimizing
harmonic map from R" into s™°* for n > 7. we shouid also mentton an Interesting work of
R. Schoen and K. Unlenbeck {{S), [6]) and, independently, of M. Glaquinta and J. Soucek {2}, on
the minimizing maps Into the sphere or a hemisphere. Recent Iy, H. Brezis, JM. Coren ang
E. Lieb [1] have shown that any nonconstant minimizing harmonic map from R® to 5% which is
homogeneous of degree zero must be of the form = R(x / |x|) for some retation R of R® In

.
particular, the map x / x| R} = S? 15 énergy minimizing.

Here we prove the following :

”
Theoremn: Themap x /x| R" - s™! isan energy minimizing harmonic map.

The technique we use In the proof of the above theorem 18 S0 called “adding a nut)
Lagranglan”. This has been used alreadyin [3] in proving the main existence theorem there.
This was also widely used in 1inding optimal bounas for effective coefficients in the theory of
homogenization and composite materials. The author wishes to thank M. Avellaneda and G. Milton

for interesting discussions on several problems in finding optima) bounds of composite
materials.

Lemmat:tet U:R"=5"" (n353) pea ' map In 2 neighbornood of Q € R" . Then we have

!
P(YUXQ) = | DU 12 (Q) - s [trevw) - av v » 0

Proof. Since P(VU) 1s frame tnvariant, 1.e. P(TU) = PIYV) 1f v = R', U, R where R isa

rotation in R", we can assume that U@} = (v'@) , LX(Q) v UMM = €0,0,..,1) . Hence
UN0) = 0 as U maps R into S™' (et 3, = 3U"/3x (Q) so that a_, = 0. we have



3

(v u? @ = (I ap? « (n-1) i al
) -1 X
tr(vW?(Q) = iy > I le, - I af,

+
Ivuf@ = g a2 - Zua)

It follows that
n-2) 19U £ (@) » tr(t9u» (Q) - (atv U (Q) 3 (n-3) P

Lemma2 Let B" be the unit baliof R" angiet Ue H'(B"5™") with Ulx) = x on 38" = ™'

Then

f.,, ltaw P - PV ax = (n-1) ) 5™ |

whera IS"."I denotes the voiume of S™'
Prool By the identity

(aiv UY? - YUY = aivicav Uy - (VU]
and the divergence theorem one has ’

l... fav ) - tr(YL®) ax = Is"" divuuy - |, (Yuuy .
-

Since U(x) = x on 5™ we have (VUllv = U,U=0 as U maps into ™' -Also divU = n-)
on S™'. This ylelos the conclusion of Lemma 2.

Proaf of the Theorem. From Lemma 1 and Lemma 2 we conctude that, for any ueH'a"s™,
‘WIth U0 = x on 28" ana U s C' ae.1n 8" that

. 2, h-i -1

N T oS A B

On the other hand

2 n=t  a
7/ —— .
fyu 907 1X D7 2 — 15"
It Tollows that x /| x| is an energy minimizing map.

Remark. If wix) = x/)x|, then P(Vy)m 0. The energy minimizing property of y can be also
easily seen from this ract.
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CALCUL DES VARIATIONS. -~ Minima de la fonctionnelle énergie libre des cristaux
liquides. Note de Frédéric Hélein.

On chesche 3 misienises I8 foactioanelle E (u ) = 17 3 [ g [ Ky (aivu)? + Ky (0. motu )2e Ky (warotn)2 jdx
unmuu-ppltmuumumwnuﬂmmmunius!un’quimiﬁeu(;)-umman.u
oﬁKl‘.Kz.Kg sont des coustanies réelley micwmh:pmilivu.Onimnnque Ve (x) =2/ x| ve minimise pas E 1
a(x,-x,)uc,<u.onuuum.wmu‘mmwmmamumum«exz-x,-o.

CALCULUS OF VARIATIONS. = Minima of the free energy functional of liquid crystals.

We try 10 minimize the functional E{u) w11 3 [g [ Ky (divu P o Ky (urotu e Ky(unrotu)? ) dewhere
& is @ map from the unit ball B of R inso the wnis sphare 52 of B whick verifies u (X ) = X 7 {3 on 3B, and where
K. K3 . K3 are mrictly positiv constanis, Wcshaulhﬂu-(z)-xllﬂdaummﬂv
HKz-Kj)t.l"<D.WlaﬁwdquhkkmEumtmﬂunlz-',-0.

B={xeR¥ {x|=R<1}estlaboule unité de R?, §2 = { x & R¥/ I x| =1} lasphére unité
de R3. On représente unpointxdcBwsescoordonnéesonbotm:eu(xl.x,,xg).Onseplace
dans l'espace H! ( B, $2) des applications u de H! ( B, R?) qui vérifientu (x )& S%pp. .On
nolcu.l'élémmtdeﬂ'(B,Sz)déﬁniparu.(x)-xlmnxlg.

OnposeA (u,)={ue H' (B,S)/u(x)=u, (x)pourp.t.x e 3B 1

Pour K,, K, K, réels strictement positifs, on définit la fonctionnelle

E(u)-lIZIB[K,(divu)’+l(z(n.rotu)2+Ka(uAmtu)1]dx

Si on modélise un cristal liquide nématique occupant un volume B de I'espace par une
application u de H' (B, S2), E représente 1'énergie libre de ce cristal. On cherche V'application qui
nﬁnhniscEdansA(u.).OnposeI(Kl,K,.K,,)slnf{E(u)lue A(u, )}

On sait d'apres R, Hardt, D, Kinderlehrer, F. H. Lin [ 2 ] qu'une telle application existe et est
analytique réelle en dehors d'un ensemble de mesure de Hausdorf monodimensionnelle nulle. H.
Brézis, J.-M. Coron, E. Licb ont montré dans [ 1 ) que dans le cas K, = K, = Ky, u, était

T'unique solut.%on de ce probidme, et F. H. Lin a étendy ce résultat au cas K,2 K,[4]. Nous
allons montrer que cela n'est pas toujours le cas.

THEOREME 1. - Si 8(K2-K,)+K_,<0.alorsu.u'cupa:minim£mm.

Démonstration. =~ Pour v e H} (B, R*)~ L™

(B, R¥)et A > O suffisamment petit, on
pose

Uy = (“°+1")"it;+l_v|5 H!(B, 83,

Alorsul-u.+lwl+12w2+o(l1)nvec.ennotantv¢laeompmmlcotﬂ:ogondeln.de

v, etug = v,

Wixv-(ta¥)u,mvy
wz-[(3(u..v)’-v’}u,-2(u..v)v]lz-[(3v33-v2)u.-2vnv}12.

DA E () =E (us )+ AE; (s )v+ A%/ 2By (0, ){v,v) +0(A?) avec

E;(u.)v 'IB (- K, grad ( div U)Wy + Ky { u,rot u, ) { u,.rot W)+ wrotu, )

+K1(u.Ardt Us ).( usATOL Wy + W ATOL U, ) ] A

Ez(u.).(v,v)-IB{Kl[(divwl)1-2p'ad(divu.).w2]
+K,[(u..rotw,+w|.rmu.)2+2(u..rotu.)(u..rolwz+w2.mlu.)]
+K,[(u.Arotwl+wlfuotu.)1+2(u.mu.).(u.Amth+w,Amtu.)]dx

Utilisant grad (divu, )= - 2R 2u,, uywy=-v 2/, etrotu, = 0'il vient
El(u.).V-O
E; (u)(v,v)=Jg[ K, [ (divv,?-2v2R?]

+ K (uprot vy, P+ Ky ( wpatot v 2 dx

I suffit donc de trouver v tel quc E, ( v, 3.0 v, v ) < 0 pour obtenir le résultat.Soit
xe CY[o0, 1L R), C! par morceaux, telle que x (1 )=0.Alors v (x )= (R) (2, x,,0)
définit une application v de H! (B, R?) A L* (B, R?). Des calculs simples montrent alors que

By (ue)(vv) =g {K {-2(x 24 ) X R R-?) + K, (422 (R )P R"2)
+Ky (L (R)R '+ ' (RYP(x2+ x2) b dx

~4/3 51K, K DX R 2K 1 RY S p(RIR P 1

-Btlak [(Ky-KDXRY+K, /9(20(R)+ X' (R)R)?IR?dR

Posons f (R) = R?y (R ), alors
By (u (v, vy mx sy fl (K, - R IF(R? R 24K, 15 (R 1] aR
Pour A > 0, on prend

fo(R)=0  sur[0,exp(- Ax)]
fo(R)=VRsin{Log (R)/ 4 ) sur [exp (- Ax), 1]



Alors sur Jexp (- AR), [ f," (R)=-(1/74+1/42) [,(R) R 2, et

f:m_mf"(n)’da--f;(_m f,\(R.) f,"(R)dR
'(ll4+]lA2)I“’(_“) fA(R)z R-*dR

D'od 4 '

Ez(u.).(v.v)-hlajwbu)[(Kz-l(l)-r(lla+112A2)K,]fA(R)2 R*2dR

Etcommcs(l(z-Kl)+K,<0.ilsuﬂ“udcpmndreAmzpmﬂpourqueE‘(u.).(v.v)<0.
Remarque. ~Comme pour tout u dans A ( u, ), on a

2B(n)2K|JB(divu)’dx-KJB[9+6div(u-:)+(div(u-x))2]dx
-K,[lhd»ja[div(u-)_;)]’dx
2 12x K,

Oaamujoursl(K,,K,.K.,)zﬁxK,.D:plusE(u.)-Bxl(l.onelconlutqu'onuoujoun
8xK, =E(u,) 21(K,,K; Ky)26xK,

Réciproquement,utilisant 1a continuité de ( Ky K3 ) +—> I(1,K, K, ), une conséquence du
corollaire du théoréme 2 qui suit est que pour chaque valeur d'énergic ¢ de 16x, Bx], il &xiste X,
Ky>0ullesquee=1(1,K,K;).

Introduisons maintenant la fonction ug € L** ( B, §? ) définie par
Uymx+r” INT7R? (x3-x4,0)

Oir=¥x T+ T. Notons T u { x & B/ra0},alomsur BAZ, uyestC, uy(x) e S2, et
divuy=3.SurdB, ug (x )} =u, (1). DoncIB(divuo)zdx- 12x, et vy minimise E dans le cas

déginéré K, = K, = 0. Mais ug n'appartient 3 aucun WL P ( B, R? ) pour tout p ¢ [1,4e].
Toutefois, on a;

THEOREME 2. — /I éxiste une famille ugde A ( u, ) pour & > 0 qui tend vers 4y pour la
lopologie L=, { B\ I, 5% ) quand € —> 0, et qui vérifie

.[B(divu‘)zdx\—oj;(divuo)’dxanx

COROLLAIRE. -~ lim (1K, K;}=6x
(Ky K3 )=s0

Démonstration du théoréme 2. = On considire les fonctions P, deCl([0,1],[0,1}),
C* par morceaux, définies par

p,(R)=R sur[0,1-2¢])
P(R)=2-¢ surfi-2¢1-¢g]
Pe{R)=1-(R-1¥  sur(l-g1]

o (r)=1 sur[0,2]
a'(r)=-1/ sur[E 2e]
o, (r)=0 - sur{2e,1]

Onposealcnu.(x}-[a‘(r)ﬂl-a.(r))p‘(R)]le
+¥1-[a,(r)+(1-a,(£))p (R)1%r ! (x;,-%,,0)

I est immédiat que ug tend vers ug dans L=, (B\ 3, §2).
Pourtoutz:-ﬂ,lurB(O.e).u‘(x)-xlk,etsurB\B(0.&),u.estcontinueetC‘pa.r

morceaux nvecunedérivéeboméeda.ns!.."(B\B(O,e),ll’).Doncu.s H! (B,S?). 0 ne
reste donc plus qu'a calculer div U, .

divu=grad{{a +(1-a)p IR} }x + fe,+(1-a)p JR 'divk + 0

-{-[u.+(1-a‘)p‘]R‘3x+[u"(l-p.)]R"r" (x,%,0)
+L-a)p/ IR 2x hox+3 (@ +(1-a,)p,)R"}

=2a +(1-a)p IR '+{a'(1-p)]IR !+ (1-a)p,
SwQ ={xeBire([21],Re [LL1-2e]}, dive,=3
Sull,={xeB/re[0,e]}, divu,=2R"!

