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1- The generalised Morse-Conley index for variational systems.

2
Let M be a Hilbert manifold and let £ € C (M). We denote by n{t,x) the -

flow relative to tha diffsrential equation

ax - £'{x) .
ac 1+ e x|

When no ambiquity is possible, we shall write xet instead of ni{t,x). If U

is an open set in M we set

6"y = (xeU | x [-TT] U}

I‘T(UI * (X ¢ GT(U) | x-[O.T] nx @}
whera 3U denctes the boundary of U.

Also we get
T
I ={vcw|uieopenand 3T> 0 such that G (U) € U}

§ will dencte the set of formal power series (in t) with nonnegative coef-
ficients (or to be more precise with coefficlents whith are cardinal numbers) .
The generalised Morse-Conley Index (GIM) is a map

3

v

L1; Ef — s
defined as follows

@™ T k
(1-1) 11'.(0) = lim I dim [?(GT(U) e T (U))] £
T 4@ k=0 i,

where !_i-‘i(-,-) danotes the Alexander-Spanier [Sp] cohomology with coeffi-
clents in some fleld, which in this paper will be . The limit in (1-})

exists in a trivial sense; in fact in [:31], it is proved that, for T large

encugh, E‘ {GT(U) ,I‘T(u)) does not depend on T.

When no ambiguity is possible we shall write 1{0) instead of :Lt(u) .

Now we shall list some of the properties of the GIM which have been proved
in[B1] .

Theorem 1.1 The GIM satisfles the following properties

(i) 41f U € [ then GT{U) € I and i(GT(U)) = 1(0) vV T>ao

(11) 1f U € T then (T, B €L and LiniT,u)) = i(U) ¥ T > 0

{114) {f U,V € L and T > O such that GT(U) € V and GT(V) c U, then
L{u) = L(V)

(iv) 1f x € U and for every x ¢ U,J3t > 0 such that xst 4- U, then 1(U)=0

(v} 1f U ¢ I is contractible and positively invariant, then 1(U} = i

vl) LEUVELandUNYV =9, then 1(U U V) = 1(U)+i(V)

(vii) 1if l'r‘L is a semiflow on “1 (1=1,2), then a semiflow F'I’ X nz 1s defined
on ulx “2’ in this case if u1 [ Zmi) (i=1,2}, then ulx u2e zmlx nz)

and

1(u1! Uzt ﬂl! 712) - 1(Ul,n1) 1(“2ln2)

Def. 1.2 Let l.ll, 02 € L with Ul n U = & W say that Uzis over El if there

2
T
exists T > O such that Ul nea (Uxuuz) is poaitively invariant with respect
T

to G (U ul.

( L v 2!

1
Def.1.3 Let U € L. A family of sets {Uk]léu is called a Morse decompomi-
tion of U if
w = u
k=1

(14] uke L for k = 1,...,N

(111} Ukﬂ uh b for k = h

h
{iv] l.lm1 is over () u for h = 1,...,N-1
=1

Example Let f be a Liapunov function for {M,n) {i.e.function strictly



decreaaing on non~stationary trajectories), and let c:l< c2< ces € cN-l ba
a sequence of regular values for f{l.a. f£(x) = ci -3 fU(x) 0 1=1,...,N-1).
Now set ¢ = — and ¢ = 1%, and

o N

v - {xev | €,y < EL < e} X=o0,...N uel
It ié easy the check that {Uk] is a Morse deccmposition of U.

Theorem 1.4. If {uk}ksu 1s a Morse decomposition of U, then thera exists

Q € § such that

N
T LU )+ (et)QIE)
ket X

Now let ' € L be a family of sets which satisfles the following properties

{1-2) if U&el then any sequence {xn} ¢ U such that f' txn) —3% D has a
converging subsequence.

The property (1-2) is related to the well known condition of Palais-Smale.

1
Def.1.5 We say that £ £ C (M) satisfies P.S. 1f any bounded sequence

{xnlc M such that f(xn] 18 bounded and f'(xn} —> 0 has a converging

subsequence.
1

Then if f satisfies P.S. it follows that
(1-1y T ={uek]| flu ia bounded }.

The couple {n,l'} 1s called variational system. in [:Bl] nnd|:82] there ig
a detailed study of variational systems.

