i e i
INTEKRNATIONAL ATOMIO ENRRGY AGENOCY !!I!l!
ATIONA LENTIF .
UNITED NATIONA EDUO. | L, BCIENTIFIO AND CULTURAL DRGANIZATION

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

34100 TRIKSTE (TALY) « P.0. B, 888 - MIRAMAME - ATRADA CONTIERA 11 - TELEPHOME: 9240-1
CANLE: OENTRATOM - TELEX 400393 - [

SECOND SCHOOL ON ADVANCED TECHNIQUES
IN COMPUTATIONAL PRYSICS
(18 January — 12 February 1988)

SMR.282/ 15

MODULA — 2 AND PASCAL
PART 1: MODULA - 2

V.B.A.FACK
University of Ghent, Belgium

MODULA-2 REFERENCE CARD

INITIALISATION

Before using MODULA-2: uselng to initialise environment.

After using MODULA-2: uselng remove to restore environment.
COMPILING AND LINKING

To compile: m2c name|.det]

To link: m21 name

RUNNING

n2 name

COMPILING AND LINKING WITH nod EDITOR

mod name|.mod|

mod name.det

Editing
<ESC> exit mod
escape from display boxes
<F1> help
<F3> load file
<F4> save file
1

Cursor positioning

<>
<>

<t>

<|>

<PG DN>
<PG UP>
<CTRL>-<A>
<CTRL>~<E>
<HOME>
<END>

character left
character right

line up

line down

Ppage up

page down

to beginning of line
to end of line

to beginning of text
to end of text

Deleting and inserting text

<F8>

<INS>
<BACKSPACE>

Search and replace

<F10>

<CTRL>-<8>
<CTRL>-<R>
<GCTRL>-<Q>

Starts selection of a block of text, at current cursor positio
Use cursor positioning commands to mark end of selected
Selected text is highlighted,

If block of text is selected, deletes it and puts it in ‘scrateh
Otherwise, deletes character under cursor,

Inserts contenta of ‘scratchpad’ at current cursor position.
Deletes character before cursor.

allows to specify a search string
forward search of specified string
backward search of specified string
replaces old string with new string

Searches and replaces start at current cursor position.

Windowing

<ALT>-<F10> window menu, with a.o. following commands:

close close current window

hor. aplit aplit current window horizontally at cursor position
vert.split split current window vertically at cursor position
full screen make current window full screen window

Select option by typing first letter of command.
<FT1> switch between windows

Syntax checking

Press <F2> to check syntax. Either an error message is displayed at the
first error, or a message that no syntax errors were found.

Press <ESC> to continue,
Compiling

Press <F5> to compile.

After compilation with errors, press <ALT>~<F5> to position cursor at
next error and display error message. Otherwise press <ESC> to continue,

Linking

Preas <F6> to link.
After linking, press <ESC> twice to exit mod and return to MS-DOS,

Program reads a sequence of positive integers until -1 is read, com-

putes maximum and minimum of the sequence and output the
numbers read and their differences with this maximum and mini-

mum.

PROGRAM EXAM1

(=2
-
EE
o
S ~ © .
g3 5%
OF- L E
ﬁg: g£85 -
o = et St e
ESRE Zog =
=] ~
nﬁzz ﬂ—lzzzg
4 [=] At Nt o wr
fEE . EECEES
aifociiasSsy
X e N M o= x
FEEgg3idun,
k
t o
(8] (3]

ELSE IF (NUM(NR).LT.MIN) THEN

MIN=NUM(NR)

END IF

"

"

NR=NR+1
GOTO 20

DO 30 I=1,NR-1

w 10
nw 30

PRINT », NUM(I), MAX-NUM(I)}, NUM(I)-MIN

STOP
END

1 {$B—,U+,R+}

1 PROGRAM Examplel (input, output);
» {Pascal version}

« CONST NMax = 100;

+ VAR Nr, i, Max, Min : INTEGER;

"

Number : ARRAY [1i..Nmax] OF INTEGER:

BEGIN

Nr := 1; Max := 0; Min := MAXINT;
Read (Number[Nr]);
WHILE Number([Nr] <> -1 DO
BEGIN
IF Number[Nr] > Max THEN
Max := Number[Nr]
ELSE IF Number[Nr] < Min THEN
Min := Number(Nr];
Nr := Nr + 1;
Read (Number(Nr])
END (* while *);
FOR i1 := 1 TO Nr - 1 DO
BEGIN
Write (Number(i]:6, Max - Number[i] :6,
Number{i) - Min:6);
WriteLn
END (% for »*)

n END.

1+ MODULE Examplet;
+ (*+ Modula-2 version *)
» FROM InOut IMPORT

ReadInt, Writelnt, WriteLn;

s CONST

NMax = 100;

+ VAR

Nr, i, Max, Min : INTEGER;
Number : ARRAY [1..NMax] OF INTEGER;

w» BEGIN

ReadInt (Number[1]);
Nr := 2;
Max := Number(1]; Min := Number[1];
ReadInt (Number[Nr]);
WHILE Number[Nr] <> -1 DO
IF Number[Nr] > Max THEN Max := Number [Nr]
ELSIF Number[Nr] < Min THEN Min := Number[Nr]
END (* if »);
INC (Nr);
ReadInt (Number[Nr])
END (* while #);
FOR i := 1 TO Nr - 1 DO
WriteInt (Number([i], 6);
WriteInt (Max - Number([i], 6);
WriteInt (Number{il - Min, 6); WriteLn
END (* for =)

n END Examplei.

s+ (* Count the occurrences of the letters 'a’., ‘'z’

4

-

”n

MODULE Example2;

in a line of text, followed by ‘.’
FROM InOut IMPORT
Read, Write, WriteCard, WriteString, Writeln;
TYPE
Letters = [*a’.,’z’]);
Occurrences = ARRAY Letters OF CARDINAL;
VAR
Occ : Occurrences;
Ch : CHAR;
BEGIN
FOR Ch := ’a’ TO ’z’ DO Occ[Ch] := © END;
Loop
Read (Ch); Write (Ch):
IF Ch = * ¢ THEN
EXIT
ELSIF (Ch >= ’a’) AND (Ch <= ’z') THEN
INC (Occlch))
END (* if =»)
END (* loop #);
WriteLn; WriteLn;
FOR Ch := ’a’ TO ’z’ Do
IF Occ[Ch] <> 0 THEN

Write (Ch); WriteString (» ");
WriteCard (Occ{Ch], 2): WriteLn
END {* if %)

END (* for *)
END Example?2.

*)

» MODULE Example3;

» (* Check whether a word is a palindrome *)

s FROM InOut IMPORT

« EOL, Done, Read, Write, WriteString, WritelLn:
» VAR Word : ARRAY [1..80] OF CHAR;

' Ch : CHAR; Len, first, second : CARDINAL:
+ BEGIN

' Read (Ch);

s+ WHILE Domne DO

" Len := {1;

1 WHILE Ch <> EOL DD

" Write (Ch); Word[Len] := Ch;

w INC (Len); Read (Ch)

14 END (* while #);

" first := 1;

" Loop’

) second := Len - first;

“ IF tirst >= gsecond THEN

" WriteString (" is a palindrome");

» WritelLn; EXIT

n ELSIF (Word{first] = Word[second]) THEN
n INC (first)

n ELSE

2 WriteString (" is not a palindrome"):
» WritelLn; EXIT

» END (* if »)

n END (% loop *);

» Read (Ch)

n END (* while #)

s END Example3.