SurQ;={xeB/ree, 2]}, Jdivu {S2R" ' +re 'RV 4+252+4R"!
Swfl={xeB/re[2 1,Re[i-2¢1])}, |divug|=12pg R +p,'iS 6

Et IJB(divu‘)zdx-IB(d.ivuo)zdxl < Imumum |9- (divu )?|dx



Comme |9 - (div u, }? | est intégrable, et comme la mesure de £, U €, U Q, tend vers 0, on
conclut en utilisant le théordme de Lebesgue,

Démonstration du corollaire. - Pour tout B ] 0, 1[, en prenant € suffisamment petit, on peut
avoir

fn(divu,)ldx S (12+48)% et flu, IgB) <4 e

Donc en choisissant K;, K, suffisament petit, on a pour (L, K, Ky)

E(u) s (6+8)x = I1(}L,K,K,) S (6+B)x

Remarque. = On constate que dans le cas dégénéré K, =K, « 0, il n'y a plus unicité du

minimum puisque pour tout X € SO (3 ), R (u, ) minimise également E. De plus, toute ces
fonctions possédent une symétrie cylindrique. On peut donc se demander si les toutes les fonctions
minimisant E dans le cas 8 (K, - K, ) + K3 < 0 ne sont pas des applications qui se déduisent les

unes des autres par des rotations, et qui possdent une symétrie cylindrique. On peut se demander
également si u, est minimisante dans le cas 8 (K, - K, ) +K, 20, et K, < K;.

Je reawrtio J.M. Coron qui & atiné mon attention ser cette question.
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Q. Introduction

Consider two Riemannian manifolds M™ and N° ::Rd + where
M is compact, possibly with boundary, and m 2 3 . A map
£ 3+ M—> N 18 harmonic if it is stationary for bDirichlet's

integral ("energy")

Eyif) = [ |vg]avol, ,
M
d " af, 3f
2 aB "3 4 af -1
where |Uf|“ = ¥ g P =2 and where vy_.{x) = (y*P(x))
i=1 a,8=1 *a EEE ’ . ap

repfesents the metric of M . In a fundamental paper ([SU1]),
Schoen and Uhlenbeck showed that near any singularity, a minimizing
harmonié map £ : M® — N" converges strongly to a minimizing
tangent map u :  pa—, n? + which is harmonic and homogeneous of
degree zero. The investigation of minimizing tangent maps

u i B —s N is therefore an important aspect of current research
inte minimizing harmonic mapg.

We restrict our attention in this paper to the case N = s® ,
the unit sphere in r"*1 . Even in this case, surprisingly few
examples are known of maps u : " — " + homogeneous of degree
2ero, which minimize energy for given Dirichlet boundary conditions.
The first nonconstant example was given by Jiger and Kaul in
1983, who proved that the map u, : B" —>» sP defined by
Ug{x) = (x/[x},0) minimizes energy if m 2 7 ([JK]:; see also
[su3l). Recently, Brézis, Coron and Lieb have shown that the map

3 2

uy(x) = x/|x| from 8% o S$° minimizes E, ([(BCL])). A proof



was communicated to us by Lin that u,ix) = x/|x| from B™ to
Sm"1 has minimum energy, for all m ([L]). In a related result,
Hélein has shown that E,fu) 2 Ejlug) + o Eztu-uoi for some
a >0, provided that n = m~1 and m 2 9 ([H]).
In contrast, it is shown in [SUJ] that any minimizing tangent
map u i 8™ —> s® 1s constant if m 3 din) , where d{3) = 3
and d(n) := 1 + min{n/2,5) otherwise.

A natural generalization of the functicnal E, 1is the

p-energy
Eplw) = [y J9u|Pax ,

which is finite if and only if u belongs to the Sobolev class
W1’p(Bm,Sn) s= {u € H?'p(Bm,JEP*1)=]u| = 1 a.e.} . Mappings which
are stationary for Ep are called p-harmonic maps. Note that
regularity theorems analogous to results for P =2 in [SU1}
have not yet been proved for general p (uniform ellipticity is
lost). One may well expect, however, that minimizing tangent maps
will play a role similar to their recle in the theory for p a 2 ,
One result of the present paper concerns the homogeneous
mApping u, : B"™ —> s® defined by wugly,z) = y/|y| , where

Yy €R™ ana z e B! . We have

Theorem 2.4. - 0L _any
1 If psnsm-1, then Epluul s Ep(u) for_an
u €W 'PE™ 5™ with u o« u, on 38",

If p=n =m-1, then this result may be proved by the

methods of [BCL]. If p = 2 and n = m-1 , then this is exactly
Lin's result. Qur proof was discovered later than Lin's and
independently, and is of a quite different nature.

Two intaresting examples of mappings from an to s" are

provided by the homogeneous extension

ug {x) = Hix/|x|)

1

of the Hopf maps H ; s27~1 _, &P

related to the multiplication
of complex numbers (n = 2} and the quaterniong (n = 4) ., We
shall prove that hoth are minimizing maps for Ez {Theorems 5.1
and 6.1},

Using similar teéchniques, we shall prove a sharp lower bound

n/2

Entu} Zn Volume (s%)

for u € W1,n(8n+1,sn’ such that u(~-x) = -u(x} for all

"1 (Theorem 4.1},

X € 2P
Finally, we give a theorem with general hypotheses on a
mapping u, ¢ B" s " which allow us to conclude that u,
minimizes Ep for its boundary data. The hypotheses are similar
to the conditions for a harmonic morphism (compare p. 123 of [B]}.
We would like to point out that the results of the present
paper do not include a classification of all minimizing tangent

maps into S" . For example, up to an orthogonal motion,

uotx) = x/|x] 1s the only known example of a minimizing tangent



map from B4 to 53 i it is not known whether any others exist.

It was proved in [BCL] that wu,(x) = x/|x| is the unigue
minimizing tangent map from 8? to S2 module @(3) .
One idea in our proof is to bound the p-energy of a map
v BT — gP from below by a coarea formula. The usefulness
of the coarea formula in the context of the functional Ep for
mappings into a p-dimensional manifold was madé clear in the
pPaper of Almgren, Browder and Lieb [ABL]. An analogous framework
of ideas had been constructed in [BCL] for the case p = n = m~1 .
A new idea, which plays a central role in our proof, is to

" —> s® by averaging a

estimate the p-energy of a map u : B
related functional of the compogition of u with all nearest-
point projections Ty of 5" onto its totally geodesic p-spheres
{Lemma 2.2). This averaging method is simplest in the classical
case p = 2 : the enaergy of any map u ; B® —» gV is a constant
times the average of Eztnyeu) over all 3-planes Y in mnﬂ .
Here 7, : 5" —> ¥ 05" nmaps s € 5P to the nearest point in

the 2-sphere Y n_fn (Lemma 1,2).

An important technical tool in our proof is a new approximation

result for mappings into the p-sphere of class w1,p (Theorem 3.2),
which is based on methods of Hardt-Lin and of Bethuel-Zheng. Note
that smooth mappings are not dense {[SU2], P- 267 for p =2 ).
However, we construct a dense class R of mappings whose

singularities form submanifolds of codimension P+ 1, with

simple structure near the singularities. Of course, the
slicing theorems of Federxer {[F], 4.3.1), which are relevant
to the coarea formula, are valid only for Lipschitz-continuous

mappings; in effect, the singular set of a mapping of class R

' contributes to the boundary of each slice. This difficulty is

overcome by considering the difference of the slices at two
distinct points in SP ; the difference is a current having
no boundary in the interior of the domain.

The authors would like to thank Martin Guest and Uwe Abresch

for ugeful references to the literature. They gratefully acknowledge

the hospitality of the Max-Planck-Institut fiir Mathematik, where

this work was carried out.



1. Projection to lower-dimensional spheres (p = 2)

Congsider n s m-1 and an integer p, 1 s p s n . For ghis
section and the following one, we define boundary data

g : 8™ — s by

gly.z) = y/|y| .

where vy e P! and z ¢ PR . The class of admissible mappings

ts
Epla) = (u € WPE™S®) i uag on 287 .

The homogeneous extension of g is uyly,z) = y/ly|l , which is
singular on (0} x " ™' c ®™ . Note that E,(uy} 1is the integral
of ]y[-p + Which is finite since p < n+1 . Thig shows that
u, € Ep(g) » and the admissible class is not empty.

In this section, we shall consider only the case p = 2 ,
which is simpler than the general case (compare the averaqging

Lemmas 1.2 and 2,2). Our result is

Theorem 1.1. Eztuo) s Ez(u) for any u ¢ Ez(g)-.

Given a 3-plane Y c R**! + we define Ty 3 st — s ny

by Tylu) = u'/|u'| , where u' is the orthogonal projection of

n 4

U onto Y . The singular set of T, is the (n-3)-sphere s" n v

Lemma 1,2, There i_‘g_constant ¢ = ¢(n) such that for any
1,2

u e w - '“s"s" ,

(1.1} ¢ Ey(u) = E,{m eu)dG(Y) .

YeG, ( B

Here dG is the bi-invariant volume form on the Grassmann manifold

Gy =

Proof. For any tangent vector VvV to g" , we have

(1.2) c|vj®ag

Jec. (w0, jony vy |2aG(y)
3

since ®@(n+1) acts transitively on the unit tangent vectors to

n and leaves dG(¥) invariant on G3(:mn+1) . Note that Ty is

5
singular along a totally geodesic {n-3)-sphere of 5" , and
IDnYIVII S C|V|/r , where r 1is the distance to the singular set;

therefore, the integral in equation (1.2) is finite. Since

m 2
]Vu[z =7 '%ﬁ—' + this formula applied to V = %E— yields
a=1 a . X
2 2
c|vul® a f neq. [Vimgeu) < aG(y)
YEGy( RT )

We integrate both sides over B™ to obtain (1.1) by Fubini's
theorem.

qg.e.d.

cdrollarz 1.3. Let Vg ¢ BT —> s? be defined by volx,y} = TgT ’

where x €]R3, y e R If E,lv) 2 Ej{vy)  for every



vew 2@ s? ien v = Vo on a8, then E,(u) 2 Eplu,)

for every u € H1'2(Bm,sn) with u = uy ©on B .

Proof. Note that Tyou, = vo after performing an appropriate

rotation in R" . Using Leama 1.2,
¢ E,{u} = E,(m, ou}dG(Y) 2
2 Ga(mnﬂ) 2°Y

éalm"”)Ez“Y.uoidG”) = ¢ Ejlu,y) .

q.e,.d.

The coarea formula has the sarious weaknéss that it gives a
lower bound for energy E, only for mappings to a manifold of

dimension n = 2 . The above corollary bypasses this weakness in

the case of mappings to the n-gphere.

Lemma 1.4. (Coarea formula, p = 2 ). If ve C0’1(ﬂ.szi for

2 open in a™ + then
SwlPax 2 2 f , ™2y (5))aa ,18)
Y] s s

Hm—2

where denotes (m=-2)-dimensional Hausdorff measure.

PLoof. See [F, 3.2.22], with the observation that |w|? z 2 J(v) ,
where Ji(v) 1is the determinant of ¥v restricted to the
2-dimensional space orthogoﬂ%l to v-1(s) + and s is any regular

value of v .
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In order to use Lemma 1.4, which is only valid for Lipschitz
mappings, we need to approximatae w1’2(am.sz) by mappings having
precisely controlled singularities (recall that Lipschitz
functions are not dense for m 2 3 : see [SU2), p. 267). Let R
be the class of mappings v € w"ztsm,szl such that

(1.3) v = Vg ©n a neighborhocd of 3B (whose size may depend

on v ) and on a neighborhood of the singular set

A= {0} xB®? of vy

(1.4) v ec™B™(au )} for some Lipschitz (m-3)-dimensional
manifold I < < B™4 (3 = ¢) ; and

{1.5) for a.e. s € sz, vq(s) u V-I(-sl ULUA4& is a Lipschitz
(m-2) -dimensional manifold with boundary < ap™ .