As we will see the sets U € I' are seta for which the main properties of the
Morse-Conley theory which are true in finite dimension are preserved.

Before recalling these properties some notation 18 necessary.

f: = {xeu|a<fx <bl

400 b b

£ = f ; £ = £

a a 0

o ={xev : £ix) =0} tchH

H o={xen | ¥ = x(U) for some U & L, and K 12 connected}

Por X ¢ M, £"(x) can be regarded as a bounded selfadjoint operator on the
tangent space of M at x. We assume that the nonpositive part of the spec-
trum of £"{x} consists of isolated .eigenvalues of finite multeplicity.

Then, for x € K{M]) , we Bet

mix) = dimension of the space spanned by the slgenvectors of £

corresponding to negative eigenvalues
(1-4  n(x) = dim [ker £(x)]

m*(x) » m{x) + nix)

m(x} is called the Morse index of x and n(x) the nullity of x. If nixj = 0O
then x is called “non-degenerate”.

For K C X(M) we Bet

m(K) = min mx)
xeK

o*(K) = max o*(x}
xfK

Proposition 1.6.

(1) if f satisfies P.S. and f‘u is bounded below (U € L}, then 1{U} = O
implies K(U) = ¢

(ii) 1if f satisfies P.S. and a, bé R are reqular values of £, then
b b _ b -
Per aa 16 = F am[n e, 1]

a a q=0 - q



L]

where d, denctes the singular homology with coefficients in Q.
(11i) 1€ U € T then 1(U) is finite (i.e. 1,0 15 a palynomial in t with
nonnegative coefficlents)
(iv) let X ¢ K and let U,V ¢ T with K{U) = K(V) = K. Then 1(U) = &{V},

Proposition 1.6. (iv) suggestytha following definition
Def.1.7. If K& X then we set
1(k) = 1(u)

where U is a sufficiently small neighborood of K such that K{U) = X.
In particular the index of an isolated critical point xo is defined {iden-

tifying *  with {xo} ). Moreover we have

Prop.1.8, If is a nondegenerata critical int then we have
op xo a og po

mix )
I{x ) =+¢
[+]

If xo is degenerate, we get some information frem the following proposition

Prop.1.9, IfU ¢l and X = X(U), we have
. 1

m* (K) q
T

1{u) = a t

q=m{k} 1

where the a' 8 are nonnegative numbers,
q
In particular if K €X we have

1
g - R, A

qmm(k} 9

Def.1.10. 1f X€¢X we define the multeplicity of K the integer number L,

If iltx) = 1 wa say that K is topologlcally non-degenerate.

If a point xo is non-degenerate, then {xQ] eh and by Prop.1.8. x 18 to-
polog:l.cally‘ml:ln—n‘.l‘egenera'te . . ’ ) ’

The detinition 1, 1048 justified by the following proposition:

. .
Prop.1.11. Let kxeR with L(K) = "';;m at? , and let U be a suffi-
' q=m{K} 1

¢lently small neighborood of K..
Then every sufficiently C2 small perturbation g which patisfies P.S.and
whose critical points in U are non-degenerate, has al least
mE(xl "q .
q=m{x)
critical points. Morsover, at least l.q of them have Morse index q (for
q = mix), m{x}+l, ... , m*{x}}.
Notice that a generic perturbation of £ has all non-degenerate critical
pointa. Therefore the conclusion of Prop.1.10 holds for a generic perturba-
tien of f which satisfies P.S.
¥ow we can state the “"Morse relations" for variational systems as definad

above.

Def.1.12 Let X € [ and letk = KXy,

A family of sets {uj}th is called € -Morse covering of X if

(1} Uj 18 connected for j € I

N
{11] X ¢ u
1 }-J: c NE(K)

(111) U, € I and p Hu) = 4i(x) + (1+t)Q(r) Q€S8
3 jer 3

_ The above definition 1s Justified by the following theorem

Theorem 1.13 If X € T, then for every € > O, there exists a finlte g~Morse



covering of K{X).
From Def.].7. and the above theorem we get the following Corollary

Corollary 1.14. If U € I' and X{U) consists of a finite number of connected

componants Kl' P K.N ; then

TUx) = 1+ (el
=1 )

From Corollary 1.14., the classic Morse ralations follow

Corollary 1.15. Let U € T and suppose that K{lU) contains only nondegenerate
critical points. Then they are a finite number.