« MODULE Example4; » MODULE Example5;

+ (* Print ASCII character set *) 1 (* Compute the product of two matrices
» FROM InOut IMPORT s and input/output of matrices. *)
+ Write, Writeln, WriteString; .
» VAR Ch : CHAR; +» FROM InOut IMPORT
« BEGIN « ReadCard, WriteString, WritelLn;
+ FOR Ch := OC TD 177C DO r FROM RealInOut IMPORT
. IF ORD (Ch) MOD 4 = O THEN WriteLn END; s ReadReal, WriteReal;
' CASE Ch OF » CONST
1 0C..37C, 177C ; w NMax = 20;
" WriteString (" Control character ") u TYPE
n R A R T T n Matrices = ARRAY [1..NMax], [1..NMax] OF REAL;
1 '[’.."’, '{’..'-' M 1]
P WriteString (" Special character ") u PROCEDURE ProdMat (dim : CARDINAL; mi, m2: Matrice
" | 20°..79 " VAR res : Matrices);
" WriteString (" Digit "y w VAR
ar | *a*..’z’ 1 i, j, k : CARDINAL;
1 WriteString (" Lower case letter ") " el : REAL;
» | 2A2..02 ¢ » BEGIN
» WriteString (" Upper case letter ") » FOR i := 1 TO dim DO
n END (* case #) n FOR j := 1 TO dim DO
sz END (* for ») n el := 0.0;
n END Example4. » FOR k := 1 TO dim DO
" el := el + ml[i;k] * m2[k.j]
® END (* for #);
n res[i,j] := el
» END (* for =)

n END (* for *)
» END ProdMat;

$ £ 3 % 2z ¥ ¥ g ¥

-

-
-

-
-

-
3

t

PROCEDURE ReadMat (dim : CARDINAL;
VAR mat : Matrices):
VAR
i, j : CARDINAL;
BEGIN
FOR 1 := 1 TO dim DO

ReadReal (mat[i,1]);

FOR j := 2 TG dim DO
WriteString (" *);
ReadReal (mat[i,j])

END (* for #);

Writeln

END (% for =)
END ReadMat;

PROCEDURE WriteMat (dim : CARDINAL;
mat : Matrices);
VAR
i, j : CARDINAL;
“BEGIN
FOR i := 1 TO dim DO
WriteReal (mat[i,1], 12);
FOR j := 2 TO dim DO
WriteString (" "):
WriteReal (mat[i,jl, 12)
END (* for »);
HWriteLn
END (= for »)
END WriteMat;

» VAR

Dimension : CARDINAL;
Matl, Mat2, Prod : Matrices;

"
o BEGIN

L]
]
"
L
[]
L)
™"
n
n
n

WriteString ("Dimension of the matrices 7 ");
ReadCard (Dimension); Writeln;
WriteString ("First matrix 7"); WriteLn;
ReadMat (Dimension, Mat1);
WriteString ("Second matrix ?"); WriteLn:
ReadMat (Dimension, Mat2);
ProdMat (Dimension, Mati, Mat2, Prod);
WriteString ("Product :"); WriteLn;
WriteMat (Dimension, Prod)

END Example5.

Better:

PROCEDURE ProdMat (dim : CARDINAL;
VAR mt, m2, res : Matrices);

PROCEDURE WriteMat (dim : CARDINAL;
VAR mat : Matrices);

» MODULE Exampleé;

10

+ (* Compute number of digits in a cardinal number *)

« FROM InOut IMPORT
+ ReadCard, WriteCard, WriteString, WriteLn;

+ PROCEDURE NrDigits (num : CARDINAL) : CARDINAL;

« VAR

’ nrDigits : CARDINAL;
» BEGIN

" nrligits := 0;

n REPEAT

" INC (nrDigits);

" num := num DIV 10

" UNTIL num = O;
M RETURN nrDigits
7 END NrDigits;

» VAR

» Num : CARDINAL;

1}

»n BEGIN

» WriteString ("Give a cardinal number : "},
» ReadCard (Num); WriteLn;

» WriteString ("Number of digits = ");

» WriteCard (NrDigits (Num), 6);: WriteLn;
n WriteString ("Number = ");

» WriteCard (Num, 6); WriteLn

» END Example6.

Recursion

Fibonacci numbers

o= Faoi+ Fyy
R =HR"=1

+ PROCEDURE Fibo (n : CARDINAL) : CARDINAL;

4

T

BEGIN
IF (n = 0) OR (n = 1) THEN
RETURN 1
ELSE
RETURN Fibo (n-1) + Fibo (n-2)
END (% if =)
ERD Fibo;
But:
Fy
/ N\
Fn—l. Fn—2
N\ N

12

Study of the evolution of a probability density distribution p(z)
over [0,1), with §f p(z) dz = 1, under the discrete-time quadratic
map

ZTi4] = 4.’1.‘:(1 -— 2::)
One obtains, Vt € N
() = —r
SV
1-V1-2z + 1+/1-¢z
P > Pi 2

It can be shown that this converges to the invariant limit density

. 1
Jim p(z) = m vz € [0,1]

Example of a distribution:

) = ZE Wy _ e

13

1+ MODULE Example7;

L

s FROM InOut IMPORT

+ ReadCard, WriteCard, WriteString, Writeln;
+ FROM RealInOut IMPORT

¢« WriteReal;

+ FROM MathLibO IMPORT

. Bql't M

*

w CONST Pi = 3,1415926536;

n TYPE Distributions = PROCEDURE (REAL) : REAL;
i]

1 VAR Order : CARDINAL;

" Factor : REAL;

v PROCEDURE Rho (t : CARDINAL; x : REAL;

" rhoQ : Distributions) : REAL;

»w VAR

» hsqrt : REAL;

n BEGIN

n IF ¢t = 0 THEN

» RETURN rho0 (x)

" ELSE

" hsqrt := sqrt (1.0-x) / 2.0;

» t = t-1;

" RETURN 0.125 * (Rho (t, 0.5~hsqrt, rho0)

+ Rho (t, 0.5+hsqrt, rhe0)) / hsgrt

END (% if »)

» END Rho ;

2 ¥ ¥ B 3

T

&

PROCEDURE RhoO {x : REAL) : REAL;
BEGIN

RETURN Factor * Power (Order, x * (1.0-x))

END Rho0;

PROCEDURE ComputeFactor (order : CARDINAL;

VAR fact
VAR
nom : CARDINAL;
BEGIN

: REAL);

fact := 2.0 * FLOAT(order) + 1.0;

.

nom := 2 % order;
WHILE order >= 1 DO

fact := fact * (FLOAT(nom) / FLOAT(order));

DEC (nom); DEC (order)
END (* while)
END ComputeFactor;

PROCEDURE Power (n : CARDINAL; x :
BEGIN
IF n = 0 THEN
RETURN 1.0
ELSIF n MOD 2 = O THEN
RETURN Power (n DIV 2, x * x)
ELSE
RETURN x * Power (n - 1, x)
END (% if »*)
END Power;

REAL)

¢ REAL;

14

« VAR x : REAL;

« BEGIN

« WriteString ("Order of the distribution ? ");

« ReadCard (Order); Writeln;

« ComputeFactor (Order, Factor);

a« X .= 0.1:

WHILE x < 0.99 DO
WriteReal (Rho (5, x, RhoO0), 16);
WriteReal (Rho (10, x, Rho0), 16);:
WriteReal (1.0 / (Pi * sqrt (x*(1.0-x))), 16):
WriteLn;
x :=x+ 0.1

END {* while *);

» END Example7.

g 3 2 3 & =

H

+ MODULE Example8;
+ (* Compute all possible permutations
s of a set of cardinal numbers. *)
FROM InCut IMPORT
ReadCard, WriteCard, WriteString, WriteLn:

-

+ CONST

+ NMax = 20;

+ TYPE .

w Sequences = ARRAY [1..NMax] OF CARDINAL:
n VAR

w N, i : CARDINAL;

» Perm : Sequences;

u PROCEDURE Permute (VAR perm : Sequences;

" size, maxsize : CARDINAL);
i+ VAR

" i, tmp : CARDINAL:

» BEGIN

% IF size = {1 THEN .

" Print (perm, maxsize) '

n ELSE

n FOR i := 1 TO size DO

" tmp := perm{i]; perm[i] := perm{size];
» permsize] := tmp;

Permute (perm, size-1, maxsize):
tmp := perm[i]; perm[i] := perm[size]:

% 2

10

» perm(size] := tmp
END (* for =)

* END (* if »)

an END Permute:

n

= PROCEDURE Print (VAR seq : Sequences;
% size : CARDINAL);

= BEGIN

» FOR i := 1 TO size DO

a WriteCard (seq[il], 4); WriteString ("

5t END (* for *)« H
”» WriteLn i
w END Print:

o BEGIN

o WriteString (" Give a cardinal number :

« ReadCard (N):; WritelLn:

« FOR4 :=1 TO N DO Perm[i] := i END:
Permute (Perm, N, N)

o« END Example8.

