Y y INTERNATIONAL ATOMIC ENERGY AGENCY I p
Ny VY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGA NIZATION g1

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

34100 TRIESTE (ITALY) - P.O.B. 586 - MIRAMARE - STRADA COSTIERA 11 - TELEPHONE : 2240-1
CABLE: CENTRATOM - TELEX 460302 -1

SECOND SCHOOL ON ADVANCED TECHNIQUES
IN COMPUTATIONAL PHYSICS
(18 January - 12 February 1988)

' SMR.282/ 11

SOFTWARE ASPECTS OF STRATEGIC DEFENSE SYSTEMS

F.JAMES

CERN, Geneva, Switzerland

abu L

Software Aspects of
Strategic Defense Systems

Dawid Lorqe Parnas

Views

On 28 June 1985, David Lorge Parnas, a respected compter sciontist who
Ias consulted extensively on United States defense projects, resigned from the
Panel on Compretiny in Suppoert of Bartle Menagement. convened Isy te
Strategic Detense httiative Oreanization (SD10). With Iis letter of
resigration, e sidunifted eieht short essays explaining why e beliceed the
softeare required P Hee Steategic Dotense Initiatoe would ot be
Prustworthy. Excerpts frome Dr. Parmas 5 letior and the ACCONIPIRYINY PAPErS
kave appeared widely in tie press. The Editors of American Seiontist vlivre
that it weonld be wscful to Hie scientifc cemmpionby to reprint these essaus in
thoir cntirety to stimadate sciontific discussion af the feasibility of the project.

This report comprises eight short papers that were
completed while I was a member of the Panel on
Computing in Support of Battle Management, convened
by the Strategic Defense Initiative Organization (SDI10).
SDIO is part of the Office of the US Secretary of Defense.
The panel was asked to identify the computer science
probiems that would have to be solved before an effec-
tive antiballistic missile (ABM) system could be deploved.
Itis clear to evervone that computers must play a critical
role in the svstems that sDIO is considering. The €s5savs
that constitute this report were written to organize my
thoughts on these topics and were submitted to S110
with my resignation from the panel.

The requirements ot a strategic defense system

In March 1883, President Reagan said. “I cali upon the
scientific community, who gave us nuclear weapons. to turn
1 theirr great talents to the cause of mankind and world peace,;
1o give us the means of rendering these nuclear weapons
impoient and obsolete.”
To satisfy this request the software must periorm the
following functions:
~— Rapid and reliable waming of attack
— Determination of the source of the aftack
— Determination of the likely targets of the attack
~— Determination of the missile trajectories
— Coordinated interception of the missiles or warheads
during boost, midcourse. and terminal phases,
including assignment of responsibility for targets to
individual sensors or weapons
— Discrimination between decoys and warheads
— Detaited control of individual weapons
~— Evaluation of the effectiveness of each attempt to

destroy a target
Syt ¥

432 American Scientist, Volume 73

A former member of the spio Panel on
Computing in Support of Battle
Management explains wiy he belicoes the
“Star wars” effort will not achicve its
stated goals

My conclusions are not based on political or policy
judgments. Unlike many other academic critics of the
sDI effort, I have not, in the past, oblected to defense
efforts or defense-sponsored research. have been deep-
lv involved in such research and have consulted exten-
sively on defense projects. My conclusions are hased on

more than 20 years of research on software enginvening.

including more than 8 vears of werk on real-time scott-
ware used in military aircraft. Thev are based on famiar-
ity with both operational military software and computer
science research. My conclusions are based on charactor-
istics peculiar to this particular effort, not objectens o
weapons development in general.

I am publishing the papers that accompanied mv
letter of resignation so that inzerested pecple can under-
stand why many computer scentists beljeve tha: s
tems of the sort being considered by the sDIO canse: be
built. These essavs address the software engineenng
aspects of SDIO and the organization of engir:oring
research. They avoid political issues; those have been
widely discussed elsewhere, and I have nothing to add.

In these essays [have attempted to avoid technisal
jargon, and readers need not be computer programmers
to understand them. They mav be read in anv order.

The individual essavs explain:

L The fundumental technological ditterences e
tween software engineering and other areas ot éngineer-
ing and why software is unreliable;

2. The properties of the proposed sDI software that
make it unattainable;

3 Why the techniques conumonly used o build
military soflware are inadequate tor this joly;

4. The nature of rescarch in soitware engineering.
and why the improvements that it can effect will not e
sufficient to allow construction of a truly reliable strategic
defense systern;

5. Why 1 do not expect research in artificial intelli-
gence to help in building reliable militarv software;

6. Why 1 do not expect research in automatic
programming to bring about the substantial improve-
ments that are needed;

7. Why program verification {mathematical proots
of correctness) cannot give us a reliable strategic defense
battle-management system;

8. Why military funding of research in software and
other aspects of computing science is inefficient and
ineffective. This essay responds to the proposal tha*
SDIO should be funded even if the ABM system cannat
be produced, because the program will produce good
research.

Why software is unreliable

I. Introduction

People familiar with both software engineering and
older enginecring dlsczp]mes observe that the state of the
art in software is significantly behind that in other areas
of engincering. When most engineering, products have
been completed, tested, and sold, it is reasonable to

expect that the product design is correct and that it will -

work reliablv. With software produ«_ts it is usual to find
that the software has major “bugs” and does not work
reliably for some users. These problems may persist for
several versions and sometimes worsen as the software
is “improved.” While most products come with an
express or 1mphud warranty, software products often
carry a spedific disclaimer of warrantv. The lay public,
familiar with onlv a few incidents of software failure,
may regard them as exceptions caused by inept pro-
grammers. Those of us who are software professionais

ow better; the most competent programmers in the
)orld cannot avoid such problems. This section dis-
cusses one reason for this situation.