Moreovar if a{q) denotas the number of critical points having Morsa index

q, wa have

q

i
ln:(K(U]) alq) t

= {(U) + (1+t)Q Q&S
q=m(K(U})
The next theorem generalises the Morse relations to a set where f is not

bounded above.

Theorem 1.16. Let £ be a function which satiafies P.S5. and lat K = K(fc).
Then, for every £ > O there exists an g¢-Morse covering of K.

Notice that, in theorem 1.16., the series - I 1(U ) and Q(t) {which ap-
JeI

pears in (1i1) of def.1.2) way have some coefficlent! equal to +o .
Proof. Let cn > ¢ be increasing sequence of reqular values of £ diverqging
to 4= . By theorem 1.4 we have, for every n € N,
c
n LS 1 1
{1-4) i€ ) + 4(f ) = 4(f ) + (1+£)Q (t] Q €S
<] cn c n n

C =
»
By theorem 1.13 (with X = fcn) wa have

kn cl.'l 2 2
T 1(uj) = ufc ) + (1+tlint) Qn €5
¥=1

Comparing the above formula with (1-4) we get

k 1 2
(1-5) :" L)+ e ) e L(E) 4 tIeRl Q2O O
=1 n

3
Now if p= I agt € 5, weset (p} =a,
n=0

Then (1-5) reads
) {i1s010'™)
(1-6y {g liujlll « g ’}z = {i(!c)]l + {t1+e1g 1,
4=1 n

The theorem is proved if we can take the limit in {1-6) for every L € N.

We consider two cases

(a) {itg 1}
<

L = ©0 for n large enough

(b) {112 )}l. # 0 for a subsequence c;. g,
¢
n

If (a) holds we havekdone, since we can take the limit in {(1-6) (notice
that the sequence :n ituj) ig monotonically increasing as n —> +w }.
=1 '
1f (b) holds, thgh, by proposition 1.6 (iv), we have that
C'
HE(H'f n) 0 for the subsequence c'n.

c
Let [u:l denote the support of a nontrivial homology class a € HE(H.IE 1
and let <:.'l > max f(x).
xe[a}
Consider the exact homology sequence:
c' c' i c' 3 e' 9

o n 2 n "4 m £
— o . —> H (M, £ ) —> --.
coe=> BT, £ ) > By (M, £ ) .
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By our choice of c;, Jz‘“’ = O then Dby the exactness of the Baguence

cl cl

[ n
HBenzaf P €71 mt. 3fB) =a.
This fact shows that

cl
{1e®)), =0
c i
n
c'
and by theorem (1.3} there extsts U € £\ such that U € T and
Hi

{ 1(um) }1 = 0.

Since this 1s true for all the terms of the subsequence ¢’ defined by (b},
n
it follows that taking the limit in (1-6)
k

{ fiw

AT

diverges to +« ,

Thus the equality (Lii) of def.1,12 is satisfied also In this casae. rd

2 - The Maslov index and the rotation number,
1
Foraes ={zec]| |z| =1} we set
2 2 N
e ™ {x ¢ Lice! B @ ) | x(e+1) = gox(t) }

2 N '
N
where Lloc (R, € ) in the set of function x : B —> € which are measu-

rable and whose square is locally integrable.

2
_La,t: is a Hilbert space if it"ig equipped with the following scalar product

- R ;
(z-4) (x-!')Lz * T L xm,yen | a

4
q.,T

- 11 -

Now let A{t) be a family of real simmetric N x ¥ matrices depending conti-
nuously on t and periodic of peri.od T and consider the following ordinary

differential equation

- N
{2-2} ¥y +Alt) y= Ay YeET ,AeR
with the condition
(2-3) y(t+T} = g-y(t) g€ 51 , T=kT , ke¢N

2 N
How let Hloc{ R, € ) denote the space of functions having two Bquare local-

ly integrable derxivative.