")

u)

17

18

n HPermute (size-1):

« MODULE Example8; " tmp := perm[il; perm[i] := perm[size]:

o (* Compute all possible permutations " perm[size] := tmp

w0 of a set of cardinal numbers. " END (+ for »)

" Second version *) ™ END (* if *)

w FROM InOut IMPORT w END HPermute;

» ReadCard, WriteCard, WriteString, WriteLn; » BEGIN

) ™ HPermute (maxsize) -

u CONST ’ .« END Permute;

w NMax = 20; E “

. TYPE 1. » PROCEDURE Print (VAR seq : Sequences;

u Sequences = ARRAY [i..NMax] OF CARDINAL: aomisk @ size : CARDINAL);

w VAR - ' " BEGIN .

« N, i : CARDINAL; _ , : n FOR 1 := 1 TO size DO

« Perm : Sequences; " WriteCard (seq[il, 4); WriteString (")
» END (* for =*):

« PROCEDURE Permute (VAR perm : Sequences; , " WriteLn

“ maxsize : CARDINAL): ' » END Print;

« PROCEDURE HPermute (size : CARDINAL) ; s

. VAR »« BEGIN

o i, tmp : CARDINAL; w WriteString (" Give a cardinal number : "),

“ BEGIN » ReadCard (N); WriteLn:

IF size = 1 THEN » FOR 4 :=1 TO N DO Perm[i]l := i END:

. Print (perm, maxsize) - w Permute (Perm, N)

" ELSE - w END Example8.

n FOR 1 := 1 TO size DO

" tmp := perm[i]; perm[i] := perm[aize];

" perm(size] := tmp; ff f' ;

» DEFINITION MODULE CmplxNum;
+ (* Module for complex number arithmetic
’ and input/ocutput *)

« EXPORT QUALIFIED

+ Complex,

+ Modulus, Adjoint, Add, Subtract, Multiply,
o Divide, ReadComplex, WriteComplex;

|]

w TYPE Complex = RECORD Re, Im : REAL END;

n

» PROCEDURE Modulus (c : Complex) : REAL:

» PROCEDURE Adjoint (c : Complex;

1 VAR res : Complex);
» PROCEDURE Add (c1, ¢2 : Complex;

" VAR res : Complex);

» PROCEDURE Subtract (ci, c2 : Complex;

1 VAR res : Complex);
» PROCEDURE Multiply (ci, c2 : Complex;

. VAR res : Complex);
n PROCEDURE Divide (c1, c2 : Complex;

n VAR res .: Complex);

» PROCEDURE ReadComplex (VAR c : Complex);

» PROCEDURE WriteComplex (c : Complex;

n width : CARDINAL);
» END CmplxNum.

10

» IMPLEMENTATION MODULE CmplxNum;

»

» FROM MathLib0 IMPORT sqrt;
»

« FROM InOut IMPORT

n WriteString;

=

» FROM RealInOut IMPORT

» WriteReal, ReadReal;

17

= PROCEDURE Modulus (c : Complex) : REAL:
=» BEGIN :

» WITH ¢ DO

- RETURN sqrt (Re * Re + Im * Im)

“ END (* with *)
o END Modulus;

9

« PROCEDURE Adjoint (¢ : Complex;

- VAR res : Complex);
« BEGIN

o WITH res DO

- Re := c.Re; Im := - ¢, Im

» END (* with =)

w END Adjoint;

1]

L]

(2]

PROCEDURE Add (c1, c2 : Complex:
VAR res : Complex);
BEGIN
WITH res DO
Re := c1.Re + c2.Re;
Im := ¢c1.Im + ¢2.Im
END (* with »)
END Add;

PROCEDURE Subtract (ci, ¢2 : Complex;
VAR res : Complex);
BEGIN
WITH res DO
Re := c1.Re - c2.Re;
Im := ¢cl1.Im - ¢2.Im
END (* with x)
END Subtract;

PROCEDURE Multiply (c1, ¢2 : Complex;
VAR res : Complex);
BEGIN
WITH res DO
Re := c1.Re * c2.Re - c1.Im * c2.Im;
Im := c1.Re * ¢2.Im + c1.Im # c2.Re
END (* with #)
END Multiply;

PROCEDURE Divide (c1, c?2 : Complex;
VAR res : Complex);
VAR sqrmod : REAL;

BEGIN

u WITH ¢2 DO

“ sqrmod := Re*Re+Im*Im

- END (* with *);

“ WITH res DO

- Re := (ci.Re*c2.He+c1.Im*c2.Im)/sqrmod;
- Im := (c2.Re*ci.Im-c1.Re*c2.Im)/sqrmod

" END (* with *)
» END Divide;

» PROCEDURE ReadComplex (VAR ¢ : Complex):
» BEGIN

» WITH ¢ DO

" WriteString ("("); ReadReal (Re);
" WriteString (","); ReadReal (Im);
” WriteString (")")

- END (* with %)

» END ReadComplex;

w PROCEDURE WriteComplex (c : Complex; width : CARDI
w BEGIN
18 WITH ¢ DO

- WriteString ("("); WriteReal (Re, width);
™ WriteString (","); WriteReal (Im, width);
™ HriteString (")

1ot END (* with *)
wm END WriteComplex;

we BEGIN
m END CmplxNum.

i MODULE Cmplest;

"3

ne FROM CmplxNum IMPORT

ns Complex,

ue Modulus, Adjoint, Add, Subtract, Multiply,
nw Divide, WriteComplex, ReadComplex;

e

w FROM InOut IMPORT

m WriteString, WriteLn:

m

s FROM RealInQut IMPORT

m WriteReal;

L]

i YAR ¢, cl, ¢2, res : Complex;

"

1w BEGIN

m WriteString ("Give a complex number c¢1 : ");
m ReadComplex (c1);

1» HriteLn;

wm ~ WriteString ("Give a complex number c2 : ");
w ReadComplex (c2); '

w Writeln:

w WriteString ("Modulus ci = *);

i WriteReal (Modulus' (c1), 12); WritelLn;
137 HriteString {"Modulus c?2 = ");

i WriteReal (Modulus (c2), 12); Writeln:
w WriteString ("Adjoint ci = "y,

w Adjoint (c1, res);

e WriteComplex (res, 12); WriteLn;

112

WriteString ("Adjoint c¢2 = ");
Adjoint (c¢2, res);
WriteComplex (res, 12); WriteLn;

WriteString ("¢l + c2 = ");

Add (<1, c¢2, res);

WriteComplex (res, 12); Writeln:
WriteString ("c1 - c2 = ");
Subtract (cl, c¢2, res);
WriteComplex (res, 12); WriteLn;
WriteString ("cl * ¢2 = *);
Multiply (c1, c2, res);
WriteComplex (res, 12); WritelLn:
WriteString ("ei / c2 = *);
Divide (c1, c2, res);
WriteComplex (res, 12); Writeln;

ms END CmplXTSt.

21

.COMPUTER:SCIENC

140

functionning of the operating system and thereby also of its clients. However, Modula way
conceived with the goal of serving in the construction of such operating systems as well. The
Inclusion of adequate device and interrupt handling facilities wes therefore indispensibie,
Their use should nevertheless be confined to so-cafled stand-alone systems which do ot
have the support (nor the burden) of a given opersting system.,

Report on
The Programming Language Modula-2

1. Introduction 143
2. Syntax 144
3. Vocabulary and representation 144
4. Declarations and scope rules 146
3. Constant declarstions 147
6. Type declarations . 147
1. Basic types 148
2. Enumerations 148
3. Subrange types 148
4, Array types 149
5. Record types 149
6. Set types 150
‘1. Polnter types 151
8. Procedure types 151
7. Variable declarations 151
8. Expressions 152
1. Operands 152
2°Operators 152
9. Statements 135
1. Assignments 155
2. Procedure calls 155
3. Statement sequences 156
4, If statements : 156
3. Case statements 157
6. While statements 157
7. Repeat statements 157
8. For statements 158
9. Loop statements 158
10. With statements 159
11. Return and exit ststements 159
10. Procedure declarations 159
1. Formal parameters 160
2. Btandard procedures 162
11. Modules 163
12. System-dependent facilities 165
13, Processes 167
1. Creating a process and transfer of control 167
2. Device processes and interrupts 167

14, Compilation units 168

143

1. Introduction

Modula-2 grew out of & practical noed for & general, efficiently implementable systems
programming language for minicomputers. Its ancestors are Pascal and Modida From the
Jatter 1t has inkerited the name, the important module concept, and a systematic, modern
syntax, from Pascal most of the rest. This includes in particular the data structures, Le,
arrays, records, variant records, scts, and pointers. Structured statements include the
familiar if, case, repeat, while, for, and with statements. Thelr syntax is such that every
structure ends with an explicit termination symbol. .