Il System tvpes

Engineering products can be classified as discrete
state svstems, analog systems, or hybrid systems.
Discrete state or digital svstems are made from
components with a finite number of stable states. They
are designed in such a way that the behavior of the
system when not in a stable state is not significant.
Continuous or analog svstems are made from com-
ponents that, within a broad operating range, have an
infinite number of stable states and whose behavior can
be adequately described by continuous functions.
Hybrid svstems are mixtures of the two tvpes of
components. For example, we mayv have an electrical
drcuit containing, in addition to analog components, a
few components whose descriptive equations have dis-
continuities (e.g., diodes). Each of these components has
a small number of discrete operating, states. Within these
tates its behavior can be described by continuows func-
tions.

IH. Mathematical tools AR

Analog systems form the core of the traditional
~areas of engineering. The mathematics of continuous
functions is well understood. When we say that a svstem
is described by continucus functions we are saving that
it can contain no hidden surprises. Small changes in
inputs will alwavs cause correspondingly small changes
in outputs. An engineer who ensures, through careful
design, that the system components are always operat-
ing within their normal operating range can use a
mathematical analvsis to ensure that there are no sur-
prises. When combined with testing to ensure that the
components are within their operating range, this leads

to reliable svstems.

Betore the advent of digital computers, when dis-
crete state svstems were built, the number of states in
such svstems was relatively small. With a small number
of states, exhaustive testing was possible. Such testing
compensated for the lack of mathematical tools corre-
spon: ding to those used in analog systems design. The
engincers of such svstems still had systematic methods

that allowed them to obtain a complete understanding of
their system’s behavior.

The design of many hybrid svstems can be verified
by a combination of the two methods. We can then
identifv a finite number of operating states for the
components with discrete behavior. Within those states,
the system’s behavior can be described by continuous
functions. Usually the number of states that must be
distinguished is small. For each of those states, the tools
of continuous mathematics can be applied to analyze the
behavior of the svstern

With the advent of digital computers, we found the
first discrete state svstems with very large numbers of
states. However, to manufacture such systems it was
necessary to construct them using many copies of very
small digital subsystems. Each of those small subsystems
could be analyzed and tested exhaustively. Because of
the repefitive structure, exhaustive teshn" was not nec-
essary to obtain correct and reliable hardware. Although
design errors are found in computer hardware, thev are
considered exceptional. They usually occur in those
parts of the computer that are not repetitive structures.

Software svstems are discrete state systems that do
not have the repehtl\e structure found in computer
circuitry. There is seldom a good reason to construct
software as highly repetitive structures. The number of
states in software svstems is orders of magnitude larger
than the number of states in the nonrepe*m\e parts of
computers. The mathematical functions that describe the
behavior of these systems are not continuous functions,
and traditional engineering mathematics does not help
in their verification. This difference clearly contribuies to
the relative unreliabilitv of software systems and the
apparent lack of competence of software engineers. It is
a fundamental difference that will not dlsappear with
improved technology.

IV. How can we understand software?

To ameliorate the problems caused by this funda-
mental difference in technology two techniques are
available: (1) the building of -sott\\ are as highly organized

collections of small programs and (2) the use of mathe-
matical logic to replace continuous mathematics.

Dividing software into modules and budiding cach
module of so-called “structured” programs clearly helps.
When properly done, each compenent desls with a
small number of cases and can be completely analvzed.
However, real software svstems have many such com-
ponents, and there is no repetitive structure to simplify
the analvsis. Even in highly structured svstems, sur-
prises and unreliability occur because the human mind is
not able to fully comprehend the many conditions that

Darid Lorge Parnas is Lansdowne Professor of Contpuiter Science at the
Urtiversity of Victoria, in British Columbia. and Principal Consuftant for the
Software Cost Reduction Project at Hie Naval Research Laberatery in
Washingten. DC. He has tawght ol Caregic-Mellon Uniiersity, Hie
University of Maryland, e Technische Hochschule Darmstadt, and Hie
University of Nortl Carclinn. His special interests inclide programmiong
semandics, langrage design. program oryauization, prvess sirichure, process
sinchronization, ad precise abstract specificabons. He is cirrently loeading
an cxperiniental redesion of @ hard vealtinee system, and s aizo molied i
Hie desiyn of @ langaye involving reiw control structures aud abstract data
types. Address: Departirent of Computer Science, University of Vicloria
PLO. Box 1700, Victoria, Brotes Celonbia, Caranda VEIV 2 0

1955 September-Cktober 433

o

e e =

[

D

can arise because of the interaction of these components.
Moreover, finding the right structure has proved to be
very difficult. Well-structured real software systems are
still rare.

Logic is a branch of mathematics that can deal with
functions that are not continuous. Many researchers
believe that it can plav the role in software enginecring
that continuous mathematics plavs in mechanical and
electrical engineering, Unfortunately, this has not vet
been verified in practice. The large number of states and
fack of regularitv in the software result in extremely
complex mathematical expressions. Disciplined use of
these expressions is bevond the computational capacity
of both the human programmer and current computer
svstems. There is progress in this area, but it is very
slow, and we are far from being able to handle even
small software systems. With current techniques the
mathematical expressions describing a program are often
notably harder to understand than the program itself.

V. The education of programmers

Worsening the differences between software and
other arcas of technology is a personnel problem. Most
designers in traditional enginecring disciplines have
been educated to understand the mathematical tools that
are available to them. Most programmiers cannot even
begin to use the meager tools that are available to
software engineeers,

Why the soi1 software system will be
untrustworthy

I. Introduction

In March 1983, the President called for an intensive
and comprehensive effort to define a long-term research
program with the ultimate goal of eliminating the threat
posed by nuclear ballistic missiles, He asked us, as
members of the scientific community, to provide the
means of rendering these nuclear weapons impotent
and obsolete. To accomplish this goal we would need a
softivare svstem so well-developed that we could have
extremely high confidence that the svstem would work
correcthy when called upon. In this section 1 will present
some ot the characteristics of the required battle-mana ge-
ment software and then discuss their implications on the
feasibility of achivving that confidence.