2 N 2
If ‘fa,u- is the extension to “loc( R, € )N 1.‘J T of the operator

(2-31) -y - AfD) ¥

2
then it is well known that 'fa pis a selfadjoint unbounded operator on Lo T
r 1]

Then the eigenvalue problem (2-2), (2-3) becames

o X ' 212 n? N
(2-4) o, 2¥* Ay y £ D“‘G,T) L O,anlcc( R, @ )

it is easy to check from elemetary facts of spectral theory that -fa o has
r

digcrete spectrum with only a finite number of negative ejigenvalues.

This fact allows us to define a function
Jir,sp 8! — w

a8 follows.

J (1,0) = {number of negative sigenvalues of Ofc - counted with their multe-
plicity}. '

We shall call the function J{T,1) the Maslov index relative to the equation
Y +A(tly = 0 1in the interval [o,1].

Now let W(t} be the Wronskian matrix relative to equation

Y+a{tly=o
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¥ Ty (t
{.e. the matrix which sends the initial data [:o] to I}:JJ
o

The map W(T] : & - (where T ig the pariod of A{t}) is called
the Poincaré map or the nonodromy map.
The eigenvalues of W(T) are usually called Floquet multipliers{relative to

the interval (0,T)).

Proposition 2.1. The function J(r,90 satisfies the following properties

[§8) :T(T,E) - J(r,0) whara a is the complex coniugate of ¢
(i1) if J(1,0) 1is discontinuous at the point ¢* then o* is a Floquet
multiplier

. 1
{1id) |J(T,02) - J(T,01]1 irvo,0, S- {+1,-1} where 2i is the number

1
of non-real Floquet miltiplie’s on S counted with their multeplicity. Thus,
in particular

1
|.§('r,02) - 5(T,Gll |sw for every 0, 0, € § - {+1,-1}

1
(i1 Jxr,8 = g JiTwo) .

Uk-B
Proaf. (1] if y(t) is an elgenfunction of g , the comlex coniugate func-

' T

tion y(t) is an eigenfunction of o . corresponding to the some eigenva-

lue. Therefore £ T :.\.m:lfE T have the some number of negative eigenvalues.
'

’

{11) The eigenvalues of EEO'T depend continuously on o. Since & . is
selfadjoint, they are all real. Therefore the number of the nanp;nitive
eigenvalues J(T,0) can change only for those 0* such that O is an eigen-
value of xa*,'r' This mens that if O* is a discontinuity of J{o,T) i.e.the

following problem

{2-5) Y+AlE) y=0
{2-6) ylt+T = g*y(t)

has a nontrivial solution y{t). If W{t) i{s the Wronskian matrix of

- 13 -

[y(t) [x'} y
then| . = W(t) for poma x, v € & .
L’(tl v

Then the condition {2-6) for t = O reads

X X
Ww{T = gt
v v

Therefore g* is an elgenvalue of W(T).

(11i) W{T) is a sympletic matrix; then if A is an eigenvalue of W{T), also I
l-l, Fy -1 are eigenvalues of W(T}. Therefore

(a) the number of eigenvalues of W(T) different from il is even.

(b} the sum of the mltiplicity of the elgenvalues +1 and -1 is even (if
11 are not eigenvalues then their multiplicity has to be assumed O in order
to make sense of the above statement}.

In particular the eigenvalues of W{(T) on sl - {+1,-1} is an even number 2£.
We can assume that all the eigenvalues are simple (otherwhise use a pertur-
bation argument) .

Therefore J(T,d) has at most 2% points of discontinuity and at each of them
the jump of J(T,0) is %1 since we have assumed that all the eigenvalues are
simple.

Now

iwl i.mz
l3r,o) - aero)| « [Sire 1 - J(Te )| withw e -mm (o} .

iw i
. 1 2 )
By (i) we have that J(T,e ') = J(T,e ). Then we can assume that w € (0,m).
iw
But the function J(T,e ) has at most ! jumps and this proves. the statement.