The language is essentially machine-independent, with the exception of limitations due to
wordsize. This appears to be in contradiction to the notion of a gystem-programming
tanguage, in which it must bs possibie 1o express all operations inherent in the underlying
computer. The dilemma is resolved with the ald of the modude concept. Machine-dependent
items can be Introduced In specific modules, and their use can thereby effectively be
confined and [solated. In particular, the languege provides the possibility to refax rules
about daia type compstibility in these cases. In a capable system-programming language [t
is possible 10 express input/output conversion procedures, file handling routines, storage
allocators, process schedulers etc. Such facilities must therefore not be included es efements
of the language itself, but appear as (so-called low-level) modules which are components of
most programs written. Such a collection of standard modules is therefore &n essential part
of a Modula-2 implementation.

The concept of processes and their synchronization with signals as included in Modula Is
replaced by the lower-level notion of coroutines In Modula-2. It Is, however, possible to
formulate a (standard) module that implements such processes and signals. The advantage
of not Including them in the language itself Is that the programmer may select a process
scheduling algorithm taflored to his particular needs by programming that module on his
oWl Such a scheduler can even be entirely omitted In simple (but frequent) cases, e.g-
when concurrent processes occur as device drivers only.

A modern system programming language should In particular also facllitate the
construction of large programs, possibly designed by several people. The modules written
by individuals should have well-specified Interfaces that can be declared independently of
thelr actual implementations. Modula-2 supports this Idea by providing separate defInition
and implementation mockder. The former define all objects exported from the corresponding
implementation module; in some cases, such as procedures and types, the deflnition module
specifies only those parts that are relevant to the interface, L.e. to the user or client of the
module,

This report Is not intended a8 u programmer's tutorial. It is intentionally kept concise, and
(we hope) clear, Its function IS to serve as a reference for programmers, implementors, and
manual writers, and as an arbiter, should they find disagreement,

1

144

2. Syntax

A language Is an infInits set of sentences, namely the sentences well formed according to ity
syntax. In Moduls-2, these sentences are called compilation units Each unit fs & finits
sequence of symbols from a finite wocelulary. The vocabulary of Modula-2 consists of
{dentifiers, aumbers, strings, operators, and delimiters. They are called lexical symbols and
are composed of sequences of characters. (Note the distinction between symbols and
characters.)

To describe the syntax, an extended Backus-Naur Formalism cafled EBNP Is used. Angulsr
brackets [] denote optionality of the enclossd sentential form, and curly brackets { } denots
jts repetition (possibly O times). Syntactic entities (non-terminal symbols) are denoted by
English words expressing their intuitive meaning. Symbols of the language vocsbulary
(terminal symbols) are strings enclosed in quots marks or words written In capital letters,
so-called reserved words Syntactic rules (productions) are designated by a $ sign at the loft
margin of the line.

3. Vocabulary and representation

The representation of symbois (n terms of characters depends on the underiying charscter
set. The ASCII set s used In this paper, sud the following lexical rules must be observed.
Blanks must not occur within symbols (except In strings). Blanks and line breaks are
ignored unless they are essential to separats two consecutive symbots.

1. Identiflers are sequences of Jetters and digits. ‘The first charscter must be a letter.
$ Ident = lotter {letter | digit}.
Examples:

X scan Modula FTH QetSymbol firstLetter

2. Numbers are (unsignod) [ntegers or real numbers. Integers are sequences of diglts, If the
number I8 followed By the letter B, it is taken as an octal number; If it Is followed by the
letter H, it is taken &3 & hexadecimal number; If it is followed by the letter C, it denotes the
character with the given (octal) ordinal number (and Is of type CHAR, see 6.1).

An Integer { in the range 0 <= | (= Maxint can be considered as either of type INTEOER
or CARDINAL; if it is in the range Maxint< <= MaxCard, It is of type CARDINAL. For
16-bit computers: Maxint = 32767, MaxCard = 65535,

A roal number always contains & dectmal poiat. Optionally it may also contain & docimal
icale factor. The letter E Is pronounced as "ten to the power of”, A real number is of type
REAL. .

} number = integer | real,

b integer = digh {digit} | octaiDigit {octalDigit} (*B*|"C")
b digit {hexDigit} "H".

b real = digit {diglt} "~ {digit} [ScaleFactor].

145

$ ScaleFactor = "E" ["+"|"-"] digit {digit}.

$ hexDigit = digit {"A"["B*|"C"|"D"|"E"}"F*.
$ digit = octalDiglt | "B"|"9".

s ms’t - .o.l"l'lﬂz'l',lII‘H"S.'IGII.?..
Examples:

1980 37648 7BCH 33C 123 4567E-8

3. Strings are sequences of charsctors enclosed In quots marks. Both double quotes and
single quotes (apostrophes) may be used as quote marks, However, the opening and closing
marks must be the same character, and this character cannot occur within the string. A
string must not extend over the end of a line,

$ string = ™ {character} *** | "' {character} "™,

A string consisting of n characters is of type (see §.4)
ARRAY [0 . n-1] OF CHAR

Examples:
*MODULA" "Don't worry!” ‘codéword "Barbarossa™

4. Operators and delimiters are the spocial cheracters, character pairs, or reserved words Hsted
below, These reserved words consist exclusively of capital letters and must nor be used In
the role of [dentiflers. The symbols # and <> are synonyms, and so are &, AND, and ~,
NOT.

+ = AND FOR QUALIFIED
. # ARRAY FROM RECORD

. < BEGIN P REPBAT

/ > BY IMPLEMENTATION RETURN
= ¢ CASE IMPORT SET

& ¢= CONST N THEN

. >= DEFINITION LOOP TO .
, . DIV MOD TYPE

: : Do MODULE UNTIL

() ELSB ~ Not VAR

|] ELSIF OF WHILE

{ } END OR WITH

* I BXIT POINTER

- EXPORT PROCEDURE

5 Cmmmtyholmeﬂbdbﬂmnmymmbohlnapmmneymublm
character sequences opened by the bracket (» and closed by »). Comments may be nested,
and they do not affect tho meaning of a program. “

<o e A R e s,

T

rrmmnzer

Wr’)
147

146

4, Declarations and scope rules

Every Identifier occurring In & program must be introduced by a declaration, unlesy it i3 4
standard Identifler. The latier are considered 1o be predeciarcd, and they are valid in af
parts of a program. For this reason they are called pervasive. Declarations aiso serve tg
specify certain permanent properties of an object, such as whether It ks a constant, & type, o
varfable, a procedure, or a module.

The identifier is then used 1o refer to the associsted object. This is possitle in those partx of
a program only which are within the so-called scope of the declaration. In general, the xope
extends over the entire dblock (procedure or module declaration) to which the declaration
belongs and to which the object Is local. The scope rule is augmented by the foliowing
cases:

1. If an identifier x defined by a declaration D1 is used in another declaration (not
statement) D2, then D1 must textually preceds D2,

2. A type T1 can be used in a declarstion of a pointer type T (see 6.7) which textually
precedes the declaration of T1, If both T and T1 are declared in the same block. This is a
relaxation of rule 1.

3. If an identifier defined in & module M1 is exported, the scope expands over the block
which contains M1. If M1 Is a compllation unit {(3s8 Ch. 14), it extends to all those unity
which import M1.

4. Field identiflers of & record declaration (see 6.3) are valid only in ficld designators and in
with statements referring to a variable of that record type.

