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1. Introduction

Earth sciences are concerned with the investigation
of the state and the state change of the entire Earth's
body, governed by an interplay between various physical and
chemical processes and described in a space-time frame. The
recent  progress, quantitatively and qualitatively
remarkable, in the knowledge of the internal properties of
our planet can be largely ascribed to the development of
computer algorithms tending to the best possible
exploitation of available computers. It is also easy to
predict that in the near future the possibility given by
vector computers to construct highly realistic models will
allow the understanding of several physical and chemical
processes taking place within the Earth. This in turn will
allow to construct dynamical models of the Earth which are
essential for predicting its tectonic evolution. A very
practical aspect of this procedure may be the possibility of
predicting earthquakes, combining the statistical aspects of
seismicity with the understanding of ~ seismogenetic
processes.

In these lectures I have choosen to describe very
briefly some key probTems in Geodesy and Seismology whose
solution heavily depends upon the availability of highly
advanced computer codes which may make the best possible use

of the presently available supercomputers.
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Geodesy is concerned with the determination of both
the shape of the Earth's surface and the Earth's external
gravity field. Seismology is concerned with the
determination of both elastic and anelastic properties of
the Earth interior, which contain also information about
density distribution,

According to Newton's law of gravitation, the source
of the Earth's gravitational field is the mass distribution
within the Earth's surface. According to potential theory,
the external gravitational potential of a body can be
uniquely determined without the knowledge of any density
information if both its shape and the gravitational
poténtial at its surface are known. Unfortunately we neither
know the geometry of the Earth's surface with sufficient
accuracy, nor we do know the potential at each surface
point. Therefore, we have to employ approximation methods
and have to use some kind of initial model. Here there are
basically two approaches: the source approach and the effect
approach. In the source approach the model 1is a low-
resolution global 3-D density pattern, derived primarily
from seismological measurements. In the effect approach the
model is a medium resolution global gravity field model,
derived from satellite and surface gravity data., Because of
the easier access to that information, practically all

gravity field approximation methods use the second approach.
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Only recently some attempts are being made to use the source
approach. The implementation of advanced computer codes will
make this approach more and more popular and powerful. Even
more, the current interest of seismologists and
theoreticians focuses strongly on methods which allow the
treatment of laterally heterogeneous media, therefore it
will be possible to obtain a starting global 3-D density
pattern with 'a resolution much larger than the one

characterizing the models presently available.

2. Models of the Earth's gravity field

According to Newton's law of gravitation the
gravitational potential, A, is the integral effect of the
mass density distribution with the reciprocal space distance

as integral kernel

APy = @ [I-YP,Q) o(@) dr(@) )

with

P = calculation point,

Q = integration point,

G = gravitational constant,

—
L]

space distance,



mass density,

°
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<
It

volume of integration (Earth's body).

It is well known from potential theory that there is
an infinite number of mass density distributions possible
which generate one and the same potential; therefore o can-
not be uniquely determined from gravity field data only.
However, according to potential theory we can theoretically
determine the gravity field from surface gravity field data,
measured at the unknown surface of the FEarth, directly,
by-passing its source, the mass density distribution. This
is the meaning of the fundamental integral equation of

physical geodesy

, 2
—9 " 4+ f f [u' ]’7 (- + l—lg.]ds + 2rede? + 42)
[/
8

(2)
4 2(::’[][!"dv= 0

with

S = unknown Earth's surface,

n = outer surface normal,

3/3n = derivative along surface normal n,
W = A+C = gravity potential,

C = centrifugal potential,

9 = -3/dn = -grad W.n = -g.n,



g = gravity.

If W and g are given on S it is theoretically
possible to determine S.

Among all equipotential surfaces there is one
distinguished surface which is of considerable concern to
Earth sciences: the geoid. It is the surface of constant
gravity potential W = W° at mean sea level and coincides
with the open ocean surface, considered at rest and not
affected by the attraction of celestial bodies. The geoid is
the physical-mathematical surface of the Earth and serves as
zero level for physical-geodetic height measurements.

About two millenia ago it was realized that the
shape of the Earth is approximately a sphere. Two and a half
centuries ago that sphere has been replaced by a better
approximation, an ellipsoid of revolution. This mode! is so
simple that only four parameters are needed to completely

describe both the shape of the ellipsoid and its gravity

field

GM = 3.986005.10'% m° s 2 J, = 1.08263.10°° ., flattening
) 6 -5 4

a = 6.378137.10 m w =7,292115.10 © rad s

No model mass density distribution has been used to define
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the model gravity field. Therefore, such a model is referred
to as "effect model".

More elaborate models represent the Earth's gravity
field in terms of a set of spectral coefficients (spherical
harmonic coefficients} which are derived from surface and

satellite data:

GM Xu » "
lVM(P) = Jl + E Z (‘1) Pnu (COB OP)'
' [Cnm cos (7"2!') + Smn gin (mlf‘)]} + C(P)
with
(r,8,0) = spherical coordinates (radius, polar distance,

longitude)

f;m(cose) = fully normalized associated Legendre function

n,m = degree, order

NM = highest degree of model
NM = model gravity potential
Cnm’snm = harmonic coefficients,

Routinely Earth models are based on 33000 to 40000
harmonic coefficients, i.e. in (3) NM = 180 to 200. The most
detailed model at present is constructed with NM = 360 and

consists of about 130000 coefficients. These models being
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derived from observed satellite and surface gravity field
data can be defined effect models, although the harmonic
coefficients do bear source information in terms of an

integral information about the mass density distribution

Icmn} _ M /-(_"_)" P.., (cos 0) {COS(m)-)}e(r. 8.0 dv. . (4)

. Rin (mA) |

Equations (3) and (4) clearly demonstrate the relation
between source and effect: if a model mass density
distribution o{r,e,1) is available, the corresponding
harmonic coefficients of the gravitational potential follow
immediately. This concept is at the base of the present
strong efforts to develop source Earth models by using
seismological information, taking advantage of the
availability of extremely powerful computers.