2
(iv) 1f v € L o then v has the following eeries expansion :

it 2nin - iut
vit} = e T S ® 7 with w€ |O.21I] with e - .
ng-m -
2
Using the above formula we have that vé # LT has the following

.
expansion : ¢ =6
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- 14 =
1
iw v 1w T _ _
= : 2¢ 48 the number of Floquet multiplier on § -{+I,-1}
vit) = kild . fmcl e21l.|.n/'l‘ with e "= g, g = ':/9— L =0,...,k-1 ' L '
f=0 an—m ' v {(iv) for every 0 € S we have 1im T J(T,0] =»p
iw t T
But we have wy = Wy + 2mL/kT L= 1,i..,k=d, with @ © = B, Then ek
. Proof. (1) By Proposition (2.1) (iv)} we have
1w ———
vit) » @ ° kEl E. cn L .Zﬂi(km!.)/k'r . - -
k=0 e (-7} Un = ST, = Um - T J(T,e )
ke Jotes i=0
and rearranging the terms we have
‘ By the definition of the Cauchy integral we have
moT +oo 2mim/kT
v s .t k mik/k 2n 1
we (2-8) um 21 %3 odir.e )= ST dmeT e - 2mip
The above formula shows that ke k 1=0
Then by (2.7) and (2.8) we have
2 2
L = ¢ L
8
K ofeo T 1 1 2 k-1 . 2n&/k
“ lim = J(kt,1) = Py lim % I JiT,a ] =p
2 K o T ke a0
Now the operator £ g xr leaves invariant the spaces L'r'a Ufg = 8 ), T=kt ’
- : "
Now if G (L) denotes the negative spectrum of L we have: R (i1) from {1} it foumr that p 1s indipendent on T = kT
1
i |t - dmor| = = | {¥re a8 - {Htr,oa0 | s
g (o ) = U a_(&o U . 2n s s
- Bkt k 8,k7 = o ) s~ 1 I lder® - Jir,00] @8 S & by Proposition 2.1(iv)
=8 L2 & 8 o,T 2n 5 -{+1,-1} :
a,T
From the above formula the conclusion follows. // {iv) it follows from (i) and {iv). I
1
Now we can define the rotation number as follows: Example. Consider the equation .
p= {J{Tc)do-'L‘fznj(Tem}dw y+tayso
T s ' Nt o ’

y(0] = y(T}

Proposition 2.2. The rotation number satisfies the following properties:
where Als a tima indipendent real simmetric matrix with £ positive eigen-

1
(1) P = lim - j(T 1
T T A values wf, v mi and N-L negative sigenvalues.
T=KT - 2
g P Then the negative eigenvalues of -y - Ay on Ll o are
(i1) p = ;1" S{ J(T,U) .da T x kT ' .
ar12 2 A
.o Rn‘j -(-,i,-)n—mj withne N, £ =0,...,k-1 and n <=

14y [To ~ 30,051 for every 0 §'~(+1,-1} , T ek
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Notice that for n 2 1 they have double multiplicity. Therefore

w T w T
srnete 2 8o [nsrmte2 b (2]
=1

Then by Proposition 2.2 (i) we have

‘ - wT-
p=lintdrnem (242 } I_—l-J}- T f o

T T 2t LA

T+ baa sl i=1 3=1

L]

3 - The generalized Morse-Conley index.for periodic solutions of second

order conservative aystems.

In this section we consider the following system of ordinary differential

equatione
- N
(3-1) x+V'iit,x) = © x et R
2 N
With VEC (R xR ). He suppose that V(t,~} is T-periodic.
We set

T 2 N
W ={xew (R R) |xis T-periodic}
loc
T
W is an Hilbert space 1f it {s equipped with the following scalar product :

-

1

{x,¥} = -
T |

W T

£T(i'§+x'y)dt '

Where ™ = " denotea the scalar product in RN.
The equation (3.1} are the Buler-Lagrange equations corresponding to the
functional '

N S .
(3-2) filx) =— é-{ % |xt2 + ¥(t,x)} dt  xew

]

' 2
It is well known that f£(x) is a functional of class C an HT.

Therefore, any T-pexiodic solution of (3.1) can be interpreted as a critical

-17 -

point of the functional (3-2),

If we apply the theory of section 1, we can define a Morse index for every
T-periodic solution xof (2-9) (cf.Def.(1.4)) which we shall denote by
m{;,'r) to enphatise the fact that the Morse index is computed in the space
HT.