An [dentifier may be qualified In this case it {8 preflxed by another Identifier which
designstes the modute (see Ch. 11) In which the qualified identifier Is defined. The prefix
and the identifier are separated by a period. Standard identifiers appear below,

$ qualident = ident {".” ident}.

ABS (10.2) INCL (10.2)
BITSET (6.6) INTEGER (6.1)
BOOLEAN (6.1) LONGINT (6.1)
CAP (102) LONGREAL (6.1)
CARDINAL (6.1) MAX 102)
CHAR 6.1) MIN 102)
CHR (10.2) NIL X))
DEC (102) ODD (102)
EXCL (102) ORD (102)
FALSE (6.1) PROC (6.8)
FLOAT (102) REAL (6.1)
HALT (10.2) SIZE (102)
HIGH (10.2) TRUE (6.1)
INC (10.2) TRUNC (10.2)
VAL (10.2)

5. Constant declarations
A constant declaration associates sn ldentlfier with & constant vaiue,

§ ConstantDeclaration = Ident "=" ConstExpression.
¢ ConstExpression = expression. ¢

A constant expression Is an expression which can be evaluated by & mere textual scan
without actually executing the program. Its operands are constants. (see Ch. 8).

Examples of constant declarations are

N =100

limit = 2eN -1

all = {0.. WordSlze-1}
bound = MAX(INTEGER) - N

6. Type declarations

A data typo determines a set of values which variables of that type may assume, and it
associates an identifier with the type. In the case of structured types, it also defines the
structure of variables of this type. There are three different structures, namely arrays,
records, and sets.

$ TypeDeclaration = ldent " =" type.
$ type = SimpleType | ArrayType | RecordType | SetType |

$ PointerType | ProcedureType.
$ SimpleType = qualident } enumeration | SubrangeType,
Examples:
Color = (red,green, blue)
Index = (1..80]
Card = ARRAY Index OF CHAR
Node = RECORD key: CARDINAL;
lefy, right: TreePtr
END

Tint = SETOF Color -
TreePr = POINTER TO Node
Function == PROCEDURE(CARDINAL): CARDINAL
6.1, Basic types
The following basic types ere predeclared and denoted by standard identifiers:
1. INTEOER comprises the integers between MIN(INTEGER) and MAX(INTEGER).

L 2. CARDINAL comprises the Integers between 0 and MAX(CARDINAL).

3. BOOLEAN comprises the truth values TRUE or FALSE.

148

4. CHAR denotes the character set provided by the used computer system.
s. REAL (and LONOREAL) denote finlte sets of real numbers.

6. LONOINT comprises the integers betwoen MIN(LONGINT) and MAX(LONQINTY),

62. Enumerations

An cnumeration s a list of identifiers that denote the values which constitute a data typs,
These identifiers are used as constants fn the program. They, and no other values, belong to
this type. ‘The values are ordered, and the ordering relstion is defined by their sequence In
the enumeration. The ordinal number of the first value is 0.

$ enumeration = "(" IdentList ")".
$ [IdentList = ident {",” ident}.

Examples of enumerations:

(red, green, blue)
(club, diamond, heart, spade)
(Monday, Tuesday, Wednesday, Thursday, Fridsy, Saturday, Sunday)

6.3. Subrange types

A type T may be defined as a subrange of another, basic or enumeration type T1 (except
REAL) by specification of the Jeast and the highest valve in the subrange.

$ SubrangeTypo = [ident) "[" ConstExpression *.." ConstExpression °J*. ¢

The first constant specifies the lower bound, and must not be greater thag the upper bound.
The type T1 of the bounds is called the base type of T, and all operators applicable to
operands of type T1 are aiso applicable to operands of type T. However, & value to be
assigned to & varfable of & subrange type must lie withia the specified interval. The base
type can be specified by an identifier preceding the bounds. If it is omitted, and if the lower
bound {2 a non-negative integer, the base type of the subrange is taken to bo CARDINAL;
If it is a negative Integer, it is INTEGER.

A type T1 s sald to be compatible with & type TO, If it is declared either a3 T2 = TOorass

subrange of T0, or If TO Is a subrange of T1, or if TO and T1 are both subranges of the same

(base) type.
Examples of subrange types:

[0..N-1]
[OAI - clzu]
[Monday .. Friday)

6.4. Array types

An array Is a structure consisting of a fixed number of components which are afl of the same
type, called the compornent fype. The elements of the array are designated by Indices, values

149

pelonging to the lndex Hype ﬁemytypededmﬂon:pedﬂuthemponenttypouweﬂ
as the Index type. The latter must bo an enumerstion, a subratige type, or one of the basic

types BOOLEAN or CHAR.
§ AmayType = ARRAY SimpleType {"," SimpleType} OF type.
A deciaration of the form
ARRAYTL,T2,...TaOFT
with n Index types T1 ... Tn must be undersicod as an sbbreviation for the declaration

ARRAY T1OF
ARRAY T2 OF

ARRAY TnORT

Examples of array types:
ARRAY [0 .. N-1]OF CARDINAL
ARRAY1..10],{1.20] OF {0 .. 99]
ARRAY [-10 .. +10] OF BOOLEAN
ARRAY WeekDay OF Color
ARRAY Color OF WeekDay

6.5. Record types

A record type is a structure consisting of a fixed number of components of poasibly different
types. ‘The record type declaration Specifies for each component, called fleld its type and an
identifier which denotes the field. The scope of these field identiflers Is the record
defInition ftself, and they are aiso accessible within field designators (see 8.1) refering to
components of record variables, and within with statements.

A record typs may heve ssveral variant sections, in which case the first field of the section is
called the fag fleld Its value [ndicates which variant {3 sssumed by the section. Individuat
variant structures are identified by case jabels Thess labels are constants of the type
Indicated by the tag fleld.

RecordType = RECORD FieldListSequence END.
FieldListSequence = FleldList {*;" FietdList}.
FleldList = [IdentList *:" type |
CASE [ident] *:" quatident OF variant {"|" variant} ¢
[ELSE FieldListSequence) END].
variant = [CascLabelList “:* FleldListSequence}].
CaseLabelList = CaseLabels {",” CaseLabels),
CaseLabels = ConstEixpression [*.." ConstExpression]

Exampies of record types:

RECORD day: {1 .. 31J;
month: [1 .. 12}

L N - RN NN

150 . 151

year: [0 .. 2000}
END

RECORD
name, firstname: ARRAY [0 .. 9] OF CHAR;
age: [0..99]);
salary: REAL

END

RECORD 1, ¥y: TO;

CASE tag0: Color OF
red: a:Trl; b: Tr2|
green: ¢: Tgl: d: Tg2 |
blue: e: Tbl; f: Th2

END;

1. TO;

CASE tagl: BOOLEAN OF
TRUE: u,v: INTEGER |
FALSE: 1,5: CARDINAL

END

END

The example above contains two variant sections. The variant of the first section is
indicated by the valus of the tag fleld 1ag0, the one of the second section by the tag fleld
tagl.

6.6.Set typen

A set type deflned as SET OF T comprises all sets of values of its bass type T. This must be
a subrange of the integers between 0 and N-1, or a (subrange of an) enumeration type with
at most N values, where N Is & small constant determined by the implementation, usually
the computer’s wordsize or a small multiple thereo, :

$ SetType = SET OF SimpleType.

The standard type BITSET is defined as follows, where W is a constant defined by the
implementation, usually the word size of the computer.

BITSET = SET OF[0.. W-1)

6.7. Pointer types

Vuariables of a pointer type P assume as values pointers to variables of another type T. The
pointer type P is said to be doundto T. A polnter value is generated by a call to an allocation
procedure in a storage management module.

$ PointerType = POINTER TO type.

Besides such pointer values, a pointer variable tmay assume the value NIL, whic
thought as pointing to no variable at all. N hembe

6.8. Procedure types

variables of a procedure type T may assume as their value a prc;oedum P. The (types of the)
formal parameters of P must be the same as those indicated in the formal type list of T, The
same holds for the result type In the case of a function procedure.

Restriction: P must not be declared local to ancther procedure, and neither can It be » standard procedure.

$ ProcedureTyps = PROCEDURE [FormalTypeList]
¢ FormalTypeList = *(" [VAR] FormalType
$ {"," [VAR] FormalType}])" [*:" qualident].