Approximation Theorem 1.5, If vy € R , then R ig dense in

1,2{Bm'82) v =v, on a8™} .

Ezivol = {v €W
We defer the proof of Theorem 1.5 to section 3.

Proof of Theorem 1.1. According to Corollary 1.3 and the }

Approximation Theorem 1.5, we need only to show that for
v € R, Ez(v) H EZIVO) - We use the ccarea formula of Lemma 1.4,

with a = 8™ (g y 4) :
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(1.6) WVIde 22 f 5 Hm-z(v-1(s) n Q)da 2(3) . 2. Projection to lower-dimensional spheres (general p )
Q S 5

Since H™2(L U 4) = 0 , we have W™ 2(v (s} n ) = ™ 2(v="(s})) . .  We may now turn our attention to the case of a general
’
Note that the antipodal map from 52 to 52 defined by integer exponent 1 S p S n . Somewhat surprisingly, the counter-
8}—>-8 preserves the volume form dA ,(s) , so that the right- part of Lemma 1.2 fails: if the constant ¢ is defined so that
5

hand side of {(1.6) equals
¢ E (uy) = f n+1, Eplmyeuq) dG(y)
!rEGp‘~1 (R )
f 2 ™3 e u v (=sraa e . ] :
S ' S then it is not true that

It follows from conditions (1.5) and (1.3) that for almost all

e E (u) 2 f

s, v uvi(-s) utus isa regular manifold with boundary P vea Ep(myeu) dG(Y) .

n+1
or (R )
a totally geodesic sphere of dimension m-3 . In particular, it
. _ _ d
has (m_z)_. dimensional measure 2z K™ 2(Bm 2' - “m-z . Thus In order to carry out our program, we will instead compute the
: average of squares of the Jacobian determinants of Ayou (see

2 2,.2
J plv]®ax 2 Opy HO(ST) =dma .
B Lemma 2.2 below).

n
Meanwhile, iwulx,y) iz = _E..f , 8o that Given a linear transformation L : R® — R , where
| n-3 . m2n, we may write L = Q, A Q, . where Q, € ®(n) ,
1 2
2 EQ and A h the for
B2l G e 201-cY) * ar Q; € ®ta) as the form

= 47 a2 -

o
.
.
P
O sases

S sseee

: Wt Ay 2 A5,y 20 . (For example, L = Guix).) In fact, A%,...,2? are

the eigenvalues of the positive semi-definite symmetric operator
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LY on R . We shall refer to )‘1""'An as the singular we need only .sklmw thaF

.ﬁalues of L . Observe that lk may he glven a variational ]

1 .~
ap(u1,...,an) =y (p) ap

0
interpretation: f(u1,..-.an) = (P)

(2.1 2 = min {|Lx| : x € 2, |x| = 1} .

max
m
Z€G, ( R) for any @qreess0, €ER , Note that £ 13 a homogeneous polynomial

For any p-plane 2 € Gp( ) , let 7, be the orthogonal of degree p . Further, flayr...,a,) is symmetric under permutations

projection of R" onto 2 ., and write u1(2l-----upizl for of mi""'“n) ¢ 8ince a pérftlutation corresponds to the isometry
the singular values' of ngeL P RD 2 s RP of ®B" which permutes the eigenvectors, leaving dG(z) unchanged.

Recall the definition of the elementary symmetric functions According to the fundamental theorem on symmetric functions

(see &-g. [Md], p. 13), any symmetric polynomial f(ul.....an)

Ggeeeeray Of lag,...,a) eRr! ;

is equal toc a polynomial PO‘“?"“'“n) + with real coefficients;

moXreover, O.,...,0 are algebraically independent. In our case
1 n g

O lagr-eura) = ) 4y Oy ..@y
1.<l,<...<1 1 2 k
1772 k f(a.l....,an) is homogeneous of degree p s n , and therefore,
We have the following formula: . for some y €R ,

90'51""'011} * yo, ¢+ P1(a1,...,ap~1) .

. . i n
Lemma 2.1. Given any linear transformation L : R® —> R with p

singular values l1""‘kn + the average
Consider the special case ap ® see o =01 in this case
-1 - ~
2 e [u1(Zl-..up(Zl]2dG(2} - (g, Up('\f:---.l;‘:) . 01(01,....ap_1. 0,...,0) ai‘“1"“’°‘p-1, « the elementary
Gp = symmetric function in p~1 variables. On the othar hand, for

n T
Proof. Without loss of generality, we may assume L = A , Write @ach 2 ¢ Gp( R'), det{n,Mn,) = 0 since M has rank s p-1 .,

M = AT s 4 symmetric linear operator on R" with eigenvalues and hence f('31"“"111, " l:'(ital""'c'n]| = 0 . Clearly, Gp =0 as

~1 ~ ~
a, = A‘?,...,an - l: . For any 2 € Gp(mn) , well. Therefore, for any (a1,....ap_1) € RP ,_P1 ‘°1""’°p-1) =0 .

l'11(2”2“.“1)(2)2 - det(nzmrgl . which 15 a homogeneous polynomial But according to the fundamental theorem on symmetric functions,
of degree p in Gysee..a . Define ' 31""'Ep-1 are algebraically independent in p-1 variables, so

that the polynomial P1 is itself zero. This shows that

£laye.eaa) -é - det(nzﬂng)dG(Z) ;
ol B



M = 1id , which implies u1(2) " L., = up(z) = 1
in Gyt R") . Since op(lraei,) = (;) we have vy = ig}

- 15 = .

f(ul,...,an) = de(u1,...,un) .

Finally, we may evaluate the constant ¥y by choosing

for each 2
-1
as

claimed.

q.e.d.

Define, for v ; B® —> §P and for sach x in g™ '

YI(v)i{x) &= l1(x)...kp(x) » the product of the p singular

values of L = Yv{x)

: B —s T P » We recall that

v(xls

u+ B" — s® 43 said to be horizontally conformal (see e.g.[B))

if for almost all x 4n B™ . the singular values of

Yuix)

Lemma 2.2,
R —

that

(2.2)

Moreover, equality holds if u

s RY —s

n
uix) S
We have the following averaging result:

are equal.

For n&p , thera 1

—

a4 constant ¢ = ¢(n,p} such

for any u € W1'p(Bm.Sn)

c Ep(u) 2 F

jm J(anu)dx daG(y) .
Gy ! B

np+1)

is horizontally conformal.

Proof. We first observe that
n 1 2 P
(2.3) opla1.....unl s (p) G 121011

- 16 =

for ay 2 0, with eguality if a; = .. . The.case p = n-1 i

= q
n

was given in inequality (8.5) of [BCL) and A.1.3 of {ABL). We |

prove inequality (2.3) by induction on n ; for n = p it is

the well-known arithmetic-geometric inequality. By reordering,

2 ... 2 a_ ; by homogeneity, we may

n
. Now consider

we may assume a, P4 a,

assume a, + ... + o, = 1 lu1,...,cn) which

maximizes ap . If a, =0 , we use the induction hypothesis:
n-1 _1\ P n -p

°p(“1""'°n~1’°' s P ) (n=1) < (p) n . If a, > 0 , then

by the method of Lagrange, there is 8 € R with

]
B = EE; ap(c1....,un) = Up_1(a1....,ui_1, Bypqreeerey) =0 8y
for all 1 51 $n . But eiﬂ 2 6i » and equality implies that
By = Byq 0 inequality (2.3) follows.

Applying inequality (2.3) to the eigenvalues «o of

1'--.;ﬂn

Vu(x} (Vu(x))T for some x € B , we have
2p -1
(2.4) i) 2 np(;I a5 (6 reaiiar) =

~nP 4 n, 42t (1, Yu(x) Yutx) Te}) dG(z)

Gp{Tutx)s ]

by Lemma 2.1. An application of the Cauchy-Schwartz inequality
yields

172
|vux) |P 2nP/2 § n, (et TG0 vue ™)1 astn .
Gp‘Tu(x)s )

{2.5)
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Note that equality holds in the inequalities (2.4) and {2.5)
if u is horizontally conformal at x .
Let Y be a (p+1)-plane in B"! , and write 2z for the

p-plane in Tu(x)s parallel to the subspace of Y orthogonal

to wY(u(x)) - Then up to a parallel translation in :mP*’ ;s We

have

T,eVua(x)

vim y*ul (x) = —h_-ETETIT-")

where d(u1,Y] is the distance in g" from u, € 5% to
Y n s . Thus
T ]
[det(ﬁzVu(x)Vu(X) T,

{2.6) J(m,ou)(x) = .
¥ cosPa (u(x),¥)

Integrating formula (2.6) over Y € Gp+1|:m“") « we find that

(2.1 ¢ Jinm,eu) {x)dG(Y) =
Gp+1 ( mnﬂ’ Y

) o op  1/2
=c'f n, [det{m,%u(x) Yu (x) )l de(z) ,
Gp ('l.‘u (x) S
where c' = ¢'(n,p) is independent of x and y . Finally,
using inequality (2.5) and eguation (2.7), and integrating over
x € " + we find the inequality (2.2) with ¢ a n ~p/2 c' .

q.e.d,
Lemma 2,3, (Coarea formula, general Pl. If ve¢ C tn Sp) for

an open set § < B + then

e AR R s el b T
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-p, -1
fnJ(v)dx = éP H*" Py (s)idASpls) .

%

Proof. See (F, 3.2.22].

-1 n

Lat g : sl s be as in Theorem

and ug B —>» 5§

1.1,

Theorem 2.4, For any 1 s p 3n, Ep(uo) s Ep(u) for alli
L e~ B T ——

u € Ep(g) .

Proof. According to Lemma 2.2, we have

f J(wgculdx dG(y) .

(2.8) ¢ Ep(u) z f v, fo

p+1(m

n+1J

Note that for almost all Y € ¢ . the map

p+1(
v = m.cu €W 'p(B Sp) « Write v, = Tyouy . We shall show that

n+1)

for all such Y € 6 { R

[

pt1

(2.9)  fp Jtvidx 2 [, Jtvyldx .
B B

According to Approximation Theorem 3.2, it is enough to prove
inequality (2.9) for v in the clase R of mappings with
controlled singularities, since J(v} is dominated by !vap .
As before, choose § = Bm\IE U Al , where I U A is the singular
set of v , as in the definition of R i and apply the coarea
formula of Lemma 2.3. This yields
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-p, -1
2.10 Jiviax = [ H"P(v '(s))an _ =
CRUNNI Lo ™ 0

1 m-p
- = f H {M(B))d-n
2P P’

where M{s) 1= v '(8) U v {-8)U L U A is a regular, oriented

Lipschitz manifold having boundary a totally gecdesic sphere of

dimension wm-p-1 in ag™ . for a.a, 8 € P | 1n particular,
(2.1 W PmM(s)) 2 WP (P
Note that equality holds in (2.11) for
Myis} = v is) u vil(-s) ua
0 0 0 *

Inequality (2.9) now follows from equation (2.10) for v and
for vy .

With u replaced by Uy + We attain equality in (2.8),
according to Lemma 2.2, gince u, 1is horizontally conformal.

Therefore

c Ep(u) 2 ¢ Ep(uoi .
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A \d slicin
%‘ AggroximatiQn an g

We saw 15 sectiﬁnn 1 and 2 that it may be usqful to
nbproximate mappings in W1'p(Bm,sp) by mappings with
contxolled singularities, and particularly, with regular
slices u-1(s) for almost all s € 5P , Consider boundary
data g € w"P(aBm, 5P + 8uch that g is c” except on a
Lipaschitz submanifold T < 38" of dimension at most m-p-2 .,
Write uy € W' 'F(8®, sP) for the homogeneous mapping -
uolxl'=- g(TiT) . Observa that u, 1is singular on the cone
8 := {tx 1 0 St 351, x €T}, Wwe define R to be the class

of mappings u € "10P‘BN' SP} such that
(3.1)' U = u, on a neighborhood of LTI H

(3.2) u is locally Lipschitz on B™ (4 u I} . for some
Lipschitz submanifold [ ccB™.4 {3 = ¢) , of dimension

m-p=1 ; and
(3.3) for a.a. s €5sP, ul(a) uuT(-s) ur U A& is a reqular,

oriented (m-p)-dimensicnal Lipschitz submanifold of B™ ,

having boundary only in 3B™ .

Remark 3.1. The conditions (3.3} and (3.1) are both possible

only i1f the restriction of g to a small p-sphere linking T
in 38" is one-to-one. In the present paper, this condition

is always Batisfied; the general case requires methods of
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I IVvk]p -—> 0 as k —> = ,
fl

geometric measure theory. .

. " p+1
Theorem 3,2, If U, € R , then R is dense in Consider a regular value (“center”) a € 81/4 ; let
£RC0TON e AL Laen =3 gensa In

L{a,k} = {x € B™ ; Vi (x) = a} . Note that since |vk| = |u0| = 1

N

on a neighborhood of 3B™ v 4, I(a,k) lies in a compact subset
Eplad = {u € WP, sP) s uwu on 287 g P
P of B™4 . Since v, € CG(BN\QPP ), t{a,k) 1is a regular sub-
=p+1 p+1
ifold dimension -p-1 . Define : BPY) — a2 50
Proof. We follow ideas of Bethuel and Zheng [BZ]. Consider manifold of nalon  m-p % 1/2 1/2
that x 1lies in the line segment from a to qa(x) ; then

p+1

u € Ep(g) t we wish to find u €R, U ~—>u in W1’p(Bm, sP) . . ol
d,(x) = x for x € 381/2 . Extend q, to Bpf by defining

 J
First observe that by radially homogeneocus extension beyond

q,{x) = x when |x| 2 1/2 . wa note that

3B  and rescaling we may assume that u a on

0

{(x eR® ; |x] 2 1-¢} . we form W, = uxp,  for some compactly

v x & C -
supported mollifier p : R™ —> [0,®) , whers P (%) 1= X% (kx) . ! q, (x) | /lx-a| ,

Note that w, —> u in WI'p(Bm, 8°*'Y) | since 4 has

= where C is independent of 4 x . As 1n the paper of
P-capacity zero, we may find a sequence vy € w!eP gl FP+1, penden a an pape

Hardt and Lin ([HL}; see also [HKL + 356), we apply Fubini's
such that each Ve * Yy ©°n a neighborhood (of size depending [HL}; { I.p ' PPLY

5 1,p =p+1
« m p+ theorem to show that or avery ¢ € W 'Y(n B
) 4. 'i €EC (BN, R 1) and vi —> u 1in £ ( k'’ b

wiePgR, gP*Y L4 a.e.. Let N € C*(R”, R) have support

P ' P
m : fu L 19(g,49) |P ax da s ¢' [ |ve|P ax
in By-¢/2 + Such that n(x) = 1 for |x| s;1-e . Define 17¢ % a 2,
Ve " n vi + (17n)uo H where (' is independent of v, a and k , It follows that

for a in a subset of BT/4 of positive measure

then Vk ® Yy ©n a neighborhood of 4 y 38™ , and Vi /> u

in WP @ER, FRYT) g a.e.. Lat (3.4) [ Vg ev Paxs c* [9v, |P ax ,
2 2
k k
& = {x e B ; |v &} < 3} ;
X : k 34 i which tends to zero.
q, (v, (x))
We define uk(xl ¢# ———————— , From inequality (3.4),

then mes(ﬂk) => 0 , and hence Iqa("k{x”I
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we sea that u —>u in H1'p(Bm, SP) . Note that . satisfies

4+ 034 powndary daca

condition (3.1}, and satisfies condition (3.2) for almost all

a € BY .
174
' m dary data
In order to check condition {3.3), we first observe that In this sec?ion, we consider smooth boundary da
n-1 m-
for almost all lines a +Rb in ®P'! , vk (a +Rb)~4 is g:s8 ' —>s satisfying the hypothesis

1ocn11y a smooth submanifold of B™4  as follows from Sard's
P (4.1) g{-x) = -g{x}
theorem. Note that for g € § .

M(s,a) = ui‘is) U ul:'l-s) UL = v;1(q;1( Rs)) , while q;1(ms) a1
for all x € s ¢+ With p = m~1 ., This includes the specific

ia the union of the fbﬁr line segments m o
case of Theorem 1.1 with n = P =m1 ., Let uy ¢ B" —> 5

be defined by u,(x) = TiT . We have the following lower bound

{s. 380 utls, al vla, 381 u-1s, =) .
for any such g :

Observa that q_1llms) 18 a Lipschitz 1-manifold with boundary sm~ 1( m-T)
S
r

Theorem 4.1. For any u ¢ W' with u=g-on a8,

{s, -8} . In particular, for almost all a ¢ g™ and 8 ¢ sP _— :
1/4 '

Ep-q(u) 2 E, 1(u ) .

Mis,a) is locally a Lipschitz (m~p) ~dimensional manifold in

Bm\A + In a neighborhood of 3B™ y 4 , we have u = u, but -
Remark 4.2. This result settles a conjecture of Brezis-Coron-Lieb

since Uy € R by hypothesis, M(s,a) u 4 18 also a Lipschitz
- [BCL, Remark 7.3]; they proved this theorem under the additional
manifold near 3B U 4 ¢+ hence everywhere in a® . Finally,
hypothesis that the Jacobian J{g) 2 0 and g has degree 1.

M{s,a) v 4 1is compoeed of four smooth manifolda-with-boundary,

of which two meet at the smooth manifolds [ = v (a) . at
Proof. According to Approximation Theorem 3.2 (see also Theorem 4

=-1.1
Vi (3 sl and at vk (-— 8) ; B0 that its houndary is 1,m=1
B ’
(a v “o (s) u “o l_’)) - of [BZ]), we may assume u balongs to the clase R of W
mappings with controlled singularities. In particular, u is
q.e.d.
locally Lipschitz continucus on B~ ¢+ where [ 1is a finite

set. Further, for almost every s ¢ 57!,

M(g) := udjts) u u-1(—s) UZI is a Lipschitz 1-manifold with

boundary g '(s) v g (-s) . Considered as a ore-dimensional
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k k
integral current, 34 = § a, - ] a; . ¢+ where

is=q i=1
{‘1""'“2k} = 9-1(5) U g“‘(-s) and a point of 9—1(38)- is

included in the list {‘1"""k} provided =J(g) (a4} > 0,
otherwise in the list [‘k+1""'a2k} . Note that hypothesis
(4.1) implies that J(q}l-ail = J(q)lai) . By reordering

{ak+1,...,a2k} + wo may assume that a4k * "a; . According

to the well-known theorem of Borsuk and Ulam, g has odd degree.

Sincé s € s i a regular value of g , the number of points
tn g"'(s) has the same parity as the degree of g . That is,
k is ocdd.

Now each connected component of M(s) has boundary equal
to the zero-dimensional integral current a; - ak+j for some
154, 3 5k ; write J = a{i} , and note that ¢ isg a permutation

of (1,...,k} . Clearly, therefore, M(s) has length

k k
1
H' (M)} 2 121141 " Geauy | * 121“‘1 taglh -

Since k is odd, we have H'(M(s)) 2 2 by Lemma 4.3 balow,
. From the coarea formula (Lemma 2.3) along with inequality

(2.4) with p = n = -1 + we have
m-~1 o1y {m=1} /2 1, =1
£m|9u| dx 2 (m=1) ém_1H {u (Bl)dnsm_1(sl

1 -
=3 -1)i® “/zémq H1(Hls)JdAsm_1 (s)

2 (men) (P2 g T Eg_qfug) .

g.e.d.
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g£ peoints (not
lagl 21 . If k 4is odd,

Lemma 4.3. Consider a set {31""'ﬁ2
| T——— i —

necessarily distinct) satisfying

then for any permutation o of {1,2,...,k} , the sum

k

8= § fay +

WL ac(i)l z 2,

Remark 4.4. Note that any even value of k allows counter-

examples.

Proof. If o(j) = 3J for some 1 g 3 5§k, then the term
Iaj + aa(j)l = 2|aj| 2 2 , and the conclusiocn follows. If k = 1
then o(1) = 1 , and the conclusicn again follows. Thus we may
proceed by induction, with the assumption that o(j) + j ,
153sk. .

Since a(k) # k , we may reorder [a1,...,ak} so that
o{k) = k=1 . Then 4, appears only in the two terms |ak + ak_1|
and [aj * ak] + Where o{j) =k . If 3§ = k-1, then we may

discard these two terms to form the sum
kfz
a, +a 2 2
LTINS

by the induction hypothesis, since the restriction of o is a

permutation of {1,...,k-2} . If § & k-1 . then a appears

k-1
in one additional term |ak..1 + ai[ « where i = g(k-1) . By the

triangle inequality,

!
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lag + ag_q | + lag +ap] + oy, + a5 2

2 Iak-1 - aj[ + I“k-1 + ail 3 |aj + ail .

Now define the permutation G on {1,...,k-2} so that o5(j) = 4 ,

-and otherwise G = o . Then the corresponding sum & § § . But

§ 2 2 by the induction hypothesis.
q.a.d,
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2. The comglex Hogf map

The Hopf map H : 53 —_— s2 is defined by the restriction

to 83 = {(z,w} € ? . |z]2 + |w|2 = 1} of

H{z,w} = (|z|2 - |w|2, 2zw) ER x € =R,

Let u, B‘ —_ s2 be its homogeneous extension of degree zero:

v

ug (x} = a(TﬁT) .

Note that uotz,w) is the stereographic projection of

z/w EC U {=} ,

Theorem 5.1. For any u € £,(0) = {u e w''2(8%, 5% ; , vy

en 8%}, E,(w) 2 E,(uy) = 8r? .

Proof. According to Theorem 3.2, we may assume u belongs to
the class R of w1'2 maps with controlled singularities. In
Particular, u 1is locally Lipschitz on B‘\E r where [ is8 a
ocne-dimensional Lipschitz manifold without boundary. Further,

for almost every s € S2 '

M(s) :=uV(s} v ul(-8) urs

is a Lipschitz 2-manifold with boundary H™ '(s) u H™'(-s) .
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The energy-minimizing property of ug will be proved by
first showing that the cone Hotsl over H_I(s) u H-1l-s)
has smallest area. In fact, Ho(s) is the union of the disks

of radius 1 in the 2-dimensional planes
{z = gw} and (z = -w/E}

where £ € C U (w} corresponds under stereographic projection
to s € 52 . Now any vector (£w1, w,}  in the first plane is
orthogonal to any vector (-wzlf, "2) in the second plane, which
implies that Mo(s) is a complex-analytic variety for some
erthogonal complex structure (which depends on s ) for :m‘ .

In particular, Mots) has minimum area among all surfaces in

st having boundary H™'(s) v g1 (-s) (including unorientable

surfaces: see [M], Coreollary 6). Specifically,
H(M(s)) 3 H2 (M (s)) = 20 .
It now follows from Lemma 1.4 that
Eptu) 22 f, w2 (s))da ,(s) =
2 2 218
' S 5
2 2
= éz H®{M(s))da 2(8) 2 85° |
s

Meanwhile ]Vuolxljz = B/lx]2 + 80 that

Eyluy) = 443(s%) = gq? |
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§. The quaternionic Hopf map

Quaternionic multiplication in .'IR4 la defined via an
orthonormal basis {1,1,3j,k} with the properties
N L T forming a skew field M . The Hopf
map H: 5’ —> 5% 15 defined by identifying ®® as M xm
and setting

H{gy,q;) = (|q1|2-|q2|2, 2q1§2) € RxH =R .

Let Uy ¢ B8 —> s4 be its homogeneous extension of degree zero:

x
UOIXJ = H(T;Tl -

Note that uo(q1, qzl is the stereographic projection of
a 9 €My (=} .

Theorem 6.1. For any yu € Ezlul- {u ¢ HI'Z(BS, S‘) iu=H on

8
"} , we have E2(ul 2 Eztuol

Remark 6.2. The map u, also minimizes E4 + 4s may be proved
by direct analegy with the proof of Theorem 5.1, and with the
proof of Corollary 6 of [M]). The case p = 2, however, requires
averaging over projections LIV S4 — S2 . and is more

interesting.
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4 2
Proof, For any Y € G3l‘m5) , wWrite Tyt 8§ —> 8 for the

nearest-point projection. According teo Lemma 1,2, we have

(6.1) ¢ Eyj(u) = §

E, (x_*u)acly) .
YeG,(®°) 2 ¥

Write v = myeu 3 % — g?

show that E,(v) 2 Eylvy) for any v e W

, and Vg ® Tyeu, . We need to

1,2, .8

8%,5%)  with

v = "Y'H on aas +» It suffices to prove this for v €' R ,
according to Theorem 3.2, Applying Lemma 1.4 and regrouping s
with -3 as before, we have
6, -1 -1
6.2) Ey(v) 2 f 2 H(v "(8) U v (-s))dA 2 -
S s
Now since v € R ,
Mis) 1= v '(a) Uuv(-8) UZua
is a 6~dimensional oriented Lipschitz submanifold of B3 ¢ with
M(s) = {ﬂ¥°ﬂ)-1(s) - (nYOH)-1(-s) as integral currents with

the natural slice orientations {[F], 4.3.1). The cone over aMis)
is

_1 -
HO(B) 1= vy (s} U v01(-sl ua.
We need to show that

6.3) #Sa 0s0) s HE (Mes)) .
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For each Y € Gat:ms) and each 8 € S2 =¥n S'I , observe

4 NI, whera 7 is the l-plane

that 3;1(31 U w;1(-n) =5
spanned by & and tha orthogonal complement of ¥ . Accorxding
to Lemma 6.3 below, it is enough to verify inequality (6.3) for
the special case where Y is spanned by (1,0) , (0,j) and
{0.k) , and where s = {1,0) . In this case, Z is spanned by
(1,00 , (0,1} and (0,4) . Write the point (q,.q)) € R in
terms of complex variables Zys Wer 250 W, by defining

9y " 24t W, 3 - Then

Uy = 292y ¢ Wy (2w - z,w,)5 ,

80 that M,({s) 1is given by

Hzgwy,z,0w) € B® ¢ glz,,w,,2,,w) 1= 2w, -~ z,w. = 0} .
19912309, 17917250, 21 " %Y,

Note that the orientation induced on M {s) = g o) by
g 3 Ba —> € from the appropriate orientations on € and .ma
is consistent with the orientation given in the Approximation
Theorem 3.2, For the (standard) complex structure on :ms

given by
J(z1,w1.22.w2) = (121,1w1,1zz,1w2).

M,(s) 18 a complex variety, and inequality (6.3) follows, since
Mg (s} = aM(s) as integral currents ([F], PpP. 435 and 652).
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4 is horizontally

On the other hand, uy : B® ~> s
conformal ((B], Theorem 7.1.1 and Examples 7.2.1, 8.2,1} and
therefore vy # 8 — 52 is horizontally conformal for any
choice of Y . It follows from Lemma 1.4 that equality holds
in (6.2) when v is replaced by Vg - Flnally, using inequality
{6.3), inequality (6.2) for v and equation {6.1) for ug and

for u , we conclude that

c Eylu) 2 ¢ Ejluy) .
g.e.d.
The following lemma is known, since it is~an immediate

consequence of the fact that the Hopf map : 87 — S4 induces
the isomorphism of the symplectic group 8p(2) of quaternionig
2 x 2 matrices in S50(8) with the oriented double cover of
S0(5) (which fact may be proved in analogous fashion to p, 38
of [A]}). Since the literature may be unfamiliar to many, we

prefer to present a direct proof.

Lemma 6.3, Given 2 ¢+ 2, EG (:ms} + there exist rotations
—_—— ———— 0 1 3 ———

R € 50{5) and Q € s®(8) such that R(Z.II = ZO and

Proof. Without loss of generality, we may assume Zo t:.‘I:R5 =R xH
is spanned by (1,0), (0,1) and (0,1} . According to a theorem

of Cayley ([Cl, p. 71), any R, € S0(4) may be written in terms
of quaternionic multiplication as R1(q) * 9,94, for some
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94r 95 €H of norm one. This corresponds to 01 € S50(8) given
by Q,{p.q) = (q,p, Ezq) - Consider R, to be in SO(5) by
R,(t,q} = (¢, R,(q)} 1 then HeQ, = R,eH (recall that PAd =qp ).
By choosing R1 appropriately, we may achieve zz b 81(211 50O
that (0,7) and (0,i) are in 22 . Next, let R2 € S0(5) be
the rotation which fixes (0,4}, (0,3} and (0,k} , while
R;(1,0) = (cos 20, sin 20) and R,(0,1) = (-sin 20, cos 20) ,
This corresponds to Q2 € sm(8) defined by
Q,(p/q) = ((cos 0)p ~ (sin B)q, (sin O)p + (cos 0)q)’ : namely,
HeQ, = R,°H ., For two choices of © , we find Zy = Rylz,) .
g.e.d.

We would like to conclude our paper with a theorem of more
general character, whose proof is analogous to the proofs of
fheorems 1.1, 2.4, 5.1 and 6.1.

Consider ug € W1'P(Bm, s for Some integer p , 1 Spsan .
For each Y ¢ Gp+1(:mn+1} , let vg " Tyedy « We require that

{6.4) vy € CO'I(BM\A, sP) for some Lipschitz {m-p-1) -submanifold

4B wienh 34 < 38",

(6.5) there exists a measurable and measure-preserving map
k3 5P —» SP such that the difference of slices
Myla) 1= vil(s) - v (h(s)} defines an {(m-p)-dimensional

integral current of smallest mass for its boundary; and

{(6.6) Vo 18 horizontally conformal a.e. in B™ .
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n+1
Theorem 6.4, Suppose that for almost all Y € Gp+1llm ) .,
m LS A ar——  tm—

hypotheses (6.4), (6.5) and (6.6) hold. Then Bp(uol H Ep(u)

m
for a1l u € W'PB", 5" with u = uy on 28",

[ABL]

(a]

[B]

[Bz]

[BcL]

(cl

(F]

[BKL]

[HL]
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CO-AREA, LIQUID CRYSTALS, AND MINIMAL SURFACES'

F. Almgren, W. Browder, and E. H. Lieb
Department of Mathematics, Princeton University
Princeton, New Jersey 08544, USA

Abstract. Oriented n area minimizing surfaces (integral currents) in M™*" can be ap-
proximated by level sets (slices) of nearly m-energy minimizing mappings M™+* — §™

with essential but controtled discontinuities. This gives new perspective on multiplicity,

regularity, and computation questions in least area surface theory.

In this paper we introduce a collection of ideas showing relations between co-area,
liguid crystals, area minimizing surfaces, and energy minimizing mappings. We state
various theorems and sketch several proofs. A full treatment of these ideas is deferred to
another paper.

Problems Inspired by liquid crystal geometries.? Suppose 11 is a region in
3 dimensional space R* and f mape 0 to the unit 2 dimensional sphere §? in RY. Such
an [ is a unit vectorfield in £t to which we can associate an ‘energy’

e =G [ 1orrar

here D is the differential of Jand [Df]? the square of its Euclidean norm—in terms of
coordinates,

L& fark \?
1Df(z)| = —(z
(=) &g(az‘_())

for each x. The factor 1/8x which equals 1 divided by twice the area of S? is a usefal
normalizing constant. It is straightforward to show the existence of ['s of least energy for
given boundary values (in an appropriate function space),

! This research was supported in part by grants from the National Science Foundation
? The research which led to the present paper began as an investigation of a possible

equality between infimums of m-energy and the n area of area minimizing n dimensional
area minimizing manifolds in R™*" suggested in section VIII(C) of the paper, Harmonic
maps with defects [BCL| by H. Brezis, J-M. Caron, and E. Lieb. Although the specific
estimates suggested there do not hold (by virtue of counterexamples [MF|| W 1][YL|) their
general thrust does manifest itself in the results of the present paper.
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Such boundary value problems have been associated with liquid crystais.® In this
context, a “liquid crystal” in a container 0 is a fluid containing long rod like molecules
whose directions are specified by a unit vectorfield. These molecules have a preferred
alignment relative to each other—in the present case the preferred alignment is parallel.
Il we imagine the molecule orientations along 912 Lo be fixed (perhaps by suitably etching
container walls) then interior parallel alignment may not be possible. In one model the
system is assumed to have ‘free energy’ given by our function £ and the crystal geometry
studied is that which minimizies this free energy.

If 1 is the unit ball and f(z) = z for |z| = 1, then there is no continuous extension
of these boundary values to the interior; indeed the unique least energy [ is given by
setting f(z) = z/|z| for each z. It turns out that this singularity is representative, and
the general theorem is that least energy £'s exist and are smooth except at isolated points
p of discontinuity where ‘tangential structure’ is z/|z| {up to a rotation}, e.g. f has local
degree equal to £1 [SU| [BCL VII|.

As a further step towards an understanding of the geometry of of energy minimizing
[’s one might seek estimates on the number of points of discontinuity which such an
J can have—e.g. il the boundary values are not to wild must the number of points of
discontinuity be not too big?* An alternative problem to this is to seek a lower bound on
the energy when the points of discontinuity are prescribed together with the local degrees
of the mapping being sought. This question has a surprisingly simple answer as follows.

THEOREM. Suppose py,... ,py are pointsin R? and dy, ... ,dn € Z are the prescribed
degrees with ):f',, di = 0. Let inl £ denote the infimum of the energies of (say, smooth)
mappings from R® ~ {p,,... ,py} to 8? which map to the ‘south pole’ outside some
bounded region in R® and which, for each i, map small spheres around p; to S* with
degree d;. Then inf £ equals the least mass M(T) of integral | currents T in R*® with

N
aT = ) dilpi].

This fact (stated in slightly different language) is one of the central results of |BCL).
We would like to sketch a proof in two parts: first by showing that inf & < inf M (with

3 See, for example, the discussion by R. Hardt, D. Kinderlehrer, and M. Luskin in
|[HKL).

4 Ax it turns out, away from the boundary of {1, the number of these points is bounded
a priori independent of boundary values.



the obvious meanings) and then by showing that inf M < inf£. The proofl of the firss

part [ollows [BCL| while.the second part is new. It is in this second part that the coarea
formuia makes its appearance.

Proof that inf £ < inf M. The first inequality is proved by construction as illustrated
in Figure 1. We there represent that case in which ¥ equals 7 and p, and p; are distinct
points with dy = —1 and d; = +1. We choose and fix a smooth curve C connecting these
two points and orient C by a smoothly varying unit tangent vector field ¢ which points away
from p; and towards p;. The associated | dimensional integral current is T = t{C,1,¢)
and its mass M(T) is the length of C since the density specified is everywhere equal to 1.5
We now choose {somewhat arbitrarily) and fix two smoothly varying unit normal vector
fields 5y and n; along C which are perpendicular to each other and for which, at each
point z of C, the 3-vector Mz} A na(x) N ¢(z) equals the orienting 3-vector @, A ey A iy
for R®. These two vector fields are & ‘framing’ of the normal bundle of C.

We then construct a mapping v of R? onto the unit 2 sphere 5? which is a slight
modification of the inverse to stereographic projection. To construct such - we fix a huge
radius R in R? and require: (i) if {y| < R then 1(y) is that point in $? which mape to y
under stereographic projection $? — R? from the south pole q of §%; (ii) if [y) > 2R then
1w) = q; (iii) for R < |y| < 2R, 7(y) suitably interpolated. See Appendix A.2.

Next we choose some smoathly varying (and very small} radius function 6 on C which
vanishes only at the endpoints prand pa.

Finally, as our mapping f from R? 1o §? with which to estimate £(f) we specify the
foliowing. If p in R3 can be written P = T+ am(z) + tna(z) for some z in C and some &
and ¢ with #* + 12 < §(z)?, then

2Rs 2Rt
f(P)=1(m.m—))-

Otherwise, f(p) = q. We leave it as an exercise to the reader to use the fact that 7 is

® Formaily, & 1 current such as T is a linear functional on smooth differential 1 forma
in R®. If o is such a 1 form then : '

Tie)= [ ) pla) 'z,

To each point p in R? is associated the 0 dimensional current [7] which mapa the smooth
function ¢ to the number ¥(p). See Appendix A.4.
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Figure 1. Construction of s mapping [ (indicated by dashed arrows) from R?® to 52 having
energy £(f) not much greater than the length of the curve connecting the points p; and p;.
Smail disks normal 10 C map by / to cover S% once in a nearly conformal way. This implies that
small spheres around p; map to S? with degree —1 while small spheres around p; map with degree
+1. The I current 4(C, 1, ¢) is the slice (E®, {  p) of the Euclidean 3 current E? by the mapping
/ and the ‘north pole’ pof §7. . o



conformal for |y| < R to check that £(f) very nearly equals MI(T); see Appendix A.2. The
remainder of the proof that inf &£ < inf M is also left to the reader.

Proof that inflM < inf €. Suppose that f does map R? to S?, has degree d; at

each p;, and maps to the south pole outside some bounded region. From dimensional

considerations one would expect that for most points w in S? the inverse image f~Y{w}
would be a collection of curves connecting the various points py,... ,pn. H. Federer’s
coarea formula is what enables ane to quantify this idea; see Appendix A.5. This formula
asserts

[ XS Hw)) e = / Bf(z)dC3s;
wesd zER3

here ¥' and X¥? are Hausdorfi’s 1 and 2 dimensional measures in R® and L3 is Lebesgue’s

3 dimensional measure for R®. Also J, f(z) here denotes the 2 dimensional Jacobian of fat -

- = and a key obeervation (as noted in [BCL)) is that J;/ () is always less than or equal to
half of |Df(z)|? with equality only if the differential mapping Df{z):R? — Tan(S3?, f(x))
is maximally conformal; see Appem.;lix A.1.3. Aiso central to the present analysis is the
manzer ih which the curves /~'{w} connect the various points py,... ,px and how they
relate to the prescribed degrees d,,... ,dy. This connectivity is naturally measured by
the current structure of these f~*{w}’s which comes from the slicing theory for currents;
see Appendix A.5. To set this up we regard R? as the Euclidean current E3 (oriented by
the 3 vector e; A e, Aey). The siice of E? by the map f at the poinﬁ w in S? is the current

(E? o) = t(!-l{w}' ¢k
the meanings here are the same as for the current T discussed above. A check of orienta-

tions and degrees shows that "

e

N
[
HE*, [ w) =) kilail:
=]
compare with our construction of 5, and 1 above. It follows immediately that
4xinf M(T) = ¥*(S?)inf M(T) - . ’
r " ./ . .
< f M({E*, f,w)) d¥3w
wes? o
= f Jof 43 '
nﬂ

= (%) L \DSfI? dc2.
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This finishes the proof that inf M < inf £.

First Generalization. Since the methods used in the proofs of the two inequalities
are quite general one might correctly suspect that considerable generalization is possible.
Suppose, lor example, we fix B = {P1s... ,pN} a3 a general boundary set and let 7 be the
family of those mappings f of R? to S? which are locally Lipschitzian except poasibly on
B, which map 1o the southpole outside some bounded region, and which have finite energy.
Since deformations of mappings in 7 do not alter discrete combinatorial structures we are
led to study properties of homotopy classes I1{%) of mappings in Fo—it is most useful here
if our homotopies [0,1] x R* — $2 are permitted to have isolated point discontinuties; see
Appendix A.3.

Our conditions about mapping degrees above generalize to requirements about degrees
a(/,5) of f on general integral 2 dimensional cycles 5 in R* ~ B. It turns out that such
a degree d(/, S) depends only on the homotopy class of S and on the homology class of §.

It also turns'out that the relative homology classes of the slices (E?, f,w) depend
only on the homotopy class [f| of f. We denote this homology class by aff]. .

The Kronecker index is a pairing between 2 dimensional ‘cycles §in R ~ B and
1 currenta T having boundary in B. In general the Kronecker index k{5, T) is the sum
over points of intersection of S and T of _an index of relative orientations; see Appendix
AS

These various ideas are related in the following theorem.

THEOREM. The diagram beiow ig comunutative. Furthermore, s is an isomorphism,
and d and k are injections.

Hy(R, B; 2)
A
n(%) Lk
Nd .
Hom(H;(R? ~ B,Z),Z)

Here
(f]=*[f~H{w}]" = (B3, f,w)] = the integral homeology class of the 1 current slice;
d|f|{S) = d(f,5) = the degree of f on the 2 cycle §;
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£[T)iS] = k(5,T) = the Kronecker Index of the 2 cycle S and the 1 current T

Our relations between energy minimization and area minimization become the follow-
ing. ’

THEOREM. Suppase that P is an integral 1 current in R® with the support of AP in B.
Suppose also that T has least mass among all integral 1 currents which are homologous
to P over the integers T and that T™ has jeast mass among all integral | currents which
are homologous io P over the real aumbers R. Then

M(TE) = inf{E(/}: 7] = {P]}

and
M(T®) = inf{£(f):dif) = &{P]}.
Moreover, M(T*) = M(T®) (because of our special situation).

Further generalizations. The essential ingredients of the analyses above remain, for
example, if R is replaced by a general m +n dimensional manifold M (without boundary)
which is smooth, compact, and oriented (or M = R™*"*), and 8 is replaced by a sufficiently
nice {possibly empty} compact subset of M of dimension n - 1. To study n dimensional
integral currents in M having boundary in B we consider mappings f of M to a sphere
of the complementary dimension m. The spaces F and % of such mappings and the
homotopy classes IT(F) are specified in sections A.3.1 and A.3.2 of the Appendix. Some
discontinnities are essential.® t seems worthwhilé to cansider three different energies £,
€2, and &3 for mappings in ¥. &1 is a normalization of the usual ‘n energy’ of mappings,
€3 I a normalized Jacobian integral associated with the coarea formula, and & is an
intermediate energy; see Appendix A.3.2. As indicated above, mapping degrees and the
Kronecker index have general meanings which are sot forth in sections A.6 and A.7 of the
Appendix. These various ideas are related as the {ollowing theorem shows.

THEOREM. The diagram of mappings below is well defined and is commutative,

- In particular, the images of d and k and j in Hom(Hm(M ~ B,Z),Z) are the same.

® Supposem =2andn =5and M = R’, and B is a smoothly embedded copy of
2 dimenasional complex projective space CP(2). Then there are no continuous mappings
£ from the complement of B 1o 82 such that small 2 spheres § which link 8 once map
to S? with degree one. Any [ satisfying such a linking condition for general position S's
near B must have interior discontinuities of dimension at least 3.

6
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Furthermore, s is an isomorphism.

H.(M,B;Z) —~~  Ha[M,B;R)
/s NE€ (K]
Ii(7) Lk cHa(M, B; 2)|
Nd ' 7
Hom(H,.(M ~ B,Z),2)

Here

s(fl = “(f~{p}I" = [{{M]. /,p)| = the integral homology class of the n current slice;
d(f)[5] = d(f,sj = the degree of f on the m cycle §;

k[T|(S] = k(5,T) = the Kronecker index of the m cycle S and the n current T;7

¢ is induced by the coefficient inclusion Z — R;

i is the inclusion; and

J is defined by commutivity.

We defer proof of this theorem to our fuller treatment of this subject. The natural
setting and generality of such relationships are still under investigation.

The relations between energy minimization and area minimization then become the fol
lowing.

MAIN THEOREM. Suppose P is an integral current in M with the support of 3P
contained in B so that the integral homology class [P| of P belongs to H.(M,B;Z).

7 Supposem=2andn= 1and M ia a 3 dimensional real projective space RP(3) and
T =t{N,1,¢); here X is a 1 dimensional real projective space RP(1) sitting in RP(3)
in the usual way and ¢ is some orientation function. Since T is not a boundary while 2T
is, we conciude that the homology class

IT] € Hy{M, 8 Z2)=2;

is not the 0 class although k(S,T) = 0 for each 2 cycle 5 in M. In particular, the mapping
k is generally not an injection.



Let T2 be an integral current of least mass among all integral currents belonging to the
tame integral homology class as P in Ha(M, B, Z), and let T® be an integral current of
east masy among all integral currents belonging to the same real homology clasy as P in
Hn(M,B,R). Then

M(T?) = inf{&(f):0]f] = [P]} = inf{f:(!)ﬂ!fl.-‘- [P} = inf{&{/): o] = [P]}
und

M(T®) = iaf{&(f):d|f] = {P]} = inf{Ex(/):d[] = k[P]} = inf{(Es(f):dl] = K[P]}. .

In general, of course, M(T®) < M(T%). Although we again defer complete proofs to
ur fuller treatment of this subject, it does seem useful to sketch some of the main ideas.

Proof of the inequality “inf £ < inf M™. The proof here is again by construction.
Ve will indicate the main ingredients in a special case. Suppose, say, M = R™+* g
i ‘polyhedral, and T is an integral n current which is mass minimizing subject to some
PPropriate constraints as in the Main Theorem above. We will construct a mapping
TRM¥® — $™ in the relevant hemotopy class such that Ef).€a(f), and Ex(f) are
early equal and are not much bigger that M(T). By virtue of the Strong Approximation
"heorem for integral currents |FH1 4.2.20{ we can modify T slightly to become simplicial
rith only a slight increase in mass.

Suppose then that we can express
M
T=3 t(A3, fa, ta)
o=l

s a ‘'simplicial’ integral current (with the obvious interpretation ). For each k = 0,... ,n
re denote by K the collection of closed & simplexes which occur as k dimensional faces
[ n simplexes among the A3's. We then choose numbers 0 < by €< 8py << bpg <<
.- €< by << 1 and define sets No,Niy.oo ,Na in R™*2 py setting

No = {z:dist(z,UK) < &}
nd, for each k = 1,... ,n set
Ny = {z:dist(z.ulﬁ) < 5*} -~ (Nk-l UN*..; ... 4 No}

We assume that &, ..., 4, have been chosen 3o that the distinet components of each N,
correspond to distinct k simplexes in K.

We now define mappings fut1, fase-. , fo = J as follows,

First, the mapping fu,;:R™+* (NaU...uNy) = S™ in defined by setiting
Ja+1(2) = q for each 1.

Second, the mapping fu: R™*+* ~ (N,_,u.. UNo) —» §™ is constructed geometrically
in virtually the same manner as the mapping g in the example A.8 in the Appendix. Details
are left to the reader.

Third, the mapping fo_;: R™+" ~ (Na-2u...U No) — S™ is constructed geometri-
cally-in a manner virtually identical with the construction of the mapping f;, of example
A.8 of the Appendix (with &,r replaced by 6u/2,8n-) tespectively there), The mapping
Ja-1 is Lipachitz across parts of n — 1 simplexes which do not lie in B and is discontinuous
on those n — | simpiexes which contain part of 3T.

Assuming fu iy, fu,..., Jr+1 have been constructed we define

IR (N veiid Npg) = 8™

as follows. Each point v in N, ~ (Nx~1U...U Np) can be written uniquely in the form
¥ = vy + (v ~ vg) where vy is the unique closest paint in UK, to v and v —wo| < 8. If
v # vy we note that B

v -9y
v ~ vo

v =ﬂo+5h( )deﬂ{fnl)

and we set f(v) = Je+1{v1). A direct extension of the estimates used for the example A.8
of the Appendix shows that the energies £1(f}, £4(f), and &(f) very nearly equal M{T).

Proof of the inequality “inf M < inf £*. The argument here is & direct extension
of the corresponding argument given above and is left to the reader.

Remarks.

(1) One of the main reasons for analyzing relations between the energy of mappings
and the area of currents is that it provides a way to study n dimensional area minimizing
integral currents (whose geometry is not specified ahead of time) by studying functions and
integrals over the given ambient manifold. This seems the first such scheme which works
in general codimensions. For real currents, however, differentiaj forms play a role roughly
analogous to that of our function spaces J; in this regard see, for example, the paper
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of H. Federer, Real fiat chains, cochains, and variational problems [F3 4.10(4), 4.11(2)].
Incidentally, in the language of [F3 5.12, page 400|, examples show that the equation in
question there is not always true under the alternaiive hypotheses of [F3 5.10].

(2) Suppose C consists of smooth simple closed curves in R oriented by ¢, Suppose
also for positive integers v we have reasonabie mappinga f, from the complement of € in
R? to the circle S! with the property that small circles which link C once are mapped to
S! by /, with degree v. Because of the dimensions we have

)= &(L) = &%) = (-2‘;) [1pslacs

If £, is nearly &, energy'minimizing then for moat w's in S' the slice
T.(w) = (E®, £, w) € I(RY)

will be defined with 37, (w) = ¢(C,, v, ¢) and will be nearly mass minimizing. H. Parks,
in his memoir, Explicit determination of area minimizing hypersurfaces, II [PH|, used a
similar energy for mappings to the real numbers R (instead of to S') and was able to
exhibit an algorithm for finding area minimizing surfaces. The technique used by Parks
requires that C be extreme, i.e. that it lie on the boundary of its convex hull. The analysis
of our paper on the other hand applies to any collection of curves which, for example, may
be knotted or linked in any way. One of our hopes is to develop a method of computation
analogous to that of Parks.

(3) Suppose that C and the mappings v have the same meaning as in (2) above. If ¢
denctes the usual (multiple-valued radian) angle function on S' then df as a well defined
closed 1-form whose pulibacks f1d# give closed 1 forms on the complement of C in R?
with |f1d8| = |Df,|. For fixed z; in the complement of C' we define functions g, mapping
the complement of C to 8! by requiring that )

80g.(z) = 0o /,(z0) + j fidd (mod 27)
v
for each 1 (with the cbvious meanings); here 4(z) denotes any oriented path in the com-

plement of C starting at 1o and ending at z. It is immediate to check that 9 = [, for
each v. If we write v = ) - u for some A and u and define hi(z) in S' by requiring

ﬁoh,\(:)z‘['(i) Sl (mod 27)

10
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for 7 as above. The mapping A, maps amall circles with the same degrees as does J,.
Taking u = v we readily conclude, for example, that

nf{M(T):3T = ¢(C, v,)} = v - f(M(T): 0T = \(C, 1, )}

for each v. This estimate implies that integral and real mass minimizing 2 currents having
boundary t{C, 1, ¢) have the same masses [F2 5.8]; although this has been known for some
time, the present proof by factoring mappings scems new and simples. This fact {and our
proof) extend to n - 1 dimensional boundaries in general manifolds M of dimension n + 1
with, for example, the property that each 1 cycle is 2 boundary. There are counterexamples
to such equalities in higher codimensions given first by L. C. Young [YL| and later by F.
Morgan [MF| and B. White [W1]. How badly such an equality can fail remains an
important open question. It is not even known, for example, if the number

inf{M(S)/M(T):$5,T e I3(R*, R*) are mass minimizing with 0 # 35 = 28T}

is positive; note, however, the isoperimetric inequality {Al 2.6).

(4) Suppose M is & complex submanifold of some complex projective space CP(n)
(or, more generally, M ia a Kihler manifold). Then any complex analytic (meromorphic)
function f from M to the Riemann.Sphere CP(1) = S? has integral current slices which
are absolutely mass minimizing in their integral homology classes [F1 5.4.19. Such '
are thus necessarily maximally conformal and minimize each of the energies &£, &;, and
€3 among functions in the same homotopy classes.

(5) In the context of this paper, if the mass minimizing current T being sought happens
to be unique then most slices of nearly minimizing mappings will be close to that current.
In a sense this describes the asymptotic behavior of a sequence { i}y of mappings in %
converging towards energy minimization; in particular, the real currents

{(Frmaen) vac i),

must converge to T as k -+ co. If m = 2 then the energy £, is Dirichlet's integral which is
widely studied in the general theory of harmonic mappings between manifolds pioneered
by J. Eells and J. Sampson. '

In any codimension m each n dimensional mass minimizing integral current is a ragular
minimal submanifold except possibly on a singular set of dimension not exceeding n - 2 as
shown by F. Almgren in [A3]. It is not yet clear to what extent the present new setup will

11
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rovide new tools for study of the regularity and singularity properties of mass minimising
ategral currents. This could be one of its most important potential uses.

AFPPENDIX

When not otherwise specified we follow the general terminology of pages 668-671 of H.
ederer’s treatise, Geometric Measure Theory [F1} or the newer standardized terminology
f the 1984 AMS Summer Research Institute in Geometric Measure Theory and the Cal-
ulus of Variations as summarized in pages 124-130 of F. Almgren’s paper, Deformations
nd muitiple-valued functions [A1].

A.1 Terminology.

A.1.1 We fix positive integers m and n and suppose that M is an m + n dimen-
onal submanifold (without boundary) of R¥ (some N) which is smooth, compact, and
riented by the continuous unit (m + n)-vectorfield &M — Am+aRY; alternatively
{ = R™*" with standard orthonormal basis vectors e,,... ,m,n and orienting {m +n})-

ector @y A...A@min. Wealso supposs that B is a finite (posaibly empty) union of varioua ‘

:urvilinegr) n — 1 simplexes Ay, A3,..., 4 associated with some smooth triangulation

f M.

A.1.3 We dencte by S™ the unit sphere in R x R™ = R!+™ with its usual ori
ntation given by the unit m-vectorfleld ¢:S™ — A,R'*™: in particular, for each w €
imC R = A RIE™, a(w} = sw, It is convenient to let z,y,... ,ym denote the
sual orthonormal coordinates for R x R™ and also let Pi€1y-++ ,€m be the associated
rthonormal basis vectors. In particular, o(p) =+p=e A... Agn,. We regard p as the
10rth pole’ of S™. The 'south pole’ is q = —p. We denote by o° the differential m form
the ‘volume form’) on 8™ dual 10 o.

A.13 If L is a linear mapping R™** — R™ then the polar decomposition theorem
uarantees the existence of orthonormal coordinates for R™*+* and R™ with respect to
rhich L has the matrix representation

Ay O 0 o . 0

0 A o o - 0

L= . .
0

0o 0 Am O 0

with Ay > A3 > ... > A
L] of L as

2 0. In these coordinates we can express the Euclidean norm

L} = (,\}+,\§+...+A3,,)*, '

express the mapping norm || L|| of L as
Ll = Ay

and express the mapping norm | A L|| of the linear mapping AL of m-vectors induced
by I as
" Am “ = A -A3re-Am.

Whenever A; > A3 > .-+ > A, > 0 we have
Ay Ageesde < 2 (22422 1\T o ym 2,412 a2yt
1Age-- m_m—?(|+A3+...+o\m) <A] S(l\|+*\z+--'+ m) .

The first two inequalities are equalities if snd only if A, = A3 = .
inequalitiy is an equality if and only If Ag = A3 = ... = Am = 0.

If Fis 2 mapping and L = Df{a) is the differential of [ at a, then |D[{a)}? is of value
of Dirichlet's integrand of [ at a, and

+. = Apm. The right hand

Jm/(a) = || Am Df(a}]]

is the m dimensional Jacobian of [ at a.

A.3 Modifled Stereographic Projection. Stereographic projection of S™ onto
R™ from the south pole q maps (z,y) € 8™ ~ {q} to 2y/(1 + 2) € R™ while the inverse
mapping 70:R™ —~ 8™ sends y e R™ to

4-u? 4y
4+y2" 4+ y?

wlo) = (

) € 8™ ~ {q}.

Yo is an orientation preserving conformal diffeomorphism between R™ and 8™ ~ {q} as
is readily checked.

For convenience we let #:8™ — (0, x| denote angular distance in radians (eqyivalently,
geodesic distance in S™) to p. General levei sets of & are thus m — 1 spheres of constant
latitude while 8(p) = 0 and #(q) = x. Also for {z,y) € 8™ we have 1 = cosd{z,y)
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and {y| = sin8(z,y). Latitude lines on S™ are level sets of the functlon w which mapse
(z.4) €S™ ~ {p.q} to
wiz,y) = L egm-icpm,
Ivl

Certain mappings derived from 4o are important in our constructions. If 0 < § << 1/2
is a given very small number we fix 0 < r = #{§) << R < oo by requiring that R be the
radius of the aphere in R™ which -5 maps to the latitude sphere # = x - § near qin 8™
and that r&/é be the radius of the sphere in R™ which 7 maps to the latitude sphere
# = & near p.

We now madify 7o to obtain a mapping 4= 44 = 1, which maps ™ onto all of §™
and which mapa points y in R™ with norm less that #? to P, maps points ¥ in R™ with
norm greater that 26 to q, mapa points y in R™ with norm between r and § to To( Ry/§)
and suitable interpolates in the two remaining annular regions. More precisely, we set

P ifOS|y <t
(06 (45)) in (6 (855)) ) 2 < i<
W) = { vo(5¥)

(cou (x + 1yl - 26) ,aim (= + |y] - 26) M) WE< |y <28

fr<fu<é

\ q _ if 26 < |y| < oo.

In the region 0 < |y} € r we estimate that the Lipschitz constant of '7 does not exceed
6/(r ~ r?) which is less that 24/r since r < 1/2. Hence

m
‘ / D™ dL™ < mt (35) a{m)r™ = 2™mi a(m)é™
lvige r
which is small if § i» small. ,
Similarly, in the region § < |y| < 26 we estimate that the local Lipechitz constants do
not exceed 1. Hence

j 1D|™ dL™ < mta(m)(26)™ = 2™ m} a(m)s™
$<iyi<26

which is small is § is small.
Finally we note that, in the region, r < |y| < § the mapping v is conformal so that

it}

[ dmdem= [ pymaem = L [ ipaimacm < u“(smnr‘la,ﬁsn.l
r<lyisé - relylsé m rilylsé

Our mapping v5,; from R™ to 8™ preserves orientations and covers once. It is useful
to have mappings ;.. with similar conformal propertiea but covering v times. To do this
we fix a ratio p = (r(8)*/6) and let 7(z,y) = (~2,~y1.¥3,... ,ym) for {z,¥) € S™; the
map r thus interchanges the north and south poles of S™ while preserving orientation. We
then define

vs(w) il pé < |y| < 00
(W) = | %0 5(y/0*) k€ {1y...,0 -2} and p*+16 < |y| < p*6

AR 17 et B { R R oty X

A.3. Mappings and homotopies from M to S™ with contolled discontinu-
ities, ‘

A.3.1 Whenever f: M -+ S™ we denote by
Cy
the closure of the set of points of discontinuity of . We then let
¥

be the collection of all functions f : M — S™ such that the closure of &y ~ B (recall
A.1.1) has dimension not exceeding n - 2. In case m equals 1 we require that Oy C B for
functions f in 7. Also, if M is R™*" we require that f(z) = q whenever |z is sufficiently
large.

Similarly, whenever A:(0,1] x M — S™ we denote by
Ca

the closure of the set of discontinuities of A. We then say that f and ¢ in 7 are s-homotopic
provided there is a function A:{0,1] x M — 5™ such that h(0,:) = f and &(1,:) = g and
also

G ~ ({0} x € U ({1} x &) U (fo, 1] x B))
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lies in (0, 1) x M and has dimension not exceeding n—1 {in case M is R™*™ we additionally
require that A(t,z) = q for all t when |z] is sufficiently large); such a function A is called
an s-homotopy between [ and g. We then denote by

n(7)
the s-homotopy equivalence classes of 7.

A.3.2 We denote by
%

those functions f in ¥ for which f{(M ~ Cy) is locally Lipschitz and then associate to
each such f three energies E.(f).'é'z(j'). and &3(f) given by setting :

1 m m+n
CU = T e [ 1P o,

&)=

1 mouman
(m+l)a(m+l)j;unf“ um,

ES(!) - Jm}-d”md»rll- .

) K
(m + 1)a(m + 1) [n

For some analyses (beyond the scope of this present paper) it is important to recognize .

that
Jmf(z) = [(e°(f(z)) ,A™Df(z}}].
We also call the reader’s attention to the paper Homotopy classes in Sobolev spaces and the
existence of energy minimizing mappings [W3] by B. White in which p energy minimization
is studied in homotopy classes of mappings which are not necessarily continuous.
A.3.3 A basic fact is the following

PROPOSITION.

{1} Each s-homotopy class in N(¥) contains a representative [ which belongs to 7,
and for which each of the energies &), &2(f), and &3(f) is fnite.

{2) Suppase f and g belong to %, and are representatives of the same s-homotopy clasa

in (7). Suppose also that €1(f) and €,(g) are both finits. Then there is an s-homotopy .

h between { and g such that Al{[0,1) x M ~ Ch) is locally Lipschitz and
j [DA[™ dY™+n+t o o,
0] x M
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A.4 Currents. A general & {dimensional) current T is a continuous linear functional
on an appropriate space of smooth differential & forms in R”. The boundary of a k current
T is the k ~ 1 current T which maps a smooth differential k — 1 form w to the number
9T (w) = T(dw)—Stokes's theorem becomes a definition. In this paper we are concerned
with currents of the form T = t(T, 4, ¢}. In writing such an expression we mean that
set(T) = L is a (bounded) ¥* measurable and (¥*,k) rectifiable subset of M, and that the
density function 8:£ — R+ is ¥*L_L summable, and that the orientation ¢isan ¥*LEL
measurable function whose simple unit k vector values are compatible with the tangent
plane structure of £. Such & k current T maps a differential k form  to the number

Tie) = [ (ste) ole) (e an'.
Associated with M itself is the m + n current
[M] = ¢(M.1,¢);
if M = R™** a standard notation is
E™r = t((R™®, 1,§)

with £(z) = e, A...Aep,n for each =z,

The area of a current T = t(L, 2, <) weighted with its density gives its mass,

M(T) = fr_ 0N = sup{T(p): lgll < 1).

The theorems of this paper relate to minimization of this mass rather than, say, the k areas
of the underlying set T {which is called the size of T and is denoted S(T)). The measure
IT]| associated with mass is thus ¥*I_T A # 5o that M(T) = ||ITII(M) = || TI{R¥).

A general fact about such acurrent T = t(E,8,¢) is that its general current boundary
ignores closed sets of zero k-1 measure, e.g. if U C R¥ is open and the support of T
inside U has zero ¥*~! measure, then 3T (w) = 0 for each w supported in U {F1 4.1.20).

Suppose that T = t(L,#,¢) is an n current such that the support of 3T lies in B.
Because of our special assumplions about B in A.1.1 we can use [F1 4.1.31] together
with our preceding remark to infer for each k = 1,... J the existence of nonnegative real -
numbers rx and continuous orientation functions ¢, on Ay such that

J
aT = Z YAk rr ).
k=1
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For general {posaibly empty) subsets A and C of M with C C A we denote by R{A,C)

" the vector space of those k currents T = t(E,#,¢) with the closure of T contained in A such

that 8T = t(Z',#,¢’) for some L*,#,¢’ with the closure of £’ contained in C. We further
let 1,(A,C) denote the subgroup of those currents T = {(E,4,¢) in Ri(A,C) such that ¢
assumes only positive integer values. It follows from [F1 4.2.16(2)| that 9T € I-y(C,9)
whenever T € 1,(A,C).

When convenient we will denote by sptT the support of a current T.

A.5 The coarea formula and slices of currents. A key ingredient of the present
paper is slicing the current [M] by mappings /: M — S™ belonging to % and use of the
coarea formula to estimate the masses of these alices in terms of the energy £3(f). Asa
consequence of {F1 3.2.22, 4.3.8, 4.3.11] we infer that for ¥™ almost every w € S™ the
slice

(ML, [, w) = (7" {w}, 1, ¢) i

is well defined as an n dimensional current. Here, for X™ almoet every 3 € [~ {w}, if
n{z) is that simple unit m vector associated with the m plane kerD f(z)* in Tan(M, 7} for
which : _ )

{n(z), AmDf{z}) sa(w) >0

then we specify ¢(z) to be that simple unit n vector associated with kerDf(z) in Tan(M,z)

for which §(2) = n(z) A ¢(z); we have used the symbol ¢ to denote the inner product in

AmRm+l.

We further infer from the coarea formula [P1 3.2.22| that
(m+ a(m + )&s(n) = [ MQIMLL £, wh) arme.
wES™

Since 9| M| = 0 we readily infer from [F1 4.3.1] together with A.3.2 and A.4 above that
for ™ almost every w € 5™, (M}, f, w) belongs to I, (B,0).

A.6 Kronecker indices of integral currents. Whenever S & Im{M, M) and T €
# = sptdS MaptT = aptS N spt3T,

there is naturally defined the Kronecker index of § and T in M, denoted
k(5,T) =k(5,T; M) € Z.

18

which is & direct extension of the definitions in {F1 4.3.20]. For ‘sufficiently regular’ such
currents

S=tLih,0) wd T =t{L,0;,0)

in ‘general position’, we can write

K(S\T)= Y #i(3)-0:()-sign{i{z) A gafz) o E(2)).
€L NGy

Among the important facts about the Kronecker index is its ability to characterize
real homology classes. We have the foilowing.

PROPOSITION. Suppose T}, T; € In(M, B) with 3Ty = 3T, and
k{S,Th) = k(5,Ta)

for each S € 1.(M,0) for which both Kronecker indices are defined. Then there is @ €
Ruy1(M, M) such that 3Q = T, - T3,

Proof. In view of [F1 4.4.1] it is sufficient to verify the assertion in the context of
Lipschitz singular chains of algebraic topology. Moreover it is sufficient to check than an
ncycle T in .M‘ is a boundary in case ity general position intersections with m cycles S in

- M all have Kronecker index zero. This is well kaown.

A.7 Degrees of mappings of currents. Suppose f € % and
=L, 8,5} €ln(M~Cy0).

Then the m current f,5 in 8™ is naturally defined in accordance with [F1 4.1.14, 4.1.15}
with 9f1S = 0 since 35 = 0. We then infer from [F1 4.1.31| the existence of an integer
d(f,5) such that

fls = t(sm 1 d(!!‘s) ’ 0').

We call d(f,S) the degree of fon S. If £ and S are *sufficiently regular’ then, for ¥™
almost every w € 8™,

d(f,8)= 3 6(s}sign((s(z) AmDS(2)) » o(w))} -

s€ENS-{w}
Basic properties of degrees are the following.
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- .
p————— -

P ~ the definiton of f;',‘\"'s‘ Js,» maps to
,,’ in N of radiug r N the southpoie q
K depends on whether \\ outside N and U, N,
PROPOSITION. ! TRTAnema )

(1) The degree d({, 5) depends only on the real homology class of S in M ~ B, More

\
: A ‘-
e o o o v o
precisely, if f € %, and 5,53 € In(M ~ Cr8),and Q€ Ry (M~ B, M~ B) with : !
aQ:Sl *Sz, ‘hﬂl d{f,51) =d{f|52)‘ : :
(2) The degree d(f, S} depends only on the s-homotopy class of f. More precisely, if ' '
f:9 € % are s-homotopic and § € Ln(M ~ (C; U C, U B),B), then d(/,5) = d(g, 5). X '
'
i
'
A.8 An example showing relations between integral current slices and 7 : =
boundaries, Kronecker indices, and mapping degrees. Suppose, as illustrated in . the sphere }fliriij.‘h_{ U0, 1)
Figure 2, the following. : and P""““’f‘ MA& |
(a) M = R™** with its usual orthonormal basis, and E
. '
U = U™ 0,1) x UV, 1), y
is an open set, and
A = {0} x U™='(p,1)
is an n — 1 disk with orientation function I
. , . each m dimer '_ al e /s
ﬂ.A—o{e,,.Hf\...Ae,,..,...}. normal to 4, in‘N,/ ,
L is of radius § and .} !
(b) X and z,,... 12K are positive integers and ¢;,... ,ex € {-1,+1}. mape 10 S™ by f,, :
{c) For each k the vectors Lo cover €32; times in a .,
nearly conformal way o
PUELM), .. .1 k) € S™ x {0} ¢ R™*+! x R \ :
1
L}
are an orthonormal family such that : '
1
N 1
Ih(k)f\.../\qm(k)f\p(k)=.|A---Aem+l 1 J
y AT
and also p(1),...,p(K) are distinct.
(d) For each k we et ITx denote the n plane spanned by p(k) and {0} x R"*~! and define
the n half disk .
Be =M NUN{z:2 e p(k) <0}
with orientation. function
Ay — {egp(k)/\e,..“/\...ﬂe,...,...}. .
20 Figure 3. Relations between integral current slices and boundaries. Kronecker indices, and

MAapping regrees are illustrated by exan pie in Appendix A8,



{e) 0 < § << r <8 << are very small aumbers and
N=Un{z:dist{s,4) <r} and Ny = (U~ N)n {z:dist{z, s < 26}

for each k; we assume that § is small enough s0 that the sets N,,..., N, are positive
distances apart.

(¢) We denote by £ the small m sphers
E = 3aB™*{0,4) x {0}

with the standard continuous orientation function r: L — AmR™*" determined by requir-
ing
EAT(Z) =0 @ A ARpy

for each z in T; it lollows that
7(~a:p(k)) = (=1)™* g (k) A... A (k)
for each k. Here - denotes acalar multiplication of a vector. The m sphere £ ‘links’ the
n — 1 disk A in U while ‘puncturing’ each Ay at the point —s - P(k).
We then set '

X
T=Zt(a;,n.¢.-n) and §=t(L,1,7)
bul : -t

and estimate

(1) The boundary of T inside U is given by

K
OTLU = ) (A, n, &+ )
hw]

[F14.1.8 20 that @TL U = 0 if and only if T, e42s = 0.

{2) The Kronecker index of S and T is given by

K
K(S,T) = Y au-r(—a-p(k)) Ag(~a-p(k)) 0 01 A ... AGpuyn
[ )]

X .
= A= () A (B) A €x - (k) A @y A~ A @y 881 A oo A Bmgn

hm}

K
- (_1)m+l Z““

hm)
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so that k(5,T) = 0 if and only if 3TL VU = 0.

We now assume r = s and will construct a mapping g:U ~ N — S™. We first set
#(z) = q (the southpole) if z lies outside both N and all the Ni's. Each point in each Ny
can be written uniquely in the form

s+nmlk)+...+ v-.._rrm(k)

where z is the unique closest point in A, and y € B™*1(0,26); for each such point we set

pz+nmk) + .. ymtmlk)) = Yo s er - v1, 920+ )

’

Since r < 2 < 1 our function g is defined on T and there is a well defined mapping degree
d(g, §) (with the obvious meaning). Since each “Ys,s. 18 orientation preserving {and § is
very small) the orientation of g on L near p(k) is determined by ¢4 and by the inner
product

Mk} A A nm(k) @ r(—s - p(k)),

and we compute

{3) The degree of g on S is given by

"
d(g,8) = 3~ suen - m(k) Ao A npn k) @ 7(~s - p(k))

k=)

X
= (_,l)m-v-l Z €x2k

k=)

so that d(g,8) = 0 if and only if 3TV =0.

The extension of ¢ to a mapping f = Js,r on all of U depends on which of two cases
occurs.

Case 1. If d(g, S) = 0 we infer from Hurewicz'a theorem the existence of a Lipachitz
mapping h: B™*!{0,r) — §™ such that

{ g(w,0) if jwj=r
h{w} =

q if lw| < r/2.



e then define our mapping f:U — $™ by setting

#{z) zgN
fe= {*(81.... 1Im41) fzEN.

Case 2. Il d(g, 5) # 0 we define a discontinuous mapping A: B™*? — §™ by setting

rw
o) =0 ({37.0)
or each w and, as above, define f: U — S™ by setting

#(z} ifz¢N
e
Azis.os ,Zmey) fzEN.

With the obvious interpretation of &;, &7, and €3 for function on U, ench of these en-
ergies of mappings f;, nearly equals the maas of T when § and r are small (and ressonable
choices are made for A inn Case 1). More precisely, we have,

X
Jim &1(fss) = Jim Ealfer) = Jim &a(fi) = M(T} = 3~ 5 ¥™(a4).

km]

It is also straight forward to check that for ¥™ almost every w € 8™ the slice
Te= (E'*'LU. Jor, W)

exists with
T,LU =3TLU,
and also if a sequence of &' and r's canverging to O is fixed then, for ¥™ almost every w
in 8™, '
IBELY. foy ) = T.
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