Of course we can also define the nullity n(;,’r) and the number m* (;,'1‘) -
= m(;.'l') + n{;,’r) as in Def.(1.4) . Now let us consider the lipearization

of the equation {3-1) at x ;-
(3-3) ¥+ Vit x(t))y = ©

It is easy to check that m(;,'.r! ls the number of negative eigenvalues of

the selfadjoint operator
- - 2 n
{3-3'}) y —» -y - ¥i{t,x(tlly in L {(O0,T}, R}

n(;,'r) is the multiplicity of the eigenvalue O of {3-3') and hence it ia the
nuzber of indipendent solutions of equation (3-3). '

A T-periocdic solution ; of (3-1) 1is called nondegenerate if it 1s nondege-
nerate as critical point of the functional (3-2} i.e. if n(x,T) = O.
Clearly x is nondegenerate 1f and only 1f the linear system (3-3} does not
have any nontrivial T-periodic solution, or, if you like, {f 1 is not a
Floquet multiplier of the equation (3-3) relative to the interval (0,T).

We recall that a number a ¢ €T 13 called a Floguet exponent if eq is a

Floquet multiplier.

‘pefinition 3 l.Let x be‘a T-pericdic solution of the equation (3-1) and let

21T1mj (3=1,...,838) be the purely immaginary Floquet exponent of the li-
nearised equation (3-3). Then if mj¢ @ for j=1,...,L we say that ; is

nonrescnant.
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It 1s easy to check that if ;15 a nonresanant T-periodic sclution, then ; is
T-nondegenerate for evewxy T = kT k e .

If ; is a T-degenerate solution of (3-1) then the definition 1.10 can be ap~
plied to define the multeplicity of ;

Wa can asaociate to the squation{3-3)} a Maslov index J{T,0) as in section 2
where A{t} = v"(t.;(t)) and consequently a rotation number p(;) .

Proposition 3.2. If x 1ia a T-periodic solution of (3-1)(T = kT , k¢ IN) then
t3) n=(x,T) = §_tm1)
Moreover 1f X is not degenerats

(11) Tep(X) = N § @(X,T) § Tep(X) + N .

Proof. (1] is a trivial consequence of the definitions.
{11} Since 1 1s not a Ploquet multiplier, then far o, veryf.‘lose to 1
(0 & SI) Gl iz not a Floquet multiplier and .

n{T,x) = §_(r,0) by Prop.2.1(i1).

Then the conclusion follows from proposition 2.2(14ii). 14

T T
Now let I be the family of subsets of W defined in (1.2},
Now we want to examine the relationship between the index of a set U (Ue I‘T}

and the rotation number of the solution of (3-1) contained in U,

]
Proposition 3.3, Let U ¢ I‘T and let (V) = );2 altz with a # 0
]
(ml Sims mZ). Then Ix € U such that F'“ml

m-N m+N
T S pix} 3§ T

T
Proocf. Since U £ ' we can apply proposition 1.11. Then for every € > O
there exists gE > 0 auch that i(U} relative to g. 18 the some than the

index relative to £ and all the critical points of e in U are nondegene-

rate.

- 19 -

Then, since a # O, there exists xE, critical point of ge, such that
.3

£l l . .' - l *
‘ p NS ple ) 5 o tweN)
{we have used Prop.3.2 (ii}}.
Now,letting € —> O, X —> x and p(xE) —> pix)

and this proves our assumption. J/

Corollary 3.4. Let x_ be a degénerate critical point whose index is
o

1ix ] = .zznltl (am #0, a # 0, m‘sz)
© Yo 1 B2 “
Then
L spm sEmen
T M plx) =3 'y :
Proof. Apply Prop.3.4, Vi

Next we shall exanime some facts which accur in the autonomous case 1 e,

we consider the equaticn
- N
(3-4} X+ V'ix) =0 x(e) e R

N
In this situation every critical point x¢ R of Vi is a constant solution

of (3-4).

T
Proposition 3.5. Let U £ W (U ¢ I') be a set which does not contain constant
solutjons. Then there exists a polynomial P(t) with integer (but not neces-
sarily positive) coefficients such that

{(uy = {1+t) P(t)

Proof. Sac. [82] Prop.4.8. ”
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4 - Some applications in the nconautonomous casge.

In thigs section we try to gst some information on the structure of the pe-
riodic solutions of the squation {3-1).

We suppose that V(t,x} satisfies the following asymptotic conditions.
(4-1) there exista R > O and p > 2 such that

0 < v(t,x) 3 ivx(t.xl x WEER Vx with |x| >R

2
Condition (4~1) implies that V(t,x} grows move than [x|° as [x| —> +=.

Moreaver this condition implies the following facts :

Lemma 4.1. Suppose that V satisfies (4-1). Then the fimctional (3-2) sati-

gfles P.S.

Proof, See e.g. [RJ . M
Lemma 4.2, Let
fo={x € W | £1x) > ¢}
Then there exists coe R such that
fcéz and “fcl = 0 for avery cC Sco.
Proof. See [B2] lemsa 3.7. 4

Theorem 4.3. Supposs that V satisfies (4-1) and let x be a nonresonant
T-periodic solution of 3-1.

Then, for every € » 0 there axists a T-pariodic solution x # x
., o

N +
{with T = kTt , T <T + !

1 such that
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|ptxy - p(xo)| e

M+ 1 m o+ )
Broof. Take T =kt with 5 T< + c « Since x is nonre-

T
sonant, there is & neighborhcod N5(x°I in W which does not contain perio-

dic solutions of (4-1). Now take a S~Morse covering {Ul} of f.c (where fc is

as in lemma 4.2, ¢ & co). Then, by Th. 1.16

1(x} + L 4(U,) = (14t}Q(t).
° i v '

By the above formula there exists L € I such that either
1

ot
(4-2) i(UL) =t

or
Loy = ! .
where m is the Morse index of x [i.e. i(xo) =t).
We consider the first possibility (if the second one holds we argue in the
sams way) .

By Prop. 3.2 (11} we have

4-3) Lix ) =t®  with plx )T ~NSmSplx)sT+N.
[-) o o

By Prop. 3.3 and (4-2), there exists x & Ul such that
1 1

(4-4) T (m+1-N) S pix) s -T‘ (m+1+N) .,

Comparing (4-3) and (4-4) we get

lotx) - pix )] 2 (29+1) S e . y
[} T

The next theorem we are golng to prove has stronger assumptions and gives

& better information about the T-perilodic solution of equation {3-1).
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Theorem 4.4. Suppose that V satisfie (4.1). Let T « pT with p prime num-
ber, and suppose that all the T-pericdic solution of {3-1) are isclated {as
. Pointe in HT). Lat xl.xz,...,xn.... be the pericdic solutigns of equation
{3-1). We suppose that they are T-nondegenerate and ordered by increasing

rotation number,
p(xl) - p(xz) I 4 p(xn) 3 ...

Then for avery number p & [p(xzn_l). p(xzn}] {in < p}

there is a T-periodic solution x such that

- N+1
loea - p| 5=

T
Proof. By the theorem 1.16 relative to the space W we have

{4-5} 3 itxj) + I 1(uj) = {1+t)Q(t) with Q(t} = I qlt."
. 2

ig iz
where (U } 1s an €-Morse covering of the T-periodic solutions of (3-1)
Jel

which are not T-periodic and {x } is the set of T-periodic solutions.
jJ

Now £1x p € [plx) )+ To(MD) , plx, ) - Tenen) ]
and take !
m = {integer part of p*T} .

Consider only the terms of (4-5) of order less or equal to m :

£ -
{4~6) T a,t + I bttl = (1+€) "!E‘ q1t1+ qt
=1 =0 =0 n
where
(4-7) T altl TN
A= I=1
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and the therm ? bp_tf- comes from the E-Morse covering relativa to the
EmQ

solutions which are not 7T-periodic.
Since we have aupposed that these golutions are isolated, by Proposition

4.1 of [B2]] we have that

b = pg

i L . for some Btell

Then rewiting (4-6) for t =» -l, wa get
m m o oy B -
(4-8}) r ( lf' ‘1 +p [ 1{' Bf. {-1) qm N

=1 =0

By (4-7), the first term of (4-8) is an odd number less or equal to Zn-1,
and by our assumption lass than p.
Thus the sum of the two terms of the left hand side of {4-8) 1is different

from . Thus q. # O, Then, by (4-5), there exists T.lj such that

ituj) =t" 4+ possible other terma.

Proposition 3.4 implies that there exists ; [ U:i such that
Z(m-Msp st @ w
T ® plxl &%

and by the definition of m we have that

p—ﬂ;—' Sp(;)so*N—,;l .