Once a model is constructed it is of key relevance
for an improvement of our knowledge to remove the model
contributions from the observed gravity field data. This
procedure yields data residuals which can be used for the
corrections of the parameters defining the initial model.
This procedure, is an extremely laborious and computer-time-
consuming task. Consider, for example, the representation of
the Earth's gravity field model in terms of the harmonic

series (3). In this case the computation of the approximate
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' model means -applying for each individual data an operator

(which characterizes the data) to all harmonic functions of

eq. (3). The Earth Models with about 33000 and 40000

parameters require a tremendous effort, putting a

particularly strong emphasis on very well-designed and

optimized computer algorithms. This is even more important

when routine use will be made of models consisting of 130000
parameters, '

If high resolution 3-D source Earth models are used

instead of effect models, the computational requirements

remain practically the same.

3.1 Wave propagation in layered media

. The knowledge of the elastic properties of the
Earth's interior is not only relevant for geodetic purposes
but it is also very important per se. In spite of the very
considerable efforts  made by seismologists and
theoreticians, it is still missing a satisfactory theory
which describes wave propagation in 3-D models of the Earth.
If we exclude numerical procedures based on finite
differences or finite element methods, extremely time
consuming even with the presently available supercomputers,
all the existing analytical methods involve significant
approximations,

Here I will present the computational aspects of a
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method which is free from any approximation in the one
dimensional case and which can be quite efficiently
extended, introducing approximations of variable entity, to
2-D and 3-D cases by making use of the present availability
of supercomputers. The method is commonly known as Modal
summation method.

We assume that the medium consists of homogeneous
layers, separated by first-order discontinuities. If a
medium is continuously inhomogeneous (throughout or
piecewise), it is replaced by a sufficiently large number of
homogeneous layers; in smooth gradient zones it is usually
enough to choose roughly half the dominant wavelength as
layer thickness, whereas in transition zones with larger
velocity gradients the layer thickness should be reduced
further. The  advantage of the  homogeneous-layer
approximation is that inside. each layer the equation of
motion takes a relatively simple form. Its disadvantage is
that boundary conditions have to be fulfiiled at many
interfaces. Analytical methods for inhomogeneous layers (in
contrast to numerical, e.g. finite-difference, methods) are
not yet developed to a point where they really can compete
with the methods for homogeneous layers.

The equation of motion of a homogeneous, isotropic

elastic medium is
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o:l = {x+2y)grad div u-~y rot rot u, (5)

where u is the displacement vector, p the density and i and
uw the Lamé parameters. Body forces due to gravity and
seismic sources are not included in Eq. (§): it is assumed
that gravity has no other effect than to determine, via
self-compression, the (constant) values of ,, 1 and , , and
sources of seismic waves are included through their known
contributions to u,

In order to simplify the discussion as far as
possible, we shall consider solutions of the elastic
equations of motion in the form of plane waves rather than
attempt to treat the more complex case of waves diverging
from a point-source. This does not involve 1loss of
generality in the computation of the dispersion function
since the point-source solution may be developed by
integration of plane-wave solutions,

Let us consider plane waves of angular frequency p
and horizontal phase velocity ¢ propagated in a
semi-infinite medium made up of n parallel, homogeneous,
isotropic layers. In these lectures, all layers will be
assumed to be solid ,.-

The x axis is taken

parallel to the layers with the positive sense in the
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CONTINENTAL MODEL
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Fig. 1. Direction of axes and numbering of Tlayers and

interfaces.

direction of propagation. The positive z axis is taken as
directed into the medium. The various layers and interfaces
are numbered away from the free surface, as shown in figure
1. We confine our attention to waves of Rayleigh type (P-SV
motion), by which we mean that there is no displacement in
the y direction and that the amplitude diminishes
exponentially in the +z direction in the semi-infinite
layer,

For the m-th layer let
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f)m= density, drn = thickness, z\m, /Idm = Lamé elastic
constants,
o(m =[(Am+2/ltm)/Fm]E = velocity  of propagation of
dilatational waves
B =[r-tm/f '"]l = velocity of propagation of rotational
waves

k = p/c = 2ff/wave length (horizontal)

r+[(c/o(m)2-1_]5 if cod

-i[}-(c/dm)ZP ifced ifmen
.

r+[(c/l3|,")2-‘i]é if C}Fm

er = 4

-1',_’1-(«:/3,“)2]é ifcef,
L

Tup = -i(]-CZ/ dzm)i

ifm=n
o = -1 (1-c2/82 )}
Yf" = 2(!?»m/c)2

[ =

m “m * displacement components in x and z directions
S normal stress

v . = tangential stress
m 9
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Then, as is well known, periodic solutions of the
elastic equation of motion for the m-th layer may be found

by combining dilatational wave solutions,

m=(aum/ax)+(awm/az)=

{6)
=exp[i(pt-kx)][a'mexp(-ikramz)+aumexp(ikrumz)
with rotational wave solutions,
um=(1/2)[(aum/az)-(awm/ax)]=
3

Qexp[i(pt-kx)][m.mexp(-ikremz)+m"mexp(ikrsmz)

’ " [} 1]

where s , & , w and o _ are constants. With the sign
m m m m

]
conventions defined above, the term in LY represents a

plane wave whose direction of propagation makes an angle
cot~ Tam with the +z direction when o is real, and a wave
propagated in the +x direction with amplitude diminishing
exponentially in the +z direction when ry m is imaginary.
Simitarly, the term in A“m represents a plane wave making
the same angle with the -z direction when Tam is real and a
wave propagated in thé +x direction with amplitude
increasing exponentially in the +z direction when T is

imaginary. The same remarks apply to the terms in w " and
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w o with rg  substituted for Tap, (see Fig. 2a, 2b, 2c, 2d).
The displacements and the pertinent stress
components corresponding to the dilatation and rotation

given by (6) and (7) are,
u =-(a_/p)2(28_sax)-2(8 /p)(3u_faz)
m Com m m m

wm=-(um/p)2(3bm/32)+2(3m/p)2(3wm/3x) i

o =0 (0 8 4287 t(a /p)P(a%8 saxd)s (8
+2(8_/p)2 (2% /axa2)]

v =20 87 [~(o/p)2(3%8 faxaz)s
+(8 /1255 jaxt)- (3% 132201

The boundary conditions to be met at an interface between
two layers require that these four quantities should be
continuous. Continuity of the displacements is assured if
the corresponding velocity components I.;m and \';m are made
continuous and, since ¢ is the same in all layers, we may
take the dimensionless quantities :Im/C and ;m/c to be

continuous. Substituting the expressions (6) and {7) in

!
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© equations (&) and expressing the exponental functions

of ikrz in trigonometric form, we find

cu,=A,cosp, —iB, sinp_
+1.. Cacosg, —ir, D_sin G,
CWo=~ir, A.sinp_+r, B, cosp,
+iC,sing_ —D_cosg,.
On=Pulim— 1A, cosp, —ip_(y.—1) (9)
"B.sinp,+p, .1, C,c084
—ipPmimtp. Dysing, .
T = ey il A SN ~p v
" B,cosp, —ip.l;,—1)C,sing,
+ i — 1D, cosy,, .

where
A= =224, +.10). B, = —al(4, -4,
Co= =28, —w}). D, =-2p%w,+w)

Pa=kr,_[:=2"""). g, =kr, [z—z"""

w
m are

Pm is the density, 2{m1) is the depth of the upper

interface of the m-th layer and A - A"m. w
constants appearing in the depth-dependent

part of the dilatational and rotational wave solutions:
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4, exp( —ikr, c}+ d explikr, z)

‘ | (10)
uhexp(—:kgm:r+aﬁcxpukg ).

3.1 Fast version of Knopoff's method

For a continental model, the vanishing of the two

components of stress at the free surface yields:

=1 =1 A,~p, v, 15, C, =0,
P Y10, By —pyy, —1) D, =0. (1)

Thus Knopoff's submatrix /\(O) can be written in the form

Al0b=[_'f’|(?1-|) 0 =P/ T 0 ]

1
0 A )y 0 =py(y, =1) (12)

At the m-th interface, the continuity of displacement and

stress yields
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A, cosP,—iB_ sinE +ry C,cosQ,—ir D,sing,
=A 1+, Caane
—ir, ApsinPB,+r, B cosE +iC, sinQ,,— D cosQ,,
=r:.....Bn+l"'Dn+l-
puly—1)A, cos B, —ip (y,—1) B, sin P,
+ 00 VT3 CnC0S Q=i Pn7m r,. DasinQ,
=it met D Ame st H Pmstt Tma 1 Ty Cosrs
iPm Yl AnSIN B — PV r, . BncosP,
—ip 7= C,sinQ, +p,(7,— 1) D, cO8 Q..

= = Pmst tmer T Bm+l+pm+l(}'m+l—nDn¢I'

Xem »+ |

(13)

where Pm=kr‘“dm, °m=“"p...dm and dm is the layer thickness.

Thus, Knopoff's 4x8 interface submatrices have the form

cos P, —isinPfr, cosQ,,

g T ir,_sin P, cos F, isinQ,/r,_

Pulim—VcOsP, —ip ;.= 1)sinF /jr P COSQ,,

1Dpima SIN P, = P imCOS P, —ip (Yu—1)sin Q,;Jr,_' (149

~ir,_sinQ, -1 0 -1 0 )
—cosQ,, 0 -1 0 1

_if’m}'mrp.,Sian —pn.l(;‘m+l-l) 0 “Pmit Tmat 0
Pmlim— THeOSQ, 0 Post Tman 0 Pt w1

and, notin h i h - =B =- '
g that in the half-space An B, ‘znAn
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Cn=Dn=-ZBZn¢~; the submatrix representing the (n-1)th

n'
interface has the form

-1 ~ 7.
. -, ]
L (15)
—P.(T. - l) —pn Ta rﬂ.
Puin r:.. _pn(}.n - l)

where the first four columns are the same as those of l\(“ﬂ
with m=n-1, It may be worth observing here that, for each
layer, I\(i) (i=1,n) submatrices represent the denominators
of Cramer's system solutions when the boundary conditions
are applied.

In more compact notation we can write

AtOi

All)

(16)

AP 2)

‘A‘l— 1
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where the non-zero elements only are pictured,
A condition for surface waves to exist is 23R=0,
which defines the dispersion function for Rayleigh waves

Faip.c) =£SR =0 (17)

If we 1imit our attention to the case of solid Earth
models, the Rayleigh wave dispersion function, F.(p,c), has

the form

(n-2)}=tn-1).(n)
F F T solid (a)

Falp,c)=T IR DR (2IF(3) (18)

=(n-2}-(n-1)}={n)
F F T eolid (b)

(a) if n is even,

(b) if n is odd.

which has the symbolic matrix form (1x6){6x6)...(6x6)(6x1).

The elements of these matrices are

TO=[=-nt=-10.0,0,- 1)y o Nl = D), (19)



Fl-) =

[ F l?u F l?u F (I?M (1.3’13
Fisia Fisis Fiaa Fisa
pror = | Fronr Frans Fras Fraas
Fasiz Faa Faae Fasa
Faaiz Faais Faae Faags
| Fyarz Fyaiy Faans Fia
F§¥a —Fhe  FSh FU
-Fu:u Fuu "'Fun "Fuu
Fizse —Fi3a Faszs Fi314
Fuu "'Fuu Fun Fuu
=Fy334 Fiyas —Fi325 —Fyi314
Fiasa —Fi214 F325 Fiyaia
- 0 - 0
el r’n

il = r.,lr,.. 6 Taola= r..lra.
~Tga Tan
L 0 | 0

) ) -
F(l'?lu F‘IZ:M
Fuu Fuu
"uu Fuu

-24 -

Fisie Fayzaf (20)

Fia2s Faass
Fyaze Fiasal

S(m)
-"1413

Faas
—FZJIJ
—Fias

F!SIJ
_FUIJ

Fin| (21

(22}
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The elements F(m)

. -1 2 2
quantity g=(-1)" lec /)’nr‘nrﬂn faX

(22) in order that FR have the same numerical value as the

i 5k1 are obtained from Table 1., The

2

n is included in

dispersion functions from the A.matrix extensions, and the
product form of the original Thomson-Haskell formulation.
The basic interface-matrix multiplication in (18)
has the symbolic matrix form (1x6)(6x6), where the sixth
element of the 1x6 matrix is always the negative of the
first element. The symmetry of the 6x6 interface matrices,

as indicated below,

lu(nﬂvl)‘ iV.(nH'll' W(IH*H‘ R('HI)’ is(ll*ll' _Ullﬂ‘ll]

6 0 v o 0 g7

ix - . : Y
HIU(J-)‘ iy(ll)' w(n)’ R("), "s{nl' - U(ll)] g : : . : :g (23)

"' . . . . _"l
n 0 -v —-» O o

is the reason that the 1x6 matrix retains this property
throughout the fbrmation of the interface-matrix product.
The first and last elements of columns 2 and 5 of the 6x6
matrix vanish, which means that fourth-, not sixth-order
matrix multiplication s involved 1in forming the
corresponding elements of the 1Ix6 product matrix. The
remaining four elements of the product matrix involve only

fifth-order multiplication due to the properties of the
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, nunu.ue.u ...OSUH«M fa= 9 Temfog _wl 13
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first and last elements of the 1x6 matrices. Since the first
and last elements of the product matrix are the same except
for sign, only one of these two elements needs to be
computed. Two  fourth-order and three fifth-order
multiplications per matrix product s a significant
improvement ﬁver the original six sixth-order
multiplications. If these five product-matrix elements are
written out analytically, it is seen that there is still
considerable simplification possible by means of simple
algebraic factorization. The results of this factorization
allow the elements of the product matrix to be written in
very simple form. Combining the results of this
factorization with the formation of the elements of the new,
(m+1)th, 6x6 matrix produces the key portion of the "fast"
form of Knopoff's method for Rayleigh wave dispersion

computations: For m+1 even,

imel) o _sll:-fnu(m)_'_8(11+I)K(n+l)+ 8!;n+llL(m+l)’
V('"“=5(l-;*li(c(l-:+llyim+ c(:;*l)w(n) + it IRm _ CARIXI LY
WD = _gtms gtme 1) _ ot g ety 24 Dy, (24)
R™+D o _glm t)geime1)_ gty 2elmt ym)

s(-+ 1) = E‘.";”’(—C!;'” l)V(u) + c{'nd- l)w(u) + C('-u;i» nR(., + c|'.;+ ”S(",),
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where

K‘-*” = (!,.‘.”V(.) + C‘?’”'W‘.)- (l1.3+ I]R(l) + C(|l;¢ IIS‘luﬂ.

(25)
L("*” - C‘I.B,I)V(., - cql-zvllw(nl + c!,-n'lel-l + cl'-n lhs(ml'

and for m+1 odd,

U=t o _a(ls? Dypimy o ch-;H)x(-H) + sg'-*liztuﬂ)‘

VAR gt DT Y = [ I = LR R — [ s,

W=th o (’--r Nyim+1) o c(’l'.'l)zlﬂ*") — zcglloﬁ)ul-)' (26)
R+ o s(;:+l)x(n+ D e(l.ia-uztuﬂ) - 28‘,'5* gytm

S('” b 5‘;’;+ ”(_c!,.., "V") - cg.-l- I)W(-) - ((lu:)i- HR(-) + C(l‘:* ”S(")),

where

x(m+l) = c(ln;+l)y(m) + c{'l;'rlbw(-) - cguli'l}R(m)_*_ (’uui-lls(m}.
Zm+ i) c(.-i- l)y(u) - cs’u'tl)w(lu_'_ c(luifl)R(n) + c(106+iis(m). (27)

The dispersion function is formed by starting with the real

quantities



- 29 -

U= —y (5, = 1),

y© =,
0) - 12
o= (28)
R = YI L]
5 . 0

and by repeated applications of Eqs. (24) or {26), until the
dispersion function has been carried down to the (n-1)th

interface

lu(--l), ‘-V(--I). w(u-l)‘ R(u—l)‘ "S(r-l)' _U(l—l)]

=TORL,,, " if nm—liseven, (29)

Fe=U  if n—1is odd.

The complete dispersion function is given by

[ —(1 = e, )2 i
(1 = )13 - ¢,y
|
L —(1 = ¢ |
] if niseven  (30)
[ (1 = c*/B,%)H3 )
!

= (1= Sfaly' 1 - g2y ¢
(I - cz/a.z)uz

Y

F. = IV("“' w(l'li. R(u-l)‘ s(u-l)}g

e

if nis odd
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Since expressions (24)-(28) and (30) involve only
real quantities, the use and manipulation of complex numbers
is completely avoided in forming the Rayleigh wave
dispersion function.

Analogous developments can be made for £arth models

containing fluid layers, Y



The matrix clements for the layers with c<fi, <a,,
where ¢ is the phase velocity, f, is the S-wave velocity
of the m-th layer and o, is the P-wave velocity of the
m-th layer, contain factors of the form (Schwab, 1970):

sinh , sinh 0
cosh ™ cosh ™
where
d 2
e L /1 —53= wdn re real
c ., c -
wd, ¢l wd_
Q:= ——‘_— ] —F:-= . p r;.. real

where d_ is the thickness of the m-th layer and w is the
angular frequency. In the notation used here, the as-
terisk denotes the imaginary part of an imaginary
quantity. For large values of the arguments, the magni-
tude of these factors is approximated by:

1 wd

- - L »
4cxp[ p (r,__+r,~}].
In fact,

sinh P*=[exp(P*) —exp{ -~ P*)]2
and

cosh P*=[exp(P*}+ exp(—P*%)]/2
which reduces to

sinh P*~ —exp( —-P*)2  coshp* =exp(—P*)2
when P* €0; the same for Q.

Thus, overflow occurs when the last expression is
approximately equal to the maximum value permitted
by the computer. Denoting this last quantity as MAX,
it is easy to find the limiting values

_cln{d-MAX)

(dn)-.xlnwn = w(r:. + .l';-)
wd (2 +r})
Cainimum m
© € In(4-MAX)
d(re +rt)

to avoid overflow during the evaluation of the matrix
ciements for any given layer. If these limits are reached,
splitting the thick layers into thinner ones having the
$ame properties does not solve the problem, :

A powerful, general solution to the problem
of handling homogeneous layers, when they are many
wavelengths thick, is the following. When c<f, <a,
and d_/) is large, for layer m. it is possible to use
the approximation

sinh %= ~{exptkr2 d,)
cosh B* =lexp(k rhd)

where k=uw/c, The same is valid for sinh Q* and
coshQ2. It is important 10 note that these approxi-
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maled cxpressions arc exact for a linite-precision com-
puter when the magnitudes of P* and QF increase
beyond a certain point. In fact

osh
si:h x=}exp(x)tiexp(—x).