Il. Characteristics of the proposed battle-management
software svstem

1. The system will be required to identify, track, and
direct weapons toward targets whose ballistic character-
istics cannot be known with certainty before the moment
of battle. 1t must distinguish these targets from decoys
whose characteristics are also unknown.

2. The computing will be done by a network of
computers connected to sensors, weapons, and each
other, by channels whose behavior, at the time the
system is invoked, cannot be predicted because of
possible countermeasures by an attacker. The actual
subset of system components that will be available at the
time that the svstem is put into service, and throughout

the peried of service, cannot be predicted for the same
reason.

434

American Scientist, Voiume 73

3. It will be impossible to test the system under
realistic conditions prior to its actual use.

4. The service period of the system will be so short
that there will be little possibility of human intervention
and no possibility of debugging and madification of the
program during that period of service.

5. Like many other militarv programs, there are
absolute real-time deadlines for the computation. The
computation will consist primarilv of periodic processes,
but the number of those processes that will be required,
and the computational requirements of each process,
cannot be predicted in advance because thev depend on
target charactenistics. The resources available for compu-
tation cannot be predicted in advance. We cannot even
predict the “worst case” with any confidence,

6. The weapon system will include a large variety of
sensors and weapons, most of which will themselves
require a large and complex software svstem. The suite
of weapons and sensors is likely to grow during develop-
ment and after deploviment. The charactenistics of weap-
ons and sensors are not vet known and are likelv to
remain fuid for many vears after deplovment, The result
is that the overall battle-management software svstem
will have to integrate a software svstem significanty
larger than has ever been attempted before. The compo-
nents of that system will be subject to independent
modification.

III. Implications of these problem characteristics

Each of these characteristics has clear implications
on the feasibility of building battle-management soit-
ware that will meet the President’s requirements.

1. Fire-control software cannot be written witheut
making assumptions about the characteristics of enemy
weapons and targets. This information is used in deter-
mming the recognition algorithms, the sampling peri-
ods, and the noise-filtering techniques. If the svsiem Qs
developed without the knowledge of these characteris-
tics, or with the knowliedge that the enemy can change
some of them on the dav of battle, there are likely to be
subtle but fatal errors in the software.

2. Although there has been some real progress in
the area of “fail-soft” computer software, I have seen no
success except in situations where {a) the likelv faiures
can be predicted on the basis of past history, (b} the
component failures are unlikely and are statistically
independent, (c) the system has excess capacity, (d) the
real-time deadlines, if any, are soft, i.e., they can be
missed without long-term effects. None of these is true
for the required battle-management software.

3. No large-scale software svstem has ever been
installed without extensive testing under realistic condi-
tions. For example, in operational software for military
aircraft, even minor modifications require extensive
ground testing followed by flight testing in which battie
conditions can be closelv approximated. Even with these
tests, bugs can and do show up in battle conditions. The
inability to test a strategic defense svstem under field
conditions before we actually need it will mean that no
knowledgeable person would have much faith in the
system.

4. It is not unusual for software modifications to be
made in the field. Programmers are transported by
helicopter to Navy ships; debugging notes can be found

b

on the walls of trucks carry ing computers that were used
in Vietnam. It is only thmugh such modifications that

software becomes reliable. Such opportunities will not be

available in the 30-90 minute war to be fought by a

strategic defense battie-management system

5. Programs of this type must meet hard real-time
deadlines reha"»i\ In theory, this can be done either by
scheduling at runtime or by pre-runtime scheduling. In
practice, efficiency and predictability require some pre-
runtime “cheduling, Schedules for the worst-case load
are often built into the program. Unless one can work
out worst-case real-time schedules in advance, one can
have no confidence that the svstem will meet its dead-
lines when its service is required.

6. All of our experience indicates that the difficulties
in building software increase with the size of the svstem
with the number of independently modifiable %ubs\’b-
tems, and with the number of interfaces that must be
defined. Problems worsen when interfaces may change.

The consequent modifications increase the complexity of

the software and the difficulty of making a change
correctly,

IV. Conclusion

All of the cost estimates indicate that this will be the

" most massive software project ever attempted. The

svstem has numerous technical characteristics that will
make it more difficult than previous systems, indepen-
dent of size. Because of the extreme demands on the
system and our inability to test it, we will never be able
to believe, with anv confidence, that we have succeeded.
Nuclear weapons wili remain a potent threat.

Why conventional software development does
not produce reliable programs

1. What is the conventional method?

The easiest way to describe the programming meth-
od used in most projects todav was given to me by a
teacher whe was explaining how he teaches program-
ming. “Think like a computer,” he said. He instructed
his students to begin by thinking about what the com-
puter had to do first and to write that down. Thev would
then think about what the computer had to do next and
continue in that way unti] they had described the last
thing the computer would do. This, in fact, is the way 1
was taught to program. Most of today’s textbooks dem-
onstrate the same method, although it has been im-
proved by allowing us to describe the computer’s
“thoughts™ in larger steps and later to refine those large
steps to a sequence of smaller steps.