Thus the theorem is proved for pt[_p(xzn_l) + TN, plx, ) - T(N+l)] .

Considering also the solutions x and le'l the theorem is proved for

2n-1

every pe |_p(22n4) ' p(xzn)] . V4

We conclude this section with a theorem which is the analogous of Th.4.3
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in the asymptotically quadratic case.
We say that V{t,x) is asymptotically quadratic if there éxists a matrix

Aw[tl such that

(4-9) SV (ex) = A (t)x + ot]x]) as x| —> +m |

If ¥V is asymptotically quadratic we can consider the linearised system at «
{4-10) Y*+A(Ely =0

and asgociate to (4-10) a rotation number e,-

Then we have the following resuit :

Theorem 4.5. Suppose that V satisfies {4-9) and suppose that (4-10) has no
T-periodic solution ditferent from O,
Let x be a nondegenarate T-pericdic sclution of (3-1} with rotation pumber
p(xol such that

2N

(4-11) 'p(xol-pn[ >7

Then the system (3-1) has a T-periocdic sclution x such that

oo - prx ) je 222

Sketch of the proof. If wa take a ball in W' of sufficiently large zradious

R, arguing as in [Bz:l » we have that
T m (=)
R and HBR) t

It 18 easy to check that

(4-12) TP~ N 5 miwl STep_+ N .
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Then the Morsa relation take the form

{=

tx) v I o1 = 2 4 (renom
[} £

LI
Let i(x ) = t",
Q
Then, by {4-11) and (4-12)
I = - m(=) | 20,

Therefore we have that Q(t) # o,

From now on we can argue as at the end of the theorem 4.3. /4

5 - One application to the autcnomoug case.

Now we consider the autonomous equation 3-4. We restrict ourselves to the
Buperlinear case i.e. we still assume that V gatisfiea (4~1).

In this case the theorems“4;3 and 4.4 do not apply since every solution of
equation {3~4) is degenerate. .

In fact If x i a T-periodic solution of (3-4) ;¥ * X 18 a T-pariodic so-

lution of the linearisaed equation
Y+ vixitliy =0 .
Let OD = max {p(x) | x 1s a constant solution of (3-4)} .

Theorem 5.1. For every p 2 Do there is a T-periodic solution x such that

lo - pools del

Proof. For sake of simplicity we will suppose that the constant solutions

11: cesy xn of (3-4)}, i.e. the critical points of V(x) are T-nondegenerate
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8olutions.
The general casa can be treated using a perturbation argument of the tjrpo
used In [B27] . 4.19.

T
By theorem 1.16 relative to the space W we have

(5-1] E 1(x}) +-§% 1(0:') = {1+t)Q(t) with Q(t) = Elqitl q, 0

i=1 Jex

where {Uj] v { ; Be(x J} is an e-Morse covering.

g &3

Now we claim that n is a add number.
In fact the critical points of V(which we are supposed non degenerata)
satisfy the following Morse relation

L n
El all‘. = J{R) + {1+e){t) ., .

Since 1( Bn) = 1 by our assumpticn on the potential V, taking the above
relation with t = 1 we get

nurber of critical pointe of v = 1 + 2+0(1)

which proves our claim.
By Proposition 3.5

1) = (1+¢) P (¥) .
b 3
Then equation (5-1) can be written as follows

(5-20 . F t{x) + (1+t) T

L 2 L
b t™ = (1+t) Iq.t h b - .
L 3 2 +t) 9, vhere 21 ot Ej P _{t)

3

Noutakep>;+‘u;—l and let

m = integar part of pT
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The equation (5-2) up to the order m reads

" P - %
(5-3) p ilx) + (Iety “‘zl Bt +b t" - "‘z‘ qt +q .
=1 =1 A =1 n

Now taking t =-1, from the abova aquation we get
n m [
jf; 11(x1 + (-1) bn {(~1) q‘ .

Since ‘E i.l {x) 18 an add number, it follows that b

{or q ) is differeny
yu1 m m

from zero,
In either case, fram equation (5-1) 1t follows that there exists Uj such
that

1(Ujl =t other possible terms.

Then by Prop.3.d4, there exists x such that

m - N m+ N

T

Spa s

The conclusion follows from the definition of m.
/s
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