If x increases, reaching the point where
fexp(~x)=10%4 exp(x),

where M is the number of decimal digits carried by the
computer, then it is algorithmically exact to use

coshx= —sinhx=4exp(-x) x<0.

Thus, in Eq. (1) it is possible to factor out the quantity

texp(kd, (2 +r2)]

which is always positive. Since the interest is limited to
changes in sign of the dispersion function, this factor
can be deleted when treating layer m and consequently
there is no more need to deal with exponentials having
arguments above a certain level.

The case f_<c<a, and large d /2 can be treated
by analogy and it is possible to delete terms like

lexpikd, ).

The power of this approach has been extensively tested,

P . g ‘e e

L
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Once the phase velocity, ¢, is obtained for a given
angular frequency p, the group velocity, u, is obtained from
c

u = ' (31)
1-(dc/dp) (p/c)

where standard implicit function theory is applied to the

~ dispersion function,®,,to obtain

de . (ﬂ-f_l)_ (2_{5) | (32)
dp op/e Oc P

Eq. (32) can be computed
from:
6_.?‘_,) = Ttor7{m+.-. T IFORue D if i is even,
ap /. SN0 e odd, (33)
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0%y ok , = [TH-DEWRU+ if i is even,
(—aE') P"T( A "'.Z.{I“"“F*"A"*"} if £ is odd,

{r(u--l){g"“ if nis even, (34
re=ng® if nis odd,

where

F . {n) _r(m) —{n) =(n)
RFRE > T o1ia™T sorid € s T sorid T sotid/E

primes indicate the operation ( 9/ O.P )c‘ dots, the
operation (9/) c)‘, , and

740 i—1m0,
== {T(o)pnp(z) ees PUSDIEG-D) i-1=2,4,6,...,n-1, (35)
[U-1 L TOPMED . FE~DE(-1 i-1=135,....,.n—-1.
If nis even,
Ao o [FUOFUDRON - PO @ 141 =2,4,6,..,m -2,
T |l i+1=n, (36)
xmu -= F(lﬂ)pu-i-z)F(u;),,, F(--—:)‘,—gl}u i+1m 1. 3"5. vy n =1,

and if n is odd,
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TR P X g BT U R

AU Fﬂn;puu)!,-uvu). .. Fla= l)f{:l)“ i+1=24,6,

ey n-— l.
FUsDpu+pu+3y 7, Fe-Dpe- e i+1=1,3,5, (37)
AU+ sl =2,

K g i+1=n,
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4. Computation of eigenfunctions

The algorithmic details of eigenfunction evaluation
by Knopoff's method are rather involved - although in
principle only a straightforward application of Cramer's
rule is required - whereas the details for the original
formulation | are quite simple. Thus, the
programmer's first hope is once a modified formulation has
been successfully employed, to compute an eigenvalue at a
frequency where this phase velocity was originally
unattainable due to precision loss, and then, to reintroduce
this eigenvalue into the original formulation to
successfully determine the associated eigenfunctions.
Unfortunately this approach does not work. It is therefore
necessary to employ a modified version of the original
formulation for Rayleigh waves also when computing high-
frequency eigenfunctions,

The problem is the evaluation of the eigenfunctions
ulz), wiz), o(z), and «(z). In the notation of the previous
section, this problem reduces to the determination of the
constants Am, Bm, Em, Dm for the layers above the
homogeneous half-space, and the constants An and Dn for this
deepest structural unit. Our starting point is therefore the
linear, homogeneous system of 4n - 2 equations in 4n - 2

unknowns
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- —_ m
A A, 0
Fa1 B,
Tan G
D,
A{l) A2
' Yoz B2
riz G =
D2 ]
: (38)
A(n—2) Aa—l
Tan-1 Bn—l
Tan-1 C -1
AlrY f,. '
. D, 0

where the submatrices I\(m} are given by equations (12),
(14) and (15). Once the dispersion or eigenvalue problem has
been solved by seeking roots of the determinant of the
coefficient matrix, we are ready to determine the layer
constants. This is done by deleting the last equation of the
system and transposing the terms containing Dn to the
right-hand side of the equations, thus forming a vector of
inhomogeneous terms. If we arbitrarily set Dn to unity, this
will force all FenB, and D to be real, and all Am and

r‘lngm to be imaginary. The system now takes the form
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[ ) [' A ] [0 ]
Fan-1 Bn-—l = 0 (.39)
Fan—-y Cnoy Ton !
Dn--l -1
L J L Aﬂ J L pn?nrdn_l

to which we apply Cramer's rule to obtain

An4,

A, =228
4,

(40)

where the determinants of the numerator and denominator are

expressed as matrix products

AL, = TOROpOMy | {F‘"""'T}C{” if n-—1iseven (41}
| FOOTEIY if n—1is odd

A, = T‘O’F“'F‘“'Fm e {F‘"_mTJM-” if n- lis evén 42
FODT =0 e g 1 is odd. )
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Along with eigenvalues and eigenfunctions, the integral

L . 2 . .
I = f {[.___“‘(ﬂ] ti(z) £3)
< J PN tae [ -
is  required in multi-mode synthesis of theoretical

seismograms. For a sequence of homogeneous layers, this

integral can be written as

(c"l[r,.,B,] -[D)? Y 4my for a continental structure
. ! (49
llraBy)] = [D)i? )X &n) for an oceanic structure,
. mul
where
b= ), sl @) + (@) dz (49

is given by

A Al o . —— ey
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&%r_igiz [sin Pycos Po(} — 1/rp) + Po(l + 1/rk0)): (45)
wCrl,.u
where

Ilﬂ' * (47\,
I(m) = f,__“ pelfu*(2)F + [W(2))}dz, 1 SmSn-1

is given by

{fﬁll
,wcl?

[{l'm.r-t‘m'((lAm]*)z(l - r:fm) + [r..mBn|}2(1 = I/r?-m))

+ P (A9 + #20) + (FumBaFQ + 1r2m))

+ 5™ (rgmCn V(1 = 1/rfm) + [Daf(1 = Fim))

+ Qu ({({rumCm]*)* (1 + 1/rfn) + [DaJ(1 + rﬁm))]

sm

+ L5 ((An ) rimBa)(1 = 1/rim)) (48)
~ & 6" ((Fym Cn ' D J(1 = 1/3m))

' + =50 " ramBa)[Dm] + 66 ™ [Am]* (ram Cm ]
+ 0" AL D)

- IA,,,]'[I),"] - f«l'm'fii'm’[rntm]IrdmCm]']};

and where

I, = J:M_“ paflu®(2)) + [w(2)]} d2 (49}

is given by



& l__l YT *
we |72 ([AL)"Yo(ron + 1/r2)

)| .
- 5 [Dn]z(r;ﬂ + 1/1';,.) - 2[An].[Dﬂ]}'

with, of course, Dn specified to be unity.
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{ 50)



Our tests ol the eigenfunction algorithm have been fairly extensive, and have
indicated no problems with eigenfunction computations—evaluation of layer con-
stants, and from these, evaluation of displacements and stresses at any depth—up
to a Irequency of 1,000 Hz; we did not test beyond this point.

Multiple-layer, overflow/underflow control is unchanged from the
technique used with eigenvalue—dispersion—computations. This form of solution
is possible because identical normalization factors are used in numerator and
denominator of the expressions for the layer constants, =

' Nowever control of single-layer
overfluw is more interesting than it is in eigenvalue computations. Qur numerical
tests with very thick individual layers did not indicate any problems with the
computation of layer constants and eigenfunctions; however, these tests did uncover
a new loss-of-precision problem with the equation used to determine the energy
integral [

This equation can be used without taking precautions, so long as physically
reasonable structures are employed: say, with layer thicknesses that do not exceed
by too much, the vertical width of a lobe of the displacement-depth dependences.
When this is not true, and a layer becomes several wavelengths thick, precision loss
can become noticeable even on graphical representations of /. The reason for this
precision luss is easily understood by inspecting the expression for the contribution
of a single laver to /

lm = ”"I{I(Am.)2 + KZAM.(rumBm)] + IK.'lfrumBm).:}I
+ IIK‘AM.(rﬂMCM)‘ + K!-Am.Dm] + {Kﬁ(rumBm}{rumcm).
+ Ko(romBn)Do )l + [ Kal(rymCa)*Y
+ Kﬂ(rﬂmcm)‘Dml + [KNPDNI!]’- (gl)
Note, l'rom(e) ' , that layer
constants A,, and B,, represent compressional-wave contributions, and that layer
constants C,, and 1), represent transverse-wave contributions. Thus, returning to

(51), the first two terms contain coefficients K\, K;, K;, and are the purely
compressional-, or P-wave contributions to the energy integral. The factors of K,

- 4



K., K.. that are of interest 1o us here, have the {furm

sin P, sin .. &2

COS Cos

T'he second two terms contain coefficients K,, K., K, K7, and are the coupled-, or
P-SV-wave contributions to the integral. The factors of interest in these coefficients
are of the form

sin sin

Pnr Qm . ‘55 }

cos COS

The last pair of terms in (§}) is the i)urely transverse-, or SV-wave contribution to
the integral and contains coefficients K., Ky, Kic. The factors that are of interest
to us here have the form

sin o 8in g €%)

cos €os

When ¢ > a,, > ., Only sines and cosines of real arguments appear in these three
factors, and there is no problem with precision loss. When, for a thick layer, ., >
¢ > B, these three factors have the forms

lexp(2 | Pa*l) for purely P-wave energy,
sin :
lexp(| P.*1) Q@ forcoupled-, P-SV-wave energy,
cos
sin  sin
Qm Qn for purely SV.wave energy. (35)
cos  CO8

The first two terms in (54) are of opposite sign, with large magnitudes that are
nearly equal, the second two terms are of opposite sign, having intermediate
magnitudes which are nearly equal, and the last pair of terms are of small magnitude.
Schematically, the three pairs of terms have the forms

(N +e] + |-N]| +
([N + d] + [-NJ| +
{INa] + [ NI (%)

where ¢, d, N,, and N, are of roughly the same order of magnitude. With a finite-
precision machine, our computational results show that as | P.* | increases and
t Ny | becomes larger, e contains fewer and fewer significant figures. Recalling that
P is the number of decimal digits carried by the computer, | N, | finally exceeds ¢
(and d + N, + N,) by more than 10", the spuriously finite difference [N,] — [N,]
dominates the true value of [, and the calculation therefore has no significance.
Thus, just as in the original Thomson-Haskell formulation for Rayleigh-wave
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dispersion computations, it is the existence of lactors of the form

sinh ,, , sinh po» 5P

cosh ° ™ cosh " ™

that leads to precision problems here. (The
details are similar, for precision loss in I, when «,, > #.. > ¢.) The simplest solution
10 this problem is to split a layer into a sequence of thinner layers if the vertical
extent of a lobe of the displacement-depth dependences becomes less than the layer
thickness; or roughly, if the wavelength of the transverse waves in a layer becomes
less"than that layer’s thickness. Splitting the layers can, of course, be done by
simply increasing the number of layers used in the entire program, which is the
most desirable solution; since, just when it is required, the density and body-wave
velocities in these thinner layers can be varied to obtain a better approximation to
the actual structure. However, if it has been decided to use thick layers, it is
inefficient to use multiple, juxtaposed, identical layers throughout the whole pro-
gram, since computation time and cost increase linearly with the number of layers
treated by the entire program. It is better to limit the breakup of these layers, only
to the / computation; this can be done in such a way as fo avoid any significant
increase in computation time or cost. The procedure is as follows.

In the initial part of the eigenfunction program it is decided how many times a
layer must be divided to avoid precision loss in the evaluation of /. Say that the
thick layer, which will be used in its original form right up to the I computation,
must be subdivided into g thinner layers (of equal thickness, d../g). To avoid all but
one set of function calls, which determines execution time in this type of compu-
tation, sin(P./g} and cos(P,./g) are determined with the usual function calls, and
sin P, and cos P, are then obtained by iterative use of the formulas for the sine
and cosine of the sum of two angles. The functions sin P,, and cos P, are then used
in the computations up to the point at which 7 is to be computed. Of course, ., is
treated in the same way. Then, for the computation of [, layer m is broken into g
sublayers, each of which is characterized by the functions

Z,'™ = cos(P./g)
Z,'™ = cos(Q../g)

Zy™ = r,  sin(P./g)

Z,'™ = (1/r.m)sin(Pn/g)

Zy'"™ = rynsin(Qn/g)

Zs"™ = (1/rum)sin(Qn/8). )

Since these quantities have already been computed and saved, no extra expense is
incurred in their use. The layer constants which have already been computed for
layer m—for the original, thick layer—are also those of the uppermost of the g
sublayers: A7), FamBmi, (FgmCim1)*, Dmy. With these constants, and the functions
Z/™ replacing {;", the usual formula for [ can be used for the accurate evaluation

of this first sublayer's contribution to the integral. The layer constants for the next
laver down are

{A2.0) = Z\'""A%) — 2/ (rumBn,)
(rumBmis) = Z3 AR + 2" rumBm,)
(ramCrmin))* = 29" rgmCn}* — Z5'™(D )
(Dmoat) = Z6"™(rgmCons}* + Z,™' (D). (59
These layer constants are also used with the functions Z,"™, to obtain the second

sublayer’s contribution to /. This procedure is repeated unti! the contributions of
all g sublayers have been obtained.
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5. Mode follower and structure minimization

Since all the problems connected with the
loss-of-precision at high frequencies have been solved
, the
summation of higher modes of surface waves can be used for
the generation of “complete" synthetic seismograms also at
high frequencies.

The key point in the use of multimode summation is
an efficient computation of phase velocity for the different
modes at sufficiently small frequency intervals, Af, and
with sufficient precision. To be efficient it is not
- advisable to determine, at each frequency and for each mode,
the zeros of the dispersion function using the standard
root-bracketing and root-refining,procedure.

This procedure must be used only when
strictly necessary, as for instance at the beginning of each
mode. For all other points, i, of each mode the phase
velocity can be estimated by cubic extrapolation, using the
values of the phase slowness s=1/c and df/ds already

determined at frequencies fi-z and fi.y. However the
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precision which can be reached in this way is not
satisfactory, thus the phase velocity value must be refined.
This can be done by an iterative cubic fit in the F-c plane.
In our experience, such a procedure has given always highly
accurate determinations of the phase velocity and allows a
considerable time saving compared with the standard
root-bracketing root-refining procedure.

Once the problem of an efficient determination of
phase velocities is solved, two other main problems must be
solved at each frequency:

a) to correctly follow a mode;
b) to determine the minimum number of layers to be used.

The problem of correctly following a mode arises in
the high frequency domain (f > 0.1 Hz) where several higher
modes are very close to each other. The determination of the
minimum number of layers to be used - structure minimization
- is critical in order to reach a high precision in phase
velocity determination spending the minimum possible
computer time.

In order to ensure a high efficiency in the
computation of synthetic seismograms, it is necessary to
compute the basic ingredients in the frequency domain -
phase velocity, phase attenuation, group velocity, energy
integral and ellipticity - at constant frequency intervals.

To reach a maximum frequency of 10 Hz a satisfactory step
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turned out to be 0.05 Hz. To determine the total number of
modes present in the frequency interval considered we fix
c0=0;98 Bn' where Bn is the S-wave velocity in the
half-space, and we increment f, using the Schwab and Knopoff
(1972) algorithm to find the values of f corresponding to
zeros of the dispersion function F{f, co). Obviously,
starting from f=0, the first zero in F(f, co) corresponds to
the fundamental mode, the second to the first higher mode
and so on. The values of f for which F(f, c0)=0 are used as
starting frequencies (the 1lowest frequencies) for the
computation of the different modes. Once the starting
frequency for each mode is defined, it is possible to
compute, beginning from the fundamental mode, all dispersion
relations. This 1is accomplished by keeping f fixed and
varying c, the procedure being applied at all the equally

spaced frequency points of the chosen frequency interval.

5.1 The mode follower

The basic idea is to define an efficient method to
follow a given mode M in the phase velocity-frequency space,
distinguishing it from the neighbouring modes M-1 and M+1, a
problem which is most severe near the osculation points, as,
for instance, those characterizing the transition from
crustal waves to channel waves, For

frequencies as high as 1 Hz the fundamental mode is in
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general well separated from the remaining modes, while for
higher frequencies this 1is no longer true. Thus for the
construction of synthetic signals containing high-frequency
the mode follower must be applied to all modes, including
the fundamental. On the basis of our experience up to now,
there are no other modes present in the proximity of the
near osculations between the fundamental and the first
higher mode. To follow the fundamental mode it is therefore
sufficient to use the following properties of aF/ac:

a) for a given mode M, the sign of aF/ac s constant with
frequency;

b) going from a mode to the next 3F/» ¢ changes sign with
regularity.

In other words, once the sign of aF/sc is computed
at the initial frequency of the fundamental mode, in all
subsequent points the simple check of this sign makes it
possible to follow the mode correctly. In fact, with
increasing frequency, as long as the sign of aF/ac does not
Change, the obtained zero of F(f, c) belongs to the
fundamental mode. If the sign of aF/ac changes, the zero of
F(f, c) does not belong to the fundamental mode and the
search of the zero restarts from a lower value of ¢. In such
a way it is possible to compute all the dispersion curve for
the fundamental mode quite rapidly.

For the higher modes the above algorithm is not
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sufficient because they are generally much closer to
each-other. However the construction of an efficient mode

follower is still possible.

For a given higher mode, even if computations are
made for structures containing very strong low-velocity
layers, the phase velocity decreases with increasing
frequency. Thus for each higher mode, M, the possible value
of the phase velocity, at a given frequency f, lies in the
range (c], cz), where c is the phase velocity of the mode
M-1 at the frequency f and c2 s the phase velocity of the
mode M at the frequency f- af. If the computations are
carried to a maximum frequency of 1 Hz we suggest a
frequency step 8f=0.005 Hz, while if the maximum frequency
is 10 Hz then af=0.05. This condition, combined with the
property of the sign of 2FA ¢ recognizes an eventual Jump
from mode M to modes M+(2n+1) (n=0,1,...). If in the domain
(c], c2) and (f-af,f) 2m+1 (m=1,2,...) modes are contained,
the procedure just outlined is not sufficient to foltow the
mode. On the basis of our experience we can state that this
happens very seldom; thus we have not bothered to derive a
very efficient algorithm to solve this problem. Our mode
follower recognizes this mode jump only when the computation
of modes M+1 and M+2 is completed. At this point the

computation can be restarted from the mode M at the
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frequency f using as the initial phase velocity a value just
slightly greater than that of the mode M-1 at the same
freguency.

Even if up to now we have carried out computations
for a limited sample of continenta) and oceanic structural
models o, we
can state that this version of the mode follower is totally

satisfactory to compute with high efficiency all the

frequency domain ingredients of synthetic seismograms,
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As we have seen, body waves are dispersed in
anelastic media. The frequency dependence of body waves
requires the introduction of a small but essential variation
in the mode follower.

In the perfectly elastic case, for each higher mode,

M, the possible value of the phase velocity, at a given

ne e LR T e TP S L BT L S VL . b saens Mgl
B g i R e Rt e e ; . KT
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frequency, lies in the range (c], c2). When body wave
dispersion 1is present, the upper limit c, has to be
redifined. The phase velocity of body waves, in fact,
increases with increasing frequency and this may cause an
increase of the phase velocity of higher modes with
frequency. This effect is evident in those parts of the mode
curves which are almost undispersed in the perfectly elastic
case. One has therefore to estimate the increase in phase
velocity of a given mode at a given frequency f, with
respect to the frequency f-af, due to the dispersion of body
waves.

Let us dencte by 8¢, the maximum possible increment

2
of ¢..
It is convenient to express the

difference 4c in the phase velocity between the frequencies

f-af and f, due to the effect of the body wave dispersion,

by
f
c(f) X tn FToF
AC = 7 . ———';I_:"- (o)
—ll
1+x &n Y T+x n 7
with

X = % c{f) Cz(f)

The use of (6@) is not straightforward, since the value of
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ac depends upon c{f) and cz(f), quantities which are
obviously unknown at this stage of the computation.
In order to estimate Ac one can substitute to c(f)

and Cz(f) a weighted average of the S-wave velocities, B],

and the S-wave phase attenuations, B_. As weights we use the

2

eigenfunctions at the frequency f-af, in particular the sum

of the squared displacements. Therefore

. - £
B](f-bf) X Fof
bCz = -_—-?-—— - ——:————f (6' :)
. - o s
1-x tn Foaf 1+x tn s

with

= _ 2
X ==
n

B](f-af) Bz(f-Af)
It has been found with extensive numerical testing that the
above relations yield a very satisfactory definition of the

upper limit ¢ In the case the wave at the frequency f-af

9*
penetrates to a much smaller depth than that “at  the
frequency f, as for instance in the channel wave - crustal
wave sequence, the weighted averages B] and B2 are computed
at the last frequency f-Naf, where the wave reaches about
the same penetration depth as that at the frequency f. The
main advantage of the above modification consists in keeping

the general scheme of the perfectly elastic mode-follower

the same.
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Due to body wave dispersion, care must also be taken
in computing group velocities using implicit function theory
(Eq. 31-32). When computing (?g%?)‘one has to remember that
body wave velocities are functions of frequency. In this
case equation (33) contains terms associated with the
derivative with respect to the angular frequency, p, of the
compressional and shear wave velocities.

The effects of body wave dispersion are not very
relevant in practice, however we want to stress that the
introduction of body waves dispersion in anelastic media is

a physical necessity.
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5.2 Structure mfnimization

The structure minimization is a critical point
regarding the efficiency and the accuracy of the computation
of eigenvalues, eigenfunctions and related quantities. In
order to save computer time, it is necessary to determine
for each frequency, the minimum amount of structure to be
used in the computation, while-retaining very "high accuracy.
In general for a structure made by n layers this can be done

by computing the quantity

x 2 K
- ¥ wm
Em =0 ot B e m=1,...n-] (62)
0 0
where
- Dm-]+°m

T —_— i f
o > i msz2
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and pm-l and om are the densities in layers m-1 and m, if

m=1 PRLT

Since we have chosen for each mode to start from the
lowest frequencies consistent with a value of ¢=0.98 Bn, the
amount of structure to be used at the beginning of each mode
coincides with the total number, n, of layers in the
structural model. Once the phase velocity is determined, Em
can easily be computed and start{ng from m=n-1 it is easy to
locate its deepest minimum value.

At this stage all the layers below the interface, j,
corresponding to the deepest minimum value of Em can be
discarded and the parameters of the j+1 layer are used to
define the half-space. With the minimized structure it is
now possible to compute with the necessary accuracy, more
than 8 figures, the final value of the phase velocity. In
general, repeating this procedure for each frequency and for
each mode gives very satisfactory results.

Particular care must be placed in the structure
minimization when low velocity layers are present in the
structural model. Let us consider here the case of only one
Tow velocity channel, the extension to many velocity
inversions being quite obvious. For the waves propagating
essentially in the low velocity channel, the necessary
accuracy is ensured by simply placing the terminating

half-space just below the zone of velocity inversion. For
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the waves propagating above the low velocity channel, i.e.
for the waves with a phase velocity less than the minimum
S-wave velocity in the channel, only the structure above the
deepest minimum of Em located above the channel needs to be
retained.

The situation is completely different when dealing
with waves propagating with a phase velocity larger than the
minimum S-wave velocity in the channel, i.e. for waves
mainly propagating above the low velocity channel but
sampling also deeper. For these waves it is generally
necessary to keep at least all the channel, assigning the
properties of the layer immediately below it to the
half-space. It must be observed that in many cases the
penetration in the low velocity channel is so small, that
the structure minimization can be performed, without loosing
in precision, by removing the whole channel, with evident
time saving. The identification of the waves for which the
above reduction is possible can be made by evaluating Eo
starting at m=0. If in some of the layers just above the low
4

Eo, then the structure can be

terminated at the j-th interface, using as half-space

velocity layer E; & 107

characteristics those of the j-th layer. From the
description given above it is clear that the initial amount
of structure used for the computation at a given frequency,

f, is determined by the result of the structure minimization



- 57 -

at the frequency f-sf. This is obviously not valid if at the
frequency f-af there was a wave sampling the channel very
weakly (E‘j <10-4 EO). In these cases the amount of structure

initially used at the frequency, f, contains always the low

velocity layer.
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