The standard type PROC denotes a parameteriess procedure:
PROC = PROCEDURE

7. Variable declarations

Variable declarations serve to Introduce variables and associate them with a unique
fdentifler and a fixed data type and structure. Varfables whose identifiers appear in the
same List al! obtain the same type.

$ VariableDeclaration = IdentList ":" type.

The data type determines the set of values that a variable may assume and the operators
that are applicable; It also defines the structure of the varfable.

Examples of variable declarations (refer to examples in Ch. 6):
1,} CARDINAL

k: INTEGER

1. qQ: BOOLEAN

FH BITSET

F: Function

a: ARRAY Index OF CARDINAL
w. ARRAY[0..7]OF

RECORD ch : CHAR;
count : CARDINAL
END

8. Expressions

Expressions are constructs denoting rules of computation for obtaining values of variables
and generating now values by the application of operators. Expressions consist of operands
and operators. Parentheses may be used to express specific associstions of operators and
operands.

152

8.1. Operands

With the exception of litersl constants, L.e, numbers, characier strings, and sets (ses Ch, 0
operands are denoted by designators A designator consists of an identifier referying to the
constant, variable, or procedure to be designated. This identifier may possibly be qualifieq
by module {dentifiers (see Ch. 4 and 11), and it may be followed by selectors, if the
designated object fs an element of a structure. If the structure is an srmay A, then thy
designator AfE] denotes that component of A whose Index is the current value of b
expression E. The index type of A must bo assignment compatibie with the type of E (seo 9.1).
A designator of the form

AEL E2,..,En] stands for A[EINE2)_ {En]

It the structure is & record R, then the designator R.f denotes the record fleld f of K. The
designator Pt denotes the variable which is referenced by the polnter P.

$ designator = qualldent {*." {dent | *[* ExpList J" | "¢+"}.
$ ExplList = expression {"," expression}. '

If the designated object is a variable, then the designator refers to the variable’s cutrent

vatue. If the object is a function procedure, a designator without parsmeter list refers to

thet procedure. If it is followed by a (possibly empty) parameter list, the designator implie
sn activation of the procedure and stands for the value resulting from its execution, Le. for
the “returned” vatue. The (types of these) sctual parameters must correspond to the formal
parameters as specified In the procedure’s declaration (see Ch. 10).

Examples of designators (see examples in Ch. 7);

k (INTEGER)
off] (CARDINAL)
w{3)ch (CHAR)
tr.key {CARDINAL)
tr.Jeftr.right (TreePtr)

8.2. Operators

The syntax of expressions specifies operator precedences according to four classes of
operators. The operator NOT has the highest precedence, followed by the so-called
multiplying operators, then the so-calied adding operators, and finally, with lowest

precedence, the relational operators. Sequences of operators of the same procedence are
executed from left to right.

expression = SimpieExpression (relation SimpleExpression].
relation = "=" | “#* | (" | "(a" || =" tIN,
SimpleExpression = [" 4 "[*-"] term {AddOperstor term}.
AddOperator = "+"|*-*|OR.

term = factor {MulOperator factor},

MulOperator = “+* | */* | DIV | MOD | AND,

factor = number | string | set | designator [ActuaiParameters] |

L K N N _X W ¥4

153

s *(* expression *)" | NOT factor.

§ set = [qualident] *{" [element {*,” element}] *}".

§ element = expression [*.” expression]. ¢ .

$ ActuaiParameters = “(" [ExplList] *)".

The available operators are listed fn the following tables. In some Instances, several
different operations are designated by the same operator symbol. In theso cases, the actual
operation is identified by the types of the operands.

8.2.1. Arithmetic operators

gmbol ______ operation

+ addition

- subtraction

. multiplication

/ real division
Dy integer division
MOD modulus

These operators (except /) apply to operands of type INTEGER, CARDINAL, or subranges
thereof. Both operands must be either of type CARDINAL or # subrange with base type
CARDINAL, in which case the result Is of typs CARDINAL, ot they must both be of typs
INTEGER or & subrangs with base type INTEOER, in which case the result is of type

INTEGER.

The operators +, -, &nd o also apply to operands of type REAL. In this case, both operands
must be of type REAL, and the result is then aiso of typs REAL. The division operator /
applies to REAL operands only. When used as operators with a singls operand only, -
denotes eign inversion and + denotes the Identity operation. Sign Inversion applies to
operands of type INTEOER or REAL. The operations DIV and MOD are defined by the
following rules:

x DIV y s equal to the truncated quotient of x/y
XMODy is equal to the remainder of the division x DIV y (for y > 0)

X=(xDIVY)ey + (xMODY)
8.2.2. Logicol operators
pmbol _______ operstion
OR logical conjunction
AND logical disjunction
NOT negation

These operators apply to BOOLEAN operands and yield « BOOLEAN resuit.

pOR q means “if p then TRUE, otherwise g
pANDq means “If p then q, otherwise FALSE”

._-,._.._.-.__
Tl st e s

il

r
vermm)

R e,
o ey

ST

e

S ke T

154 l

8.2.3. Set operators
gymbol operation
+ set union
- set difference
. set [ntersection
/ © symmetric set difference
These operations apply to operands of any st type and yield a result of the same type.
XIN(L +22) Iff {xIN31)OR (x INs2)
x IN (sl - 82) iff {x IN's1) AND NOT (x INx2)
XIN(s1+22) i {(xINs1) AND (x 1IN 22)
xIN(s1/82) MY (xINsl) # (xIN1£2)

8.24. Relatlons

Relations yield a Boolean result. The ordering relations apply to the basic types INTEGQER,
CARDINAL, BOOLEAN, CHAR, REAL, to enumerations, and to subrange types.

fymbol relation
= equai
» unequal
< less
< lessorequal (set inclusion)
> greater
>= greater or equal (set inclusion)
IN containedin (set memberzhip)

The relations = and # also apply to sets and polnters, If applied to sets, (= and >=
denote (improper) inclusion. The relation IN denotes set membership. In an expression of

the form x IN 8, the expression 8 must be of type SET OF T, where T is {compatible with)
the type of x.

Examples of expressions (refer to examples in Ch. 7):

1980 (CARDINAL)
kDIV3 (INTEGER)
NOTpORq (BOOLEAN)
(i+ne(-n (CARDINAL)
8- {8913} (BITSET)

afi] + off) (CARDINAL)
a{l +] » afi-j) (CARDINAL)
(0<=K) & (k<100) {BOOLEAN)
trtkey =0 (BOOLEAN)
{13.15} = 5 (BOOLEAN)
1IN {0,5..8,15} (BOOLEAN)

R i ot R

155

9. Statements

Statements denote actions. There ars elementary and structured statements. Elementary
statements are not compo®ed of any parts that are themselves statements. They are the
assignment, the procedure call, and the retum and exit statements. Structured statements
are composed of parts that are themselves statements. These are used to express
sequencing, and conditional, selective, and repettive execution.

$ statement = fassignment | ProcedureCali |

s 1fStatement | CaseStatement | WhileStatement |
s RepeatStatement | LoopStatement | ForStatement |
1 WithStatement | EXIT | RETURN {expression] }.

A statement may also be empty, in which case it denotes no action. The empty statement s
{ncluded in order to relax punctuation rules n statement sequences.

9.1. Assignments
The assignment serves to replace the current value of & variable by a new value indicated by

- an expression. The assignment operator Is written as *: =" and pronounced as "becomes®,

$ assignment = designator *:=" expression.

The designator to the left of the assignment operator denotes a variable. After an
assignment is executed, the variable has the value obtained by evaluating the expression,
The old value is Jost (overwritten). The type of the variable must be assignment compatible
with the type of the expression. Operand types aro 2aid (o be assignmery compatible, if either
they are compatible or both are INTEGER or CARDINAL or zsubranges with base types
INTEGER or CARDINAL.

A string of length nl can be assigned to a string variable of length n2 > nl. In this case, the
string value Is extended with a null character (0C). A string of length 1 Is compatlible with
the type CHAR. t
Examples of assignments:

f:=k

pi=i=]

Ji=logd(1+))

F:= log2

s:= {2,3,57.11.13}

ofi) := (i+) = (1))

tr.key:=1

wli+1)ch:= "A"

9.2, Procedure calls
A procedure call serves to activate a procedure. The procedure call may contain a list of

156

actual parameters which are substituted in place of thetr corresponding formal parametery
defined in the procedure declaration (sce Ch. 10). The correspondence is estabilshed by the
posidons of the parameters In the lists of actual and formal parameters respectively. Thers
oxist two kinds of parameters: wariable and value parameters,

In the case of variable parameters, the actual parameter must be a designator denoting o
varjable. If it designates a component of a structured variable, the selector is evaluated
when the formal/sctual parameter substitution takes place, Le. before the execution of the
procedure. f the parameter Is a value parameter, the corresponding actual parameter must
be an expression. This expression fs evaluated prior to the procedure activation, and the
resulting value is assigned to the formal parameter which now constitutes a Jocal variable,
The types of corresponding actual and format parameters must be [dentical [n the case of
variable parametets, or assignment compatibie in the case of value parameters.

$ ProcedureCall = designstor [ActuatParameters).

amplu of procedure calls:
Read(i)
Write(}»241,6)
INC(afiD

93, Statement seqnences

Statement sequences denoto the sequence of actions fled by the component statements
which are separated by semicolons, pociied by

$ SutementSequence = statement {";" statement},

(see C1. 10)

9.4, If statementsy

3 IfStatement = IF expression THEN StatementSequence
s {ELSIF expression THEN StatementSequence}

H (ELSE StstementSequence] END.

Tbeexpresslonsronwln;thuymbohwmdﬂ.smmoftyponoom They
evaluated [n the sequence of their occurrence, until one ¥ields the valve TRUE Then.l,t:
associated statement sequence is executed, If an EISE clause s present, its sssociated

statement sequence Is executed If and only If all
Rateme y Boolean expressions ylelded the value

Example;

IF (ch >= "A") & (ch C= *Z*) THEN Readldent!fer
ELSIF (ch >= "0") & (cb <= “9") THEN ReadNumber
ELSIF ch = '™ THEN ReadString("™")

ELSIF ch = "™ THEN ReadString(""™")

ELSE SpecialCharacter

END

157

9.5. Case statements

Case statements specify the selection snd execution of & statement sequence according to
the value of an expression. First the case expression Is evalusted, then the statement
sequence is executed whose case label list contains the obtalned valua, The type of the cam
expression must be a basic type (except REAL), an enumeration type, or a subrange type,
and all labels must be compatible with that typs. Cass labels are constants, I!'ld no velus
must occur more than once. If the value of the expression does not occur as & label of any
case, the staternent sequence following the symbel ELSE s selected.

§ CaseStaternont = CASE expression OF cass {*|* case}

s {ELSE StatementSequence] END.
$ case m [CasoLabelList ":* StatementSequence]. ¢

Example:
CASEiOF :
0:p:=pORQ; x:mx+y]
1:p:= pORQ; X:=x-y])
2:pi= pANDQ; X :2= Ro¥y
END
9.6, While statements

While statements specify the repeated execution of & statement sequence depending on the
value of s Boolean expression. The expression is evaluated before each subsequent
execution of the statement sequenca. The repetition stops as zoon as this cvaluation yiclds
the value FALSE

§ WhileStatement = WHILE expression DO StatementSequence END.

Examples:

WHILE|>0DO
Ji=jDIV2iim el

END

WHILE] # § DO
IP1> JTHEN I = §-}
ELSE):= -
END

END

WHILE (¢t # NIL) & (t+.key #) DO
t:== e eft

END

9.7. Repeat statements
Repest statements specify the repested execution of a statement sequence depending on the

158

value of a Boolean expression. The expression is evaluated after each execution of the
statement sequence, and the repetition stops as soon as it yields the value TRUR Hence,
the statement sequence is executed at least onoe.

$ RepeaiStatement = REPEAT StatementSequence UNTIL expression.

Exampie:

REPEAT k:=1MODJ: l:2= J:j:=k
UNTILj=0

9.8. For statements

The for statement indicates that a statement sequence is to be repeatedly executed while g
progression of values is essigned o & variable. This variable is called the controf wariable of
the for statement. It cannot be & component of a structured variable, it cannot be Imported,
nor can it be & parameter. Its value should not be changed by the statement sequence,

$ ForStatement = FOR Ident ":=" expression TO expression
$ [BY ConstExpression) DO StatementSequence END,

The for statement
FOR v:= ATOBBY CDOSS END

expressed repeated execution of the statement sequence SS with ¥ successively assuning the
values A, A+C, A+2C, .., A+nC, where A+nC is the last term not exceeding B, v s
called the control variable, A the starting value, B the limit, and C the increment. A and B
must be compatible (1) with v; C must be a constant of type INTEGER or CARDINAL. If
no Increment is specified, it is assumed to be 1.

Examples:

FOR{:= 1TO80DO §:=j+aff] END
FOR!:= 80 TO 2 BY -1 DO aff] : = afi-1] END

9.3. Loop statements

A loop statement spectfies the repeated execution of a statement sequencs. It Is terminated
by the execution of any exit statement within that sequence.

$ LoopStatement = LOOP StatementSequence END.
Example:

LOOP
IFtitkey > X THEN 12 : = tlt Jeft; p ;= TRUBE
ELSEt2 := tlt.right; p := FALSE
END;
IF t2 = NIL THEN
EXIT
END;

bl o

159

tl:=1
END '

While, repeat, and for statements can be expressed by loop statements containing a single
exit statement. Their use is recommended they characterize the most frequently
occurring situations where termination depends either on a single condition at either the
beginning or end of the repeated statement sequence, or on reaching the limit of an
arithmetic progression. The loop statement is, however, necessary to express the continuous
repetition of cyclic processes, where no termination is specified. 1t ks also useful to express
situations exempiified above. Exit statoments are contextually, aithough not syntactically
bound to the loop statement which contains them.

9.10. With statements

The with statement specifies a record variable and a statement sequence. In these
statements the qualification of field identiflers may be omitted, If they are to refer to the
variable specified in the with clause. 1f the designator denotes & component of a structured
variable, the selector is evaluated once (before the statement sequence). The with statement
opens a new scope. .)

$ WithStatement = WITH designator DO StatementSequence END .
Example:

WITHtt DO
key ;= 0; left := NIL; right : = NIL
END

9.11. Return and exit statements

A return statement consists of the symbol RETURN, possibly followed by an expression, It
indjcates the termination of & procedure (or a module body), and the expression specifies
the value retuned as result of a function procedure. Its type must be assignment
compatible with the result type specified In the procedure heading (see Ch. 10).

Function procedures require the presence of a retum statement indicating the result value,
There may be saveral, although only one will be executed. In proper procedures, a return
statement Is implied by the end of the procedurs body., An explicit retumn statement
therefore appears as an addltional, probably excepticnal termination point.

An exit statzement consists of the symbol EXIT, and It specifies termination of the enclosing
loop statement end continuation with the statement following that loop statement (see 9.9).

10. Procedure declarations

Procedure declarations consist of a procedure heading and » block which is said to be the

procedure body. The heading specifles the procedure identifier and the formal parameters. The
block contains declarations and statements. The procedure identifier is repeated at the end

of the procedure declaration.

160

There are two kinds of procedures, namely proper procedures and Amxction procedures The
latter are activated by a function designator as a constituent of an expression, and yletd o
result that Is an operand in the expression. Proper procedures are sctivated by a procedums
call. The function procedure is distinguished in the deciaration by Indication of the type of
its result following the parameter list. Its body must contain a RETURN statement which
defines the result of the function procedure.

All constants, variables, types, modules and procedures doclared within the block that
constitutes the procedure body are local to the procedure. The values of local variables,
including those defined within a local module, are undefined upon entry to the procedre.
Since procedures may be declared es local objects oo, procedure declarations may be
nested. Every object Is said to be declared st a certaln Jevel of nesting. If it is declared local
1o a procedure st lovel K, It has ltself lovel k+1. Objects declared In the module that
constitutes a compilation unit (see Ch. 14) are defined to be at level 0.

o sddition to its formal parameters and local objects, also the objects declared In the
environment of the procedure are known and sccessible in the procedure (with the
exception of those objects that have the same name as objects deciared locally).

The use of the procedurs identifier in a call within Its declaration implies recursive
activation of the procedure,

ProcedureDeclarstion = ProcedurcHeading “;" block ident.
ProcedureHeading = PROCEDURE Ident [FormalParameters}.
block = {declaration} [BEGIN StatementSequence] END.
declarstion = CONST {ConstantDectaration *;"} |

TYPE {TypeDeclaration ";"} |

VAR {VariableDeclaration ";"} | :

ProcedureDeclaration *;" | ModuleDeclaration *;".

10.1. Formal parameters

Formal parameters ire identiflers which denote actual parsmeters specified in the
procedure call. The correspondence betwoen formal and actual parameters I3 established
when the procedure is called. There are two kinds of parameters, namely walat and wrioble
parometers The kind is indicated in the formal parameter list. Value parameters stand for
localnmblestowh!ehtheluuuonheavaluauonoftbeconupondhagmdpmetarh
assigned ot inftial vatue. Variable parameters correspond to sctual parameters that are
variables, and they stand for theso variables. Variable parameters are Indicated by the
symbol VAR, value parameters by the absence of the symbol VAR,

Pmmdpmemmlocdwmopmeedmlatheumpehlhemmm
constitutes the procedure declaration.

$ FormalParametors =

s (" [FPSection {";" FPSection}} *)" [*:* qualident],
$ FPSection = [VAR] IdentList ":" FormalType.

$ FormalType = [ARRAY OF] qualident.

Lo

o T g - P

161

The type of each formal parameter is specified (n the parameter list, In the case of variable
parameters it must be identical (1) with Its corresponding actual parameter (see 9.2, and 12.
for exceptions); in the case of value parsmeters the formal type must be sssignment
compatible with the actual type (see 9.1). If the parameter s an arrsy, the form

ARRAYOFT

may be tsed, where the specification of the actual index bounds is omitted. The parsmeter
is then said to be an open array parameter, T must be the same &3 the clement type of the
sctual array, and the index range 1s mepped onto the integers O to N-1, whero N Is the
number of elements. The formal array can be acoessed elementwise only, or it may occur as
actual parameter whose formal parameter is without specified lndex bounds. A function
procedure without parameters has an empty parameter list. It must be called by a function
designator whose actual parameter list is empty too.

Restriction: If & formal parsmeter specifies a procedure type, then the comresponding actual

st be either s procedure declared at level 0 or a variable (or parameter) of that procedure type. It cannot
be a standard procediure.

Examples of procedure declarstions:

PROCEDURE Read(VAR x: CARDINALY;
VAR : CARDINAL; ch: CHAR;
BEGIN{:=0;
REPEAT ReadChar(ch)
UNTIL (ch >= “0") & (ch (= *97);
REPEAT { : = 10+ + (ORD(ch)-ORD({"0")):
ReadChan(ch)
UNTIL (¢h < "0*)OR (ch > “9");
x:=| .
END Read

PROCEDURE Write(x,n: CARDINALY);
VAR {: CARDINAL;
buf: ARRAY [1..10] OF CARDINAL;
BECINI:=0; ‘
REPEAT INC{); bufll] := x MOD10; x := x DIV 10
UNTILx = 0; |
WHILEn > DO
WriteChar(™ *); DEQ(n)
END;

REPEAT WriteChar(CHR(buf{l] + ORD("0")));
DEC(I)

UNTILi = 0;

END Write

PROCEDURE log2(x: CARDINAL): CARDINAL;
VAR y: CARDINAL: (stssume x>0+)
BEGINX:=x-1;y:=0;

A S e L e e R e Y

i

e

s
=5

-y

SE

S

o

=

oo

oo

SEE

162

WHILEx > 0DO
X:;=xDIV2;y:=y+1
END ;
RETURN Yy
END log2

10.2, Standard procedures

Standard procedures are predefined. Some are generic procedurcs that canpot be explicitly
declared, l.e. they spply to classes of operand types or have several possible parameter Yt
forms. Standard procedures are

ABS(x) absolute value; result iype = argument type,

CAP(ch) if ch is a Jower case letter, the corresponding capital letter;
if ch i3 & capital letter, the same letter,

CHR(x) the character with ordinal number x. CHR(x) = VAL{CHAR,x)

FLOAT(z) xoftype CARDINAL represented as a value of type REAL.

HIQOH(a) high index bound of array a.

MAX(T) the maximum value of type T. ¢

MIN(T) the minimum value of type T. ¢

ODbD(x) XMOD2 #0.

ORIXx) ordinal pumber (of type CARDINAL) of x in the set of values
defined by type T of z. T is any enumeration type, CHAR, INTEQER,
or CARDINAL.

SIZE(T) the number of storage units required by a varfable oftype T,
or the number of storage units required by the variable T, t

. TRUNQ(x) real number x truncated to its Integral part (of type CARDINAL).

VAL(T x) the value with ordinal number x and with type T. T is any

enumeration type, or CHAR, INTEQER, or CARDINAL
VAL(T,ORIDX(x)) = x,If x of type T.

DEQ(x) X:m=x-1

. DEC(x,n) Ri=X-n
EXCL{s.) s:x=3-{i}
HALT terminate program execution
INC{x) X:=x+1
INC(x.n) X:=X+n
INCL{s,0) s:=13+ {i}

The procedures INC and DEC also apply to operands x of enumeration types and of type
CHAR. in these cases they replace x by Its (n-th) successor or predecessor,

U R S D AT

163

11. Modules

A module constitutes a collection of declarations and a sequence of statements. They are
enclosed in the brackets MODULE and END. The module heading contains the module
identifier, and possibly & number of Import lists and an export iist. The former specify all
identiflers of objects that are declared outside but used within the module and therefore
have to be imported. The export-list specifies all identifiers of objects declared within the
module and used outside. Hence, a module constitutes a wall around fts local objects whoss
transparency Is strictly under control of the programmer.

Objects Jocal to a module are said to be at the same scope level as the module. They can be
considered &s being local 1o the prooedure enclosing the module but residing within & more
restricted acope.

$ ModuleDeclaration =

s MODULE [dent [priority) ";* {import} [export] block ident.
$ priority = *[* ConstExpression *]".

$ export = EXPORT [QUALIFIED] IdentList *;",

s import = [FROM {dent] IMPORT IdentList *;*.

The module identifler is repeated at the end of the daclaration.

The statement sequence that constitutes the modife body Is executed when the procedure to
which the module i Jocal is called. If several modules are deciared, then these bodies are
executed in the sequence in which the modules occur. Theso bodies serve to In{tialize locat
variables and must be considered as prefixes to the enclosing procedure’s statement part.

If an Identifier occurs in the import {(export) list, then the denoted abject may be used Inside
(outside) the module as if the module brackets did not exist. If, however, the symbol
EXPORT is followed by the symbol QUALIFIED, then the listed identiflers must be
prefixed with the module's identfier when used outside the module. This case is called
qualifled export, and is used when modules are desipned which are 1o be used in coexistence
with other modules not known & priori. Qualified export serves to gvold clashes of identical
identiflers exported from different modules (and presumably denoting different objects).

A module may feature several import lists which may be prefixed with the symbo! FROM
and a module identifler. The FROM clause has the effect of unquallfying the imported
identifiers. Hence they may be used within the module as if they had been exported In
normal, Le. non-quallfied mode,

If a record type is exported, all its fleld identifiers are exported 100. The same holds for the
constant identiflers in the case of an enumeration type.

Examples of module declarations:

The following module serves to scan a text and to copy It Into an output character sequence.
Input i3 obtained characterwise by a procedure Inchr and dellvered by a procedure outchr,
The characters are given in the ASCI code; control characters are ignored, with the

164

exception of LF (line feed) and FB (flle separator). They are both transiated into a blank
and cause the Boolean variables eoln (end of line) and eof (end of file) to be et
respectively. FSIs assumed to be preceded by LF.

MODULE Linelnput;
IMPORT Inchr, outchr;
EXPORT read, NewLine, NewFlle, eoln, sof, Ino;
CONSTLF = 12C; CR = 15C; FS = MC;

VAR Ