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Abstract

We attempt to describe the situation in sofiware development which led to the
invention of various techniques now known collectively as Sofiware Engineering. This
in turn leads us to consider to what extent real computer users, and in particular
computational physicists, could profit from the use of these techniques.
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1. WHERE ARE WE AND HOW DID WE GET THERE?

What a marvelous invention ia the stored-program computer! A truly universal calculating engine, it
will perform any combination of logical or xrithmetic operations at great speed. All the user has to do,
foralnyputiculncalcuhﬁon.iltotelltheoumpumcunlywhm it should do, in the form of a set of
instructions called a program.

It all sounds so simple, and indeed it can be, provided the problem to be solved i “smali enough”
to be casily understood. But then we would hardly need a computer, would we?

Here ;keady is the basic contradiction: We expect computers to solve problems that arc too
complicated for our heads alone, and yet the precise instructions for solving the problems must come
from thosc same heads. How should one set about writing 4 program to solve a complicated problem,
and is there a way to verify that the problem is in fact being solved correctly?

These are among the questions that Software Engineering tries to answer. In this paper [ cxamine
the extent to which physicists can profit from learning and using the techniques of Software

Engincering.

1.1 Early History,

When the first commercially-made computers became generally available in the late 1950's and early
1960's, the writing and cperating of a program was an exercise involving intimate contact with the
computer hardware and little concern for more abstract ideas of what we would now call “good
programming”. In those days, when computer memories were relatively small and slow, the complexity
of problens which could be handled was much less than now, and the principal challenge to the
programmer was to achicve maximum efficiency on the machine avajlable. A “good program” was one
that would save & few words here and some milliscconds there; any trick was acceptable if the program
wotked. No thought was given 10 the possibility that someons may have to maintain, modify, or even

underatand the program again at some later time.



page 3

1.1.1 FORTRAN

Even the earliest high-level languages were designed specifically to be cfficiont and to translate easily to
the basic machine languages of the time. The most successful of these languages, FORTRAN 1, was
designed specifically for the early range of IBM machines (704, 709), and even though both
FORTRAN and computer architectures have both changed cbnsiderably over the years, it is still true
that FORTRAN is the most efficient of high-leve] languages for most numerical calculations.
Physicists generally appreciate FORTRAN because it is efficient, and also because they can leamn

it casily and because it does morc or less what they want. If the average physicist were to read the
computer science literature, he would be surprised to find that Dijkstra has said: [1]

“The second major development on the software scene that [ would like to mention is

the birth of FORTRAN. At that titne this was a project of great temerity, and the

people responsible for it deserve our great admiration. It would be absolutely unfair to

blame them for shori-comings that only became apparent after a decade or %o of

cxtensive usage: groups with a successful look-ahead of ten years are quite rare! In

retrospect we must rate FORTRAN as a successful coding technique, but with very

few effective aids 1o conception, aids which are now so urgently needed that time has

come to consider it out of date. The sooner we can forget that FORTRAN ever

existed, the better, for as a vehicle for thought it is no longer adequate: it wastes our

brainpower, and it is too risky and therefore too expensive to uss. FORTRAN'S tragic

fate has been its wide acceptance, mentally chaining thousands and thousands of

programmers to our past rnistakes, I pray daily that more of my fellow-programmers

may {ind the means of freeing themselves from the curse of compatibility.”
We may wonder how it is that such a terrible language has nevertheless been used so successfully for
50 long. If he doesn’t like FORTRAN, what does Dijkstra recommend that we use instead? At the

time he wrote this, he in fact recommended ALGOL, although he admitted that it was also not ideal,

1.1.2 ALGOL

ALGOL was the computer scicntists” answer to the shortcomings of FORTRAN. For the purposes of
this paper, it is not neccssary to distinguish between the various dialects of ALGOL (58, 60, 68), let us
say only that ALGOL is problem-oriented rather than machine-oriented, and as such it became the
“respectable” language, although people largely continued to use FORTRAN to write real programs.

An absurd situation quickly developed, whercby new programs would be written and used in
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FORTRAN and then tranlsted into ALGOL if they were oonsidered of enough interest to be
published. Readers of the journal would then tranalate the ALGOL programs back into FORTRAN
in order to use them. This situstion was finally rectified when the ACM journals decidad to accept
programs and algorithms in FORTRAN. Nowsdays many journals publish algorithms and small
programs, always in their original language, and this is, for physics and related numerical analysis,
usually FORTRAN.

We now know that ALGOL was cssentially inedequate for writing real programs (see below for
definition of a teal program). lnput/outpm.wn not even mentioned in the language definition,' good
compilers did not exist, and there was little or no run-time support for such things as file handling and
error tecovery. But for the computer scientists, ALGOL was much more then just a programming
language. It was the first of a succession of so<called “ALGOL-like” langauges, of which the most
successful have been PASCAL, MODULA, and pseudo-code.?

1.1.3 The Credibility Gap

The conflict between advocates of FORTRAN and ALGOL was both a cause and a symptom of a
situationofmutmlmiatmstmdmmn‘betwwnphy:icimmdomnpuwr:dmtixtuwﬁchw:mycaﬂ
the Credibility Gap.

On the one hand, physicists were interested in producing running programs to solve often
complex physics problems, and it was clear to them that comparter acientists {whom they suspected of
never having actually written a program) had nothing to offer but bad advice.

On the other hand the computer scientists, armed with mathematical procfs of the supesiority of
their methods, had onty scom for the masses of applications programmers who were turning out
thousands of lines of inelegant code filied with undiscoverable bugs and insccuracies.

! OF course ALGOL programs perform inputjoutput, but it 1s not “sandard”. In fact, 0o true international standard for
ALGOL 60 was ever made, wheress the first FORTRAN standard appearsd In 1566,

1 Preudocode i tiot intended to be complled, but s heavily used for pracise descriptions of algorithms.



page §

As a result of the Credibility Gap, computer scientists benefitted very little from the experience of
those working on big scientific programs, and physicists tended to ignore the more clegant methods,
tools, and algorithms produced by the computer professionals. Fortunately, this situation is now
improving and the two worlds are moving closer together, but much progress can still be made. One
area where physicists arc beginning to recognize the possible value of computer acience is that of

Sofiware Engineering.

1.2 Case Studies.

Softwarc Enginecring was bom out of the realization that software was becoming a major bottleneck
in many projects, that softwarc was consistently delivered later than expected and full of bugs or not
working at all.

In order to overcome this problem, it is necessary to understand how it arises, and for that we
need information about just what happens te individual projects. Unfortunately, detailed case studies
are 1are, especially for unsuccessful projects. After all, who wants to make a detailed report on his
project after it has failed? Even if it has worked, the inevitable pressure to improve it or 1o embark on
a new project is usually overwhelming, and in any case, people working on real projects arc paid to
make thern work, not to describe their success or failure.

Fortunately, there are a few organizations so big that they can afford to invest some of their time
in seeing what they do the rest of the time, and this has proved to be a sound investment for the entire
data processing community. One such organization is IBM, and they have produced innumerable

software projects, of which two have become especially famous: 08/360 and The New York Times
Information Bank.
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1.2.1 IBM 05/360

In 1964, Frederick Brooks became project manager for the writing of 08/360, one of the first real
computer operating systems, and probably among those that will ive the longest. This enormous
project, believed to have cost about $200,000,000 in 1973, praved 1o be far more complex than
originaily expected. Although it is not explicitly the subject of a case mudy, it has inspired several
works by Prof. Brocks, of which the most famous is "The Mythical Man-Month’, [2]

On balance, one should probably consider the 05/360 project to have been a success, since it did
ultimately get written and has been used by untold thousands of not-always-happy customenrs, but the
most succeasful part of the project may tum out 1o be the writings of Brooks, who has analyzed with
clarity and some humour, the pitfalls of such s project. The meaning of the title “The Mythical
Man-Month’ is that it is NOT true, at least for a software project, that you can multiply the number
of men times the number of months to calculate the total software output. (“This may be true of
picking cotton”, he says.) We discuss some of Brooks” results below.

To thoss of us who have had to suffer under the burden of using IBM JCL, it is very enlightening
to leam about the 08360 project, since it then becomes clear that it was not at all intended that IBM
operating systems should Jook like JCL. That was simply as far as things had got when the project ran

completely out of resources (time and money).
1.2.2 The New York Tisses Project.

In contrast to the O8/360 project which was begun in the pre-Software Engineering era and serves s a
model of what can go wrong, the project (also undertaken by IBM) to write an information retrieval
system for the New York Times is often taken as the proof that Software Enginesring really works,
Since it is considered as a great success, it is not surprising that it is probably the best documented cass
study of any major software project.

The new idea used in the NYT project was the “chicf programmer tcam®, and those responaible
are clearly proud of the whole project. More recent criticism of the project indicates however that the
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“chiel programmer tcam” concept is no loniger considered positively, and it is no longer so clear that
the project was even very successful in terms of the difficulty later encountersd in maintaining the
system. A lesson to be lcamed here is that case studies, especially when written by the people involved
directly, may be extremely optimistic about the quality of the final product and tend to ignore

important problem areas.
1.2.3 More Recent Studies,

Since around 1980, publication of case studies has become more common, although they mostly suffer
from the same defects as before. The US. Department of Defense, for cxample (one of the few
institutions bigger than IBM), has produced quite a few.

In addition, a further phenomenon, the “Survey” or "Statistical Study” has proved exceptionalty
uscful. In a Survcy, a computer science rescarch worker interviews many people responsible for

software projects, collecting and publishing the results statistically, without referring to any project

cxplicitly, This has several advantages:

* The project leaders are more likely to be honest about the success or failure of their project
since it is not identified in the sample,

* The projects 1o be sampled are chosen by the research worker, who is not involved in the
projects and therefore chooses them according to some objective criterion not connected

with the success or failure of the project.

® The results allow easily to distinguish between, typical and exccptional properties of a

project,
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1.3 The Life-Cycle

One of the major advances in Software Engineering which grew out of the case studies has been the
realisation that & major software project has its own “life”, generally characterized by certain rather
well-defined stages which make up what is known as the life-cycle. The study of the typical life-cycle
does not directly help us to write better programs, but it certainly does help in planning the resources
that will be required, and in avoiding the nasty wurprise which may come when we realize that our
project, after all, is not behaving any differently from all the others.

The vatious stages through which a large programming project generally goes during ita existence
may be characterized in different ways, but the following steps are usually identifiable:

1. Feasibility and Requiremenis Analysis: Deciding what the program should accomplish, and
whether it can be done. .

2. Logical Design: How the program should go about attaining its goals. The exact flow of data,

Jogic, and control.

3. Detalled Design: How the logical design should map onto the computer systern (subroutine

structure, data structure, ete.).
4. Coding: Actually producing the code (for example, Fortran) of the program.

5. Implementation: Installation on the chosen computer system(s), integration with appropriate
libraries or other tools, provision of user interfaces, documentation, etc.

6. Maintenance: Insuring that the program continues to meet the user’s needs, which involves:
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® Fixing bugs.

¢ Installing program on new computers.

* Modifying program to adapt to changing environment (for example, changes in operating
systemns or file formats).

* Modifying program to adapt to changing user requircments.

* Improving program and adding new features.

* Preparing conversion to new program when this one finally becomes obsolete, if ever.

A naive approach consista in considering only step 4 {coding), since that is the only one which must
necessarily produce a tangible output, namely the program, and once the program is written one might
think the project is over. Studies of actual projects show however that sieps 5 and 6 invariably
consume at least as much programming cffort as step 4, and for large projects can take up many times
the effort and over a much longer time span.

Steps 1 to 3 (requirements analysis and design) may not cven be explicitly recognized, especially
in a small project, but one of the main themes of Software Engincering is the importance of investing
sufficient cffort in these steps before beginning to write code, It is beticved that for large projects the

total effort is minimized when more effort is spent on design than on coding,

1.4 The Software Crisis.

As computer hardware performance has improved, it has slowly become clear that software
performance is not able to keep up, Programmers who were somehow able to squeeze results out of
the carliest machines are simply no longer capable of producing good enough software fast enough to
take advantage of the possibilities of the newer generation of computers. With hindsight, it should have
been obvious that the capabilities of the human brain could not be expanded by orders of magnitude

as has hardware performanice, but no one seems to have realized what was happening until it was too

late. The Software Crisis has arrived.
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Although theoretically it is still true that anything can be done in software, it has becams
painfully obvious that it is simply not going to happen. Software also requires tresources, especially
time to write it, and it will not just sppear miraculously when needed. Software projects are
consistently late, far more expensive than forescen, and usually give disappointing results. Programs
that apparently work still have to be improved, modified, maintained, transporied, and constantly
decbugged, an effort which usually tums out 1o be far more time-consuming than the original writing of
the program. Even the word “project” is probably & misnomer, since it implics a termination, whercas
real software projects seem to continue My,wawml where most programmers are spending
most of their time maintaining old programs and producing almost no new onea.

One obvious way out of the Software Crisis is to purchase software rather than developing it
yourself. This method is being adopted by more and more computer users as they realize that
dcvelopinglo&wmdoucontulmon:y,wmﬂ'theyhav:: people around who are good at
programming. Software budgets then tend to rise as hardware budgets remain stable or decrease. It was
not jong ago that computer manufacturers supplied all the basic software free with the purchase of 4
new computer, whereas today the software and documentation necessary to operate reasonably a new
computer may cost a3 much or more than the hardware, and it has even been predicted that in the

not-too-distant future software houses may supply free hardware to run their products!

1.5 The Theory of the Software Crisis.

Just what is it about computer programs that causss them to have bugs? Why do they defy logical
analysis? Arc they fundamentally all that complicated?

A simple example shows that they arc indeed complicated. Consider a subrouting containing just
one DO-loop which is traversed ten times, and which contains logical IFs such that there are six
different possible paths through cach traversal of the loop. Then the total number of different possible
paths through the subroutine in 6'°, about the number of seconds in two years. If the subroutine

contains two such (independent) loops, the total number of paths is not doubled but squared, and is
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approximately equal to the number of microseconds in a century. Clearly it will be impossible to
analyze the behaviour of such a subroutine by explicit consideration of all possible paths through it.

in a recent and already famous paper, Parnas [3] has pointed out that it is precisely this discrete
nature of programs that makes it impossible to analyze them in the way traditional engineering
problems are analyzed. Other engineering disciplines are based on continuous mathematics, where a
small change in the input causes a correspondingly small change in the output; in digital computing
however, we all know too well that changing a single bit in megabits of memory is usually enough to
make a program fall on its face, The discrete mathematics (logic) required to analyze such systems is
very complicated and less familiar to most of us. In fact, the only eomplex discrete systerns which we
can realty understand currently are those involving a high degree of repetitivity (such as the hardware
chips), and real programs gencrally fall outside that domain.

The incvitable conclusion is that big softwarc packages will continue to be unreliable unless we

can cither:

® leamn to write them in such a way that they can be analyzed by the meager mathematical

methods we have available for discrete systems, or
* develop a more powerful mathematical Jogic analysis 100l, or

¢ find out how to write fault-toferant software.

We don't currently know how to do any of the above, but future research in Software Engineering

may conccivably lead to advances in thesc areas.

1.6 Physicists and the Software Crisis.

Do physicists know about the Software Crisis? In principle, yes, they can tell you that it exists. Most
arc able to repeat mechanically the well-known phrase: “Hardware is getting cheaper while software is

becoming more expensive”. But many of them still behave as if software came for free.
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At CERN, for example, there is currently considerable debate about the purchase or development
of software packages in such areas a3 data basc management, code masiagement, graphics, FORTRAN
verification, SASD tools {see below), netwotking, and others. Those proposing in-house development
still talk in terms of “man-years to finish the project”, as though men and years were interchangeable,
and as though a project would consume no forther resources once it was completed. And this in spite
of the fact that in some cases the person proposing the project is already spending & large part of his
time maintaining projects he “completed” years ago.

Another symptom showing that phyni.u'm believe software to be free, is that it aimost never
appears explicitly as an item in the budgets for big cxperiments, even though these experiments have
budgets of tens of millions of dollars and will depend critically on 2 very large battery of computer
software, most of which they will produce themselves,

There are however signs of change in the air. The smdden explosion of interest in Software
Engincering among physicists, even though still spread very unevenly, shows that many of us are
sufficiently aware of the Software Crisis 1o investigate ways of slleviating it. The big question is
whether Software Engineering can really get us out of this mess.

2, REAL PROGRAMS.

In order to clarify just what the Software Crisis is, it is good to consider what real programs are
expected to do. This is largely for the benefit of theoretical computer scientists who may never have
been confronted with the ugliness of a real program, since we may need their help in coming to grips
with the complexities of such programs. For the purposes of this paper, we may definc a real program

as onc which possesses all or mast of the following propesties:

1. Tt requires at least a few thousand hines of high-level code for a slave utility package, and many

thousands of lines for a master project.
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2. It will consume considerable amounts of computer resources (cpu time, real time, memory,

disc space, etc.) in its lifetime, 3o efficiency is a major coneern.

3. It will be used on severat different kinds of computers, including at least one which was not

considered when the project was started.

4. More than one person will participate in designing, writing, maintaining, and documenting the

program.

5. Many people will usc the program, including people with different degrees of expertise in its

ficld of application.

6. The problem 1o be solved is sufficiently complex that no detailed specifications exist. If by
some miracle there are detailed specifications, they will change considerably during the project

or elsc they will not correspond to what the cnd users really want.
7. No matter how general the program is, someone will have to modify it for his purposes.

B. It may or may not perform floating-point operations, but it will do input/output operations of
several different kinds (¢.g., formatted, binary, random-access, interactive, graphical, network,
etc.) and also requirc some other interface with the operating system, for example for error

recovery.

2.1 User Interface.

‘The user interface is often a key part of a real program, since the program will most likely be operated
by and for the benefit of people (uscrs) and must therefore be instructed as to how it should procead
with a given task for & given user. The best form of interface will depend very much on the context
and application, and will be different if the program is, for example, a slave utility package or a whole

system which is itself driving lower-level modules.
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Often the interface will take tho form of an interactive dialogue with the user, allowing him to
supply input in a variety of ways depending on the kind and amount required. A good interface checks
the input and output data for consistency, and allows the user 10 verify his own data by providing him
with, for example, some graphical representation. Features of this kind help to avoid mistakes and
uscless calculations, and reduce the user's learing time by helping him through prompts, intelligent
defaults, etc. '

User documentation should be considered an integral part of the usy interface, since poor
documentation will provoke user mistakes ‘juu a1 an emor-prone software interface does. An
undocumented program may as well not exist, for it cannot be used, and good docurnentation is cven

rarer than good programs.

2.2 Portability. .

Thete are real programs {operating systems, for example) which are written for one particular type of
hardware and never run on another, but in most application areas it must be considered a severe
restriction on a program. In my experience, if a program is really useful, someone will eventually want
to install it on a computer for which it was not intended, and it is better to plan on that in advance. It
is of course tempting, when the target machine is known, to exploit all the convenient peculiarities
offered on that machine, even if they are not portable, but one usually ends up paying double for this

hzimuwhenitwm:sﬁmtqwnvmmmolhﬂmhine.

2.3 Maintainability.

Portability is really just one aspect of the wider problem of maintainability. It would be nice if a
program could simply be written, installed, and abandoned to the users, but that is not how real
programs work. Not only do computers and operating systems change during the useful lifetimes of

real programs, but users’ requirements change, bugs arc found, improvements are requested, and nons
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of these changes can be forescen exactly. All this means that programs have to be maintained, and it is
no secret that some programs are easier to maintain than others. If & program’s logic is s complicated
that even the author cannot remember how it was supposed to work, it may become impossible to

maintain and eventually have to be abandoned even though it originally performed exactly as required.

2.4 Efficiency.

Toy programs can sacrifice efficiency for higher virtues, but real programs cannot. Even with computer
memories becoming ever cheaper and bigger, we are still forced in many cases 10 fesort to unpleasant
techniques such as overlaying, memory management with garbage collection, and temporary storage on
disc fides in order to 6t our programs and data into the available space. Similarly, the ever more
powerful central processors still do not exempt us from the bother of optimizing cpu efficiency for

programs that are going to consume thousands of hours of computer time.

2.5 Input{Output,

Although many computer scientists would prefer to forget about 1/0 (some even propose that we use
programming languages in which 1/O is not defined!), reat programmers cannot. Real programs need
input and output, and it often poses problems. The user interface is normally implemented in terms of
formatied 1/0, often interactive and/or graphical. The basic data input and output may involve
megabyte rates, 50 it has to be efficient as well as portable (if possible). And [/O exception handling,
even though it should be invoked only rarely, is often a most important aspect, and may account for a

large part of the code of a real program.
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3. HOW SHOULD WE WRITE REAL PROGRAMS? |
3.1 Program Project Management.

Hapmg-nmnhxgpmiecthbigmugh.hwiﬂmmumﬁdmbbmum‘ofm:
manpower, computing facilities, and other tesources, especially time, These resources must be
tnanaged. The people working on the project want to know what they are supposed to do and what
they will have to work with, and those paying for the project want to know how thair money is being
used.'I‘hismemthatevminlphysicsuoﬂ;rmpmject(whichtmdstobemoninfomalthma
commercial or military one) there must be &t least one person to take care of the following

management tasks:

» Predicting how the project should evolve in tine and making sure that actual progress is
sufficient. ‘

® Making sure that the different pepple participating in the project are doing what they are
supposed to, that they are coopetating and communicating with each other. Much time in
wasted when one person refuses to use & subroutine written by someone else, or insists on
rewriting perfectly good code.

& Seeing to it that everyone has proper facilities for working.

These very important spects of software cievelopmmt are treated extensively in the literature. One vety
good book is that of Bochm [4] |

3.2 Program Design.

The Software Crists had taught us that programming was & subject to be treated with great respect,
and various theoretical exercises and practical experience had taught us something sbout good and bad
ways to program, but programming had not yet really become a methodological discipline like a
branch of engineeting. It was more like an art or a craft. Something important was missing, and people

looked to the methods of engineering for inspiration.
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After all, what does an engineer do when he wants to build a bridge? He certainly doesn’t start by
ordering the steel and digging holes. He starts by looking at the specifications for the bridge, such as
required width and load to be supported. He then designs the bridge, making drawings to determine
dimensions, and calculating the required amounts of steel and other materials. He can then estimate
how much it will cost and how long it will take to build. Hc can show his pians to non-technical
pcople such as politicians and bankers to get their support for the project and perhaps modify the
project to take account of various constraints or changes in specifications. No one would consider
starting to build the bridge until ali this preliminary work was done.

Can we and should we proceed in an analogous way when writing a program? Perhaps we should
not just sit down and start coding, but rather put more time into the preliminary stages of specification
and design. But how can you specify and design a program? How can you draw a picture of it,
calculate how much it will cost, how long it will take to wnite, and how big it will be? How can you
show a plan of your program to a politician or a banker, or even a physicist or a laboratory director?
How can you modify your design in the light of comments by your director in case he finds it Loo
capensive or not good enough? And how can you do all this before writing a line of code? Is it even a
good thing to attempt to proceed in this way?

All these questions have led to the development of Software Engineering, and in particylar its
highest level, Softwarc Design Methodologies, an attempt 1o make software development into a proper
engincering discipline. The goal is certainly noble, and there is Lttle doubt that progress has been
made, but you will be very disappointed if you cxpect Software Engineering to look anything like

Lilectrical or Mechanical Engineering,
3.2.1 Boxology.

The heart of any program design methodology is the part that allows you to make diagrams that
represent the program to be written, much as an engincer would make a drawing of a projected bridge.
Since programs are not tidy three-dimensional objects, it is not easy 1o represent them on paper in an

abstract way. Attempts 1o make such a represcntation gencrally end up with boxes, bubbles, or

page 18

lozenges of various shapes connected by lines of different kinds, so the study of these representations
has been called “boxology”.

A good introduction to boxology is the tutorial of Freeman and Wasserman [5] . Thumbing
through the 455 pages of this tutorial quickly gives the impression that the poor physicist trying to find
his way through the jungle of boxology may be little better off than the prehistoric beasts struggling in
the tarpits as evoked by Brooks [2] .

Indeed the danger of spending a fong time cl'fouaingandﬁnaﬂy lkearning a dexign technique which
may not tum out to be worthwhile, is very real and hay discouraged more than one well-intentioned
project manager. Still some of these methods have been used successfully in real projects. Without
trying to single out one method as better than the others for all applications, it is good to mention at
least one program design methodology which has been used even in the high-energy physics

community, namely SASD.
3.2.2 Structured Analysis and Structured Design.

The basic principles of SASD are presented in a book [6] of M. Page-Jones. Of the various techniques
which make up SASD, we discuss only its boxology.

SASD diagrams arc probably not as clear or precisc as engincering drawings, but experience
shows they really do help the design team to know what it wanta to do, to discuss the project within
the team, and — very important for the project boss — to explain to those not directly involved in
the program development precisely how it intends to write the program. There are in fact two different

flavours of diagrams in SASD:
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¢ Data-flow diagrams, used in conjunction with a data dictionary represent the functional
design of the program by indicating the flow of data between different logical processor
modules, A given diagram should show only five to ten different modules. Each module
shown on the highest level dizgram can then be broken down into sub-modules in &
lower-level diagram, and this can be continued to any desired depth, in such a way that each
diagram indicates a more detailed design of a module appearing in a higher diagram, with the
top-level dizgram showing the overall program design. Similarly, the data dictionary defines
cach data entity in the data-flow diagram as a sct of data items, cach of which may in turn be
defined as a set of sub-items, ctc. In this way, a human being reading the diagram or the
dictionary can understand the whole by understanding separately each part, never having to
consider at one time more than a small number (five to ten) of processes or data items.

* Structure charts show the program desipn in terms of computer-oriented entities like
subroutines and files. Of more use to the programmer than to the project boss, these charts
indicate how the functional design should map onto the computer itself, but still without
explicitly invoking the programming language which will be used to write the programs. If
well written, structure charts allow the end programs to be written by programmers with

little or no knowledge of the actual field of application of the programsa.

3.2.3 SASD Tools

At this moment, the greatest weakness in the SASD methodology as seen by the physicist user, is the
lack of adequate computer-based tools to help him to create, modify, and present the various diagrams
and dictionaries. It turns out in practice that the diagrams evolve cantinsously, requiring many trial
versions before converging to the finally accepted ones. There is nothing "wrong” with this; it is
symptomatic of the fact that SASD is ihdeed helping the user to see exactly what he i designing and
to suggest where the design is weak and must be modified. This means however that the user needs

good tools 1o help him modify and display the diagrams. Such tools do exist, but all those currently

available suffer from one or more of the following inadequacies:

+ Too expentive or not generally available.

® Poorly documented or no HELP facility,

® Not portable to different systems and output devices.

& No verification of consistency between dingrams of different levels.
» No verification of consistency between diagrams and dictionaries.
» No facilities for intesactively modifying and redisplaying diagrams.

Because of the importance of these tools, there i considerable activity in this ares. Some useful
products do exist now, and it is likely that mally good tools will be available soon.

3.2.4 Physicists and SASD.

One of the most extraordinary and unexpected (at least by me!) phenomena in the recent history of
computational physics is the sudden Interest in SASDS on tha pant of experienced physicist
progremmers. Many of these people, who have the reputation of being briltiant but hard-headed and
very resistant to change, are now realizing that Software Engineering may have somnething to offer, and
are even willing to invest considerable time in leaming and applying the techniques of SASD. Even
some of the most inveterate bit-twiddlers, the kind that revels in machine language and microcode and
normally cant be bothered with any kind of documentation, can now be seen producing data
dictionaries and discussing their projects in terms of data flow diagrams.

Of course the revolution has not yet converted everyone, and many are bound to be disappointed
by some aspects of SASD, but at least it has become 1 respectable thing to know, even to the point
that those who are not yet initiated may appear somewhat ashamed of their ignorance.
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3.3 Programming Techniques.
Thia section is concemed with the way programs are written on a microscopic level.
3.3.1 Program Complexity and Proving Correctness,

As indicated earlicr, it turns out to be far from an ecasy business to prove even a relatively simple
program correct. Such a proof for a non-trivial subroutine is given by Hoare (7]

» but one does not find many others, in spitc of the amount of efort which has been cxpended in this
arca of computer science. Those who hope to find clear mathematical proofs of the kind we might find
in a textbook on geometry or lincar algebra will be very disappointed in computer program proofs.

However, the cffort put into trying to prove programs correct has paid off handsomely in a
perhaps uncapected way. As people found they could not prove complicated programs easily, they
began to consider restricted classes of programs constrained to follow certain simplifying assumptions,
Certain of these constraints made program proving cnormously easier, and it wasn't long before people
ot the idea that if a program was easy 10 prove comect, it might also be easy to maintain, modify, and
improve, as well as being surcly correct. Inverscly, a program not obeying these restrictions, since it
could not easily be proved correct, might actually be wrong, and would certainly be hard to understand
and modify. Although these idcas were not as mathematically rigorous as they had been intended, they

led to the discovery of some rules for wood programming which eventually became known as

Structured Programming.

3.3.2 Structured Programming.

Structured Programming refers 1o a set of rules and techniques of actual code writing which makes the
logic or structure of the program more transparent. The most important and famous rule is to avoid
unconditional jumps (GOTOs), especially backward jumps. Theoreticians trying to prave programs
correct found that if a program contained a backward jump, then it was often impossible even to prove

that the program would terminate, let alone give a comect answer. On the practical side, programmers
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debugging routines caught in infinite loops soon leamed to be suspicious of backward jumpe as well,
Moreovet, & mther theoretical study had showed [8] that GOTOs were not neceasary in a language
which provided adequate control structures [FORTRAN IV did not provide those structures, but
FORTRAN 77 with the IF~THEN—-ELSE does.). There followed a general consensus that the
backward GOTO, and in most cascs forward ones as well, were symptoms of a poor, or unstructured
program. A well-structured program used the control structures of the language (DO, IF, GO TO) in
as clear and linear way as possible, 8o that it was always clear, at any point in the program, how you
got there.

But good programming is more than just good control structures; there are many other aspects to
consider. Anyone can recognize a poor program, but it is not so casy to describe what makes a good
program, since cverybody has his own ideas on the subject. Fortunately, some people have tried to
study this problem as objectively as possible, and have come up with some criteria for what makes a
program “good”, where “gnod” can be defined as:

* Easy to understand

¢ Likely to be bug-free

# Easy to modify

® Portable to other systems
+ Efficient

The particular criteria will of course depend very much on the programming language used, zince some
arc better than others at "forcing” the programumer to write good programs. In this respect FORTRAN
is relatively liberal, allowing the programmer considerable freedom to write rubbish. For this reason,
the recent book of Metcalf [9] is particularly welcome. It containe a wealth a carcfully considered
recommendations which, if followed, will greatly improve the quality of a FORTRAN 77 program.
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3.3.3 Physicists and Structured Programming,

Nearly as impressive as the revolution in SASD is the gradual interest of physicists in structured
programming. Whereas the traditional physicist considsred any kind of FORTRAN conventions or
recommendations to be an infringement on his intellectual freedom and an unpardonable interference
in the accomplishment of his work, I can now detect a general desire to write good, clear, standard
FORTRAN,

The motivation behind this increased interest in good programming may have to do with the
increase in sofiware sharing and networking which makes one’s own programs much more visible to
other programmers. It certainly has to do with the fact that we simply can no longer afford to write
such bad programs as we did in the past. In modemn computational physics, the consequences of a

software malfunction are just too great.

4. CONCLUSIONS.,

So do physicists need Software Engineering? Yes, certainly if they arc envisaging a software project of
any reasonable size. The Software Crisis is here and is real. Traditional methods will simply not allow
us te produce software of the quality and quantity needed.

The real problem is not whether we need Software Engineering, but rather: Does Software
Engincering, as it cxists today, offer us what we necd to overcome the Software Crisis? The answer to
this question is much less clear. Progress in most areas has not lived up to our great expectations.
There are still no sure-fire techniques for writing rcliable programs or meeting software deadlines. The
typical physicist programmer who wants to do research in physics, not in computer science, is still
faced with a doubtful trade-off between input cffort and output results,

In an effort to guide the physicist through the jungle of literature and methods, I will apologize in
advance for being very incomplcte and venture to suggest just threc works likely 1o improve the

chances of success of a software project:
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# For projoct managers, the book of Boehm [4] . .
* For those participating in software design, the SASD methodology, and the book of

Page-Jones [6] .
* For good coding principles in FORTRAN 77, Metcalf [9] .

It is my sincere belief that this list will become longer in the coming years as computer scientists come
up with more and more ideas which are not just promising, but effective.
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