H. Why this method leads to confusion

This intuitively appealing method works well—on
problems too small to matter. We think that it works
because it worked fur the first program that we wrote.
One can follow the method with programs that have
neither branches nor looms. As soon as our thinking

Mes g peing where me wden of the computer must

RO S A oW nT w

o e ———— —m e

Coal S ST NV D TOUULLU TENIELL TYUTLL (DG TTUEINDL
©Y JA0SNng One O TMOT2 0f The aCUuUns and IEMemDenng
how we wouid get there. As soon as we introduce loops

into the program, there are many wavs of getiing to
some of the points and we must remember all of those
ways. As we progress through the algorithm, we recog-
nize the nee:] for mformation about earlier events and
add variables to our data structure. We now have to start
remembering what data mean and under what drcum-
stances data are meaningful.

As we continue in our attempt to “think like a
computer,” the amount we have to remember grows
and grows. The simple rules defining how we got to
certain points in a program become more complex as we
branch there from other points. The simple rules defin-
ing what the data mean become more complex as we
find other uses for existing varables and add new
variables. Eventually, we make an error. S(\metimes we
note that error; sometimes it is not found unti! we test.
Sometimes the error is not very imporiant, it h.‘.ppens
only, on rare or unforescen occasions. In that case, we
find it when the program is in use, Otten, beceuse one
needs to rememicer so much about the meaning of each
label and each variable, new probiems are created when
old problems are corrected.

III. What is the effect of concuniency en this methed?

In many of vur computer svstems there are several
sources of information and svveral outputs that must be
controlled. This leads to a com: putcr that might be
thought of as deing many things at ence. It the sequence
of external events cannot be predicted in advance, the
sequence of actions taken by the computer s also not
predictable. The computer may be doing enlv one thing
at a time, but as one abempts to “think iike a computer,
one finds many more points where tne action must be
cenditional on what happened in the]. ast APy attempt
to design these programes by thinking things through in
the order that the cos mputer will L\euue them leads to
confusion and resuits 1y svsiems that nobody can under-
stand completely.

IV. What is the effect of multiprocessing?

When there is more thon cne coniputer in a svstem,
the software not on‘\, appears to be dom" more than ore
thing at a time, it really 1s doing many ‘nmgs at once.
There is no sequential program that on n studyv. Anmy
attempt to “think like the computer svstem” is cbvicusty
hopeless. There are so many possiba ties to corsider that
only extensive testing can begin to sort things oul. Even
after such testing, we have incdents such as one that
happened on a space shuttle flight several vears ago. The
wrong combination of sequences occurred ard prevent-
ed the flight frem starting.

V. Do professional programmers realiv use this
approach?

Yes. [have had occasion to study lots of practical
software and to discuss programs with lots of profes-
sional programmers. In recent vears many programmers
have tried to improve their working methods using a

variety of software design apvroaghw However, when
thev zet down o wonng esecutable orevmzms,
Ty -,-r¢1»1n,~_ :

—_—

u‘\.\
o

TUIe Was NOL DEsed on ne LXORTIRL X 2TUTUN

I would be happyv to be shown some.

1985 September-October 435

ST s R e e

Other methods are discussed in advanced courses, They doubted that programs organized according to the
a few good textbooks, and scientific meetings, but most principles espoused by academics could ever meet the
Programmers continue to use the basic approach of performance constraints on “real” svstems. Even those
thinking things out in the order that the computer will who claimed to believe in these principles were not able
execute them. This is most noticeable in the maintenance to apply them consistentlv,

(deficiency correction) phase of programming. In 1977 the management of the Naval Research
,) o Laboratory in Washington, DC, and the Naval Weapons
VI. How do we get away.with this inadequate Center in China Lake, California, decided that some-
approach? : '

thing should be done to close the £ap. Thev asked one of
It should be clear that writing and understanding the academics who had faith in the new approach
very large real-time programs bv “thinking like a com- (myself) to demonstrate the applicability of those meth-
puter” will be bevond our intellectual capabilitics. How ~ ods _b." bl._uldmg, tor ““f sake of comparison, a second
€an it be that we have so much software that is reliable Vversion ot a Navy real-time program. The project, now
enough for us to use it? The answer is simple; program- known as the Software Cost Reduction Project (SCR},
ming is a trial and error craft. People write programs ~ Was expected to take two to four years. It is still going
without any expectation that they will be right the firsg on. .)
time. Thev spend at least as much time testing and The project has made two things clear: (1) much of
comecting errors as they spent writing the initial pro- Wwhat the academics proposed can be done; (2) good
gram. Large concerns have separate groups of testers to ~ Software engineenng is far from easy. The methods
)do quality assurance. Programmers cannot be trusted to reduce, but do not eliminate, errors. They reduce, but do
test their own programs adeguately. Software is released Not eliminate, the need for testing.
for use, not when it is known to be correct, but when the

! ' : II. What should we do and what can we do?
rate of discovering new errors slows down to one that

Mmanagement considers aceeptable. Users learn to expect The SCR work has been based on the following
errors and are often told how to avoid the bugs until the precepts: .
Program is improved. 1. The softwire requirements should be nailed

down with a complete, black-box requirements docu-
VIL Conclusion ment before software design is begun.

2. The svstem should be divided into modules using,
information-hiding (abstraction) before writing the pro-
gram begins. ; '

3. Each module should have a precise, black-box,
formal specification before writing the program begins.

4. Formal methods should be used to give precise

documentation. '
The limits of software engineering methods 5. Real-time systems should be built as a set of
cooperating sequential processes, each with a specified
period and deadline.

The military software that we depend on every day
is not likely to be correct. The methods that are inuse in
the industry todav are not adeauate for building large
real-time software svstems that must be reliable when
first used. A drastic change in methods is necded.

L. What is software engineering research?

We have known for 25 vears that our pn)grﬂmming 6. I’mgmms should be written using the ideas of
methods are inadequate for large projects. Research in structured programming as taught by Harlan .\Iillg.

Wtware engincering, programnting methodology, soft- We have demonstrated that the first four of these

ware design, etc., Jooks for better tools and methods, precepts can be applied to military software by doing it.

The common thrust of results in these ficlds is to reduce The documents that we have written have senved as
the amount that o programmer must remember when models for others. We have evidence that the models
checking and changing a program. provide a most efective means of technology transfer.

; Two main hnes of research are (1) structured pro- We have not vet proved that these methods lead to
‘gramming and the use of formal program semantics and reliable code that mects the space and time constraints.
(2) the use of formally specified abstract interfaces to hide We have found that every one of these precepts is easier
Information about one module (work asstgnment) from to pronounce than to carry out. Those who think that
the programmers who are working on other parts. A software designs will become easy, and that errors will
third idea, less well understood but no jess important, is disappear, have not attacked substantial problems.

the use of cooperating sequential processes to help deal
with the complesitios arising from concurrency and
multiprogramming. By the late 19705 the basic ideas in We can write software requirements documents
suttware engineering were considered “motherhood” in - that are complete and precise. We understand the math-
the academic community, Nonetheless, cxaminations o ematical model behind such documents and can follow a

IIL. What makes software engineering hard?

real programs revealed that actual Frogramming prac- svstematic procedure to document all NEeCessary require-
tice, especiallv for militany svstems, had not been ments decisions. Unfortunately, it is hard to make the
changed much by the publication Sf the academic pro- decisions that must be made to write such a document.
posals, We often do not know how to make those ducisions until.

The gap between theony and practice was large and we can play with the system. Onlv when we have built a
growing. Those expousing structured approaches to similar system before is it easy to determine the require-
software were certain that it would be vasy to apply their . ments in advance, It is worth doing, but it is not easy,
ideas to the problems that they faced in their daily work. We know how to decompose comples systems into

436 American Scientist, Volume 3

medules when we know the set of design decisions that
must be made in the implementation. Each of these must
be assigned to a single module, We can do that when we
are building a system that resembles a system we built
before. When we are solving a totally new problem, we
will overlook difficult design decisions, The result will be
a structure that does not fully separate concerns and
minimize complonity.

We know how to specify abstract interfaces for
modules. We have a set of standard notations for use in
that task. Unfurtunatel_v, it is verv hard to find the right
interface. The interface should be an abstraction of the
set of all alternative designs, We can find that abstraction
only when we understand the alternative designs. For
example, it has proved unexpectedly hard to design an
abstract interface that hides the mathematical model of
the earth's shape. We have no previous experience with
such models and ne one has designed such an abstrae-
tion before.

The common thread in all these observations is that,
even with sound software design principles, we need
broad experience with similar systems to design good,
reliable software.

IV. Will new programming languages make much
difference?

Because of the very large improvements in prodtic-
tivity that were noted when compiler languages were
introduced, many continue to look for another improve-
ment by introducing better languages. Betler notation

always helps, but we cannot expect new languages to-

provide the same magnitude of improvement that we
got from the first introduction of such languages. Qur
experience in SCR has not shown the lack of o language
to be a major problem,

Progranmming languages are now sufficiently flexi-
ble that we can use almost any of them for almost any
task. We should seck simplitications in programming
languages, but we cannot expect that this will make a big
difterence.

V. What about programming environments?

The success of UNIX™ as a programming-develop-
ment tool has made it clear that the environment in
which we work does make a ditference. The flexibility of
UNIX'" has aliowed us to eliminate many of the time-
consuming housckeeping tasks involved in producing
large programs. Consequently, there is extensive re-
search in programming environments. Here, too, 1 ex-
pect small improvements can be made by basing tools on
improved notations but no big breakthroughs. Problems
with our pregramming environment have not been a
major impediment in our SCR work.

VI. Why sothware engineering rescarch will not make
the sDI goals attainable

Although I believe that further research on software
engineenng methods can lead fo substantial improve-
ments moour ability to build Jarge reak-timwe software
svstems, this work will not overcome the ditticultios
inherent in the plans for battle-manogement computing
for 5DI. Software engineering methods do not eliminate
errors. Thev do not eliminate the basic differences be-
tween sothware technolugy and other areas of engineer-

ing. They do not eliminate the need for extensive testing
under field conditions or the need for opportunities to
revise the svstem while it is in use. Most important, we
have learned that the successful application of these
methods depends on experience accumulated while
building and maintaining similar svstems. There is no
body of experience for sD1 battle management.

VII. Conclusion

I am not a modest man. | believe that | have as
sound and broad an understanding of the problems of
software engineering as anyone that I know. If vou gave
me the job of building the svstem, and all the resources
that Twanted, I could not do it. I don’t expect the next 20
years of research to change that fact.

Artificial intelligence and the Strategic Defense
Initiative

I Introduction

One of the technologies being considered for use in
the SDI battle-management software is artificial intelli-
gence (Al). Researchers in Al have often made big
claims, and it is natural to believe that one should use
this technology for a problem as difficult as spr battle
management. In this section, | argue that one cannot
expect much help from Al in building reliable battle-
management software.

II. What'is artificial intelligence?

Two quite different definitions of Al are in common
use today.

Al-1: The use of computers to solve problems that
previously could be solved only by applving human
intelligence,

AlL2: The use of a specitic set of programming,
techniques known as heuristic or rule-based program-
ming. In this approach human experts are studied to
determine what heuristics or rules of thumb they use in
solving problems. Usually they are ashed for their rules.
These rules are then encoded as input to a program that
attemipis to behave in accordance with them. In cther
words, the program is designed to solve a problem the
way that humans seem to solve it

It should be noted that the first defimtion defines Al
as a sct of problems, the second defines Al as a set of
techniques. The first definition has a sliding meaning. In
the Middle Ages, it was thought that arithmetic required
intelligence. Now we recognize it as a mechanicai act.
Something can fit the definition of Al-1 today, but, once
we see how the program works and understand the
problem, we will not think of it as Al anvmore,

It is quite possible for a program to meet one
definition and not the other. If we build a speech-
recognition program that uses Bavesian mathematics
rather than heuristics, it is Al-1 but not Al-2. If we write a
rule-based program to generate parsers for precedence
grammars using heuristios, it will be A2 but not Al
because the problem has a known algorithmic solution.

Although it is possible for work to satisty both
definitions, the best Al-1 work that I have seen does not
use heuristic or rule-based methods. Workers in Al-1
often use traditional engineering and sdentific approach-

1955 September-October 437

es. They studv the problem, its physical and logical
constraints, and write a program that makes no attempt
to mimic the way that people say they solve the prob-
lem.

IIl. What can we learn from Al that will help us build
the battle-management computer software?

I have seen some outstanding Al-1 work. Unfortu-
nately, I cannot identify a body of tech nigues or technol-
ogy that ts unique to this ficld. When one studics these
Al-1 prozrams one finds that thev use sound scientific
approaches, approaches that are also used in work that
is not cailed AL Most of the work is problem spedific,
and some absiraction and creativitv are required to see
how to transfer it. People speak of ‘Al as if it were some
magic body of new ideas. There is good work in Al-1 but
nothing so magic it will allow the solution of the spr
battle-management problem.

I find the approaches taken in Al-2 to be dangerous

?16] much of the work misleading. The rules that one

btains by studving people turn out to be inconsistent,
incemplete, and inaccurate. Heuristic programs are de-
veloped by a trial and error process in which a new rule
is added whenever one finds a case that is not handled
by the old ruies. This approach usually vields a program
whose behavior is poorly understood and hard to pre-
dict. Al-2 researchers accept this evolutionary approach
to programming as normal and proper. | trust such
programs even less than [trust unstructured conven-
tional programs. One never knows when the program
will fail,

On occasion | have had to examine closely the
claims of a worker in Al-2. 1 have always been disap-
pointed. On close examination the heuristics turned out
to handle 2 smali number of obvious cases but failed to
work in general. The author was able to demonstrate
spectacular behavior on the cases that the program
handled correctly. He marked the other cases as exten-
siens for tuture researchers. In fact, the technigues buing
)sed often do not generalize and the improved program

LVer appears.

IV. What about expert systems?

Lately we have heard a great deal about the success
of a particular class of rule-based systems known as
wexpert syslems. Everv discussion citos onge example of
such a system that is bring used to solve real problems
by people other than its developer. That exomple s
always the same—a program designed to find configura-
tons for vAX computers. To manv of us, that does not
sound like a difficult problem; it sounds like the kind of
problem that is amenable to algorithmic solution because
VAX systems are constructed from well-understood,
well-designed components. Recently I read a paper that
reported that this program had become a maintenance
nightmare. It was poorly understood, badiv structured,
and herce hard to change. I have good reason to believe
that it could be replaced by a better program written
using good software engineering techniques instead of
heuristic techniques.

SDI presents a problem that may be more difficult
than those being tackled in Al-1 and expert systems,
Workers in those areas attack probiems that how require
human expertise. Some ot the problems in $DI are in

-

438 American Scientist, Volume 73

areas where we now have no human experts. Do we
now have humans who can, with high reliability and
confidence, look at missiles in ballistic flight and distin-
guish warhcads from decoys?

V. Conclusion

Artificial intelligence has the same relation to intelli-
gence as artificial flowers have to flowers. From a
distance they may appear much alike, but when closely
examined they are quite different. I don't think we can
Jearn much about one by studving the other. Al offers no
magic technology to soive cur problem. Heuristic tech-
niques do not yield systems that one can trust.

Can automatic programming solve the spi
software problem?

L. introduction

Throughout my career in computing I have heard
people claim that the solution to the software rroblem is
automatic programming. All that one has to do is write
the specifications for the software, and the computer will
find a program. Can we expect such technolegy to
produce reliable programs for sp1?

II. Some perspective on automatic programming

The oldest paper known to me that discusses auto-
matic programming was written in the 1940s by Saul
Gorn when he was working at the Aberdeen Proving
Ground. This paper, entitled “Is Automatic Program-
ming Feasible?” was classified for a while. It answered
the question positively.

At that ime, programs were fed into computers on
paper tapes. The programmer worked the punch direct-
ly and actually looked at the holes in the tepe. [have
seen programmiers “patch” programs by literallv patch-
ing the paper tape.

The automatic programming svstem considered bv
Gorn in that paper was an assembler in todayv's terminol-
ogy. All that one would have to do with his automatic
programming svstem would be to write a code such as
CLA, and the computer would automatically punch the
proper holes in the tape, In this way, the programmer’s
task would be performed automaticatly by the computer,

In later years the phrase was used to refer to
program generation from languages such as 1, rox-
TRAN, and ALGOL. In cach case, the programmer en-
tered a specitication of what he wanted. and the comput-
er produced the program in the language of the
machine.

In short, automatic programming alwavs has been a
euphemism for programming with a higher-level lan-
guage than was then available to the programmer.
Research in automatic programming is simplyv research
in the implementation of higher-level programming lan-
guages.

III. Is automatic programming feasible? What does that
mean?

Of course automatic programming is feasible. We
have known for years that we can implement higher-
level programming languages. The only real question
was the efficicncy of the resulting programs. Usually, if

the input “specification” is not a description of an
algorithm, the resulting program is woefully inefficient. I
do not believe that the use of nonalgorithmic specifica-
tions as a programming language will prove practical for
svstems with limited computer capacity and hard real-
time deadlines. When the input specification is a descrip-
tion of an algerithm, writing the specification is really
writing a program. There will be no substantial change
from our present capability.

IV. Will automatic programming lead to more reliable
programs?

The use of improved languages has led to a reduc-
tion in the amount of detail that a programmer must
handle and hence to an improvement in o reliability,
However, extant programming languages, while far
from perfect, are not that bad. Unless we move to
nonalgorithmic specifications as an input to these sys-
tems, | do not expect a drastic improvement to result
from this research.

On the other hand, our experience in writing non-
algonithmic specitications has shown that peeple make
mistakes in writing them just as they do in wrniting
algorithms. The cftect of such work on reliability is not
yel clear.

V. Will automatic programming, lead 1o a reliable spr
battle-management system?

I believe that the claims that have been made for
automatic programming svstems are greatly exaggerat-
ed. Automatic programming in a wav that is substantial-
ly different from what we do today is not likely to
become a practical tool for real-time svstems like the sp1
battle-management svstem. Moreover, one of the basic
problems with sD1 is that we do not have the informa-
tion to write specifications that we can trust. In such a
situation, automatic programming is no help at all.

Can program verification make the sp1 software
reliable?

I. Introduction

Programs are mathematical objects.” Thev have
meanings that are mathematical objects. Program spedifi-
cations are mathematical objects. Should it not be possi-
ble to prove that a program will meet its specification?
This has been a topic of research now for at least 25
vears. If we can prove programs correct, could we not
prove the $DI software correct? I it was proved correct,
could we not rely on it to defend us in time of need?

1. What can we prove?

We can prove that certain small programs in special
propramaing languages meet a spagification, The word
stall is - relative one. Those working in verification
would consider a S00-line program to be large. In
discussing sbI software, we would consider a 500-line
program to be small. The programs whose proofs 1 have
seen have been well under 500 lines. They have per-
formed easily defined mathematical tasks. They have
been written without use of side effects, an important
tool in practical programs.

Proofs for programs such as a model of the earth’s

gravity field do not have these properties. Such pro-
grams are larger; their specifications are not as neat or
mathematicallv tormalizable. They are often written in
programming languages whose semantics are dificult o
formalize. [have seen ~o proof of such a program.

Not only are manual proofs limited to programs of
small size with mathematical spedifications; machine
theorem provers and verifiers are also strictly limited in
the size of the program that thev can handle. The size of
programs that they can handle is several orders of
magnitude different from the size of the programs that
would constitute the sp1 battle-management system,

HE. Do we have the specifications?

In the case of $DI we do not have the specifications
against which a proof could be applied. Even if size were
not a problem, the lack of specifications would make the
notion of a formal proof meaningless. If we wrote a
formal specification for the software, we would have no
wav of proving that a program that satistied the specifi-
cation would actually do what we expected it to do. The
specitication itself might be wronyg or incomplete.

IV, Can we have faith in proofs?

Proofs increase our confidence in a program, but we
have no basis for complete confidence. Even in pure
mathematics there are many cases of proots that were
published with errors. Proofs tend to be reliable when
they are small, well polished, and carefuliy read. They
are noet reliable when thev are large, complex, and not
read by anyone but their author. That is what would
happen with any attempt to prove even a portion of the
SDI software correct.

V. What about concurrency?

The proof techniques that are most practical are
restricted to sequential programs. Recent work on proofs
of systems of concurrent processes has focused on
message-passing protocols rather than processes that
cooperate using, shared memory. There are some tech-
niques that can be applied with shared memory, but
they are more difficult than proofs for sequential pro-
grams or proofs for programs that are restricted to
communication over message channeis.

V1. What about programs that are supposed to be
robust?

One of the major probiems with the spI software is
that it should function with part of its equipment de-
stroved or disabled by enemy action. In 20 vears of
watching attempts to prove programs correct, [have
secn only one attempt at proving that a program would
get the correct answeer in the event of a hardware tailure.
That proot made extremely unrealistic assumptions. We
have no technigues for proving, the correctness of pro-
prams in ihe presence of unknown hardware failures
and errors in input data.

VII. Conclusion

It is inconceivable to me that one could provide a
convincing proof of correctness of even a small portion
of the sDr software. Given our inabilitv to specifv the
requiremcents of the software, 1 do not know what such a
proof would mean if | had it.

1985 Septernber-GOctober 439

Is sp1o an efficient way to fund worthwhile
research?

The subject of this section is not computer science.
Instead, it discusses an issue of concern to all modern
scientists: the mechanism that determines what research
will be done. These remarks are based on nearly 20 vears
of experience with DoD funding as well as experience
with vther funding mechanisms in several countries.

L. The proposal

In several discussions of this problem, | have found
people telling me thev knew the SDI10 software could not
be built but felt the project should continue because it
might fund some good research. In this section 1 want to
discuss that point of view:,

II. The moral issue

There is an obvious moral issue raised by this
position. The American prople and their representatives
ave been willing to spend huge amounts of money on
his project because of the hope that has been offered. Is
it honest to fake the attitude expressed above? Is it wise
to have our policvmakers make decisions on the as-
sumption that such o system might be possible? Fam not
anoexpert on monl or political sstees and olfer
tiiswers o these questions,

HL Is Dol sponsoning of software rescarch clfective?

I can raise another problem with this position. Is the
SLIO an effective way to get good research done?
Throughout many vears of association with DoD I have
been astounded at the amount of money that has been
wasted on ineffective research projects. In my first
contact with the US Navy, | watched millions of dollars
spent on a wild computer design that had absolutely no
technical menit. It was abandoned many vears after its
lack of merit became clear. As a consultant for both the
Navy and a number of contractors, 1 have seen expen-
sive software research that produces veny large reports

)\'ith very little content. I have seen those farge, expen-

Ve reports put on shelves and never used. [have seen
many almost identical efforts carried out independently
and redundanilv. I have seen talented professionals take
approaches that thev considered unwise because their
“customers” asked for it 1 have seen their customers
take positions thev do not understand because they
thought that the contractors believed in them,

In computer software, the Dol contracting and
funding scheme is remarkabiy neffective because the
bureaucrats who run it do not understand what thev are
buving.

IV. Who can judge research?

The most difficult and crucial step in research is
identifving and defining the problem, Successful re-
searchers are usually those who have the insight to find
a problem that is both solvable and important,

For applied research, additional iudgment is need-
ed. A problem mav be an important one in theory, but
there mav be restrictions that prevent the use of its
solution in practice. Only people cosely familiar with the
practical aspects of the problem can judee whether or
not they could use the results of g research project.

H0 American Saentist, A ojume 73

Applied research must be judged by teams that
include both successful researchers and experienced
svstem engineers. They must have ample opportunity to
meet, be fully informed, and have clearly defined re-
sponsibilities,

V. Who judges research in DoD?

Although there are a few notable exceptions within
DoD, the majority of those who manage its applied
rescarch program are neither successtul researchers nor
people with extensive system-building experience. There
are outstanding researchers who work for DoD, but
most of them work in the laboratories, not in the tunding
agencies. There are many accomplished svstem buiiders
who work for DoD, buf their managers otten consider
them too valuable to allow them to spend their time
reviewing research proposals. The peeple who end up
making funding decisions in DoD are Very often unsue-
cesstul researchers, unsuccesstul svstem builders, and
people who enter burcaucracy immediately after their
education. We call them technocrats.

Technocrats are bombarded with weighty volumes
of highiy detailed proposals that thev are il preparad o
judge. They do not have the time to studv and think;
thev are forced to relv on the advice of others, When
they Jook tor advice, theyv ook tor people that they Kooy
well, whether o not they are people whose areas ot
expertise are appropriate, and whother or not they have
unbiased positions on the subject.

Most technocerats are honest and hard-working, but
they are not capable of doing what is needed. The result
1s a very inefficient research program. I am convirced
that there is now much more moneyv being spent on
software research than can be usefully spent. Ver little
of the work that is sponsored leads ‘o results that are
useful. Many useful results go unnoticed because the
good work is buried in the rest.

V1. The spio

The sD10 is a typical organization of technocrats. It
is so involved in the advocacy of the program that it
cannot judge the quality of the research invoived.

The sDIO panel on battle-management computing,
contains not one person who has built achual battle-
management software. It containg no experts on trajec-
tory computations, pattern recogniion, or other areas
enitical to this problem. All of its members stand to profit
from continuation of the program. -

V1. Alternatives

If there is good research being funded bv sp10, that
research has an applicability that is far broader than the
SDI itself. It should be managed bv teams of scientists
and engineers as part of a weli-organized research
program. There is no need to create a special organiza-
tion to judge this research. To do so is counterproduc-
tive. It can only make the program less etficient.

VIIL Condusion °*

There is no justification for continuing with the
pretense that the spj battle-management sottware can be
built just to obtain funding for othenvise worthwhile
programs. DoD's overall approach to rescarch manage-
ment requires a thorough evaluation and review by
people vutside the DoD.,

*

T

vE, THURSDA-Y. DECEMBER 35, 1985

i ' Page.,s

SDI Sbftware Possible, Senators Are \.TOld

By Boyce Rensberger
Washingion Post Service
WASHINGTON -~ Computer
programming experts who say it
woul(be nearly impossible to write
“the software for “Siar Wars" repre-
sent & “stagnant subculture” that
“grossly overrates” the difficulty of
the task, according to the head of

the software commuttee of the Stra-,

tegic Defense Initiative Organiza-
uen. -

Danny Cohen, a computer scien-
tist at the University of Southern
California, told a Senate panel
Tuesday that the software needed
for an anti-missile system can be
created without breakthroughs in
programming technology.

*“There are those who claim that

they cannot produce adequate soft-
ware,” Mr. Cohen said in testimo-
ny before the Senate Armed Ser-
vices Subcommittee on Strategic

-and Theater Nuclear Forces, “We

agree that they cannot. There are
experts who claim that they can,
We agree with them, t00.”
Although he conceded that it is
impossible to “de-bug” programs
completely, Mr. Cohen said the
software can be designed so that
errors do not disable the system.
Such a system, he said, can be one
that “copes with imperfections and
corrects for them, rather than at-
tempts to achieve an unattainable
perfection.” N
David L. Parnas, a leading eritic
of SDI software potential, told the

senators that while components
could be tested before deploymeént,
there would be no way to measure
the reliability of an operational sys-
tem. C

- Mr. Pamnas, a professor at the
University of Victoria in British
Columbia, was appointed to an ad-
visory committee of the Strategic
Defense Initiative Qrganization.
But he resigned in July on the
ground that he could not in good
conscience work on a program that
he thought was doomed to fail.

“You never really know when
you've found the last bug” Mr.
Parnas said. He said that all experi-
ence with software has shown that
errors show up long after a system
is put into use. He cited aborted

launches of the sipace shuttles that
were traced to s:>ftware errors that
showed up only when certain con-
ditions occurre} simultaneously, a
situation that years of previous
testing had fail ed to simulate.

Mr. Cohen 1.0ld the senators that

softwarc coulcl be made to work by
using redunctant programs that
could functicn semiautonomously
and that wou Id be written by inde-
pendent grotips of programmers,
- “To achitwve this,” Mr. Cohen
said, “we sh ould not look for help
from the ins titutionalized and stag-
nant subculiure of the ‘software
cnginesring;’ establishment.”

He said “this sect grossly over-
rates the perfection of Swiss clock-
work, and strives to achieve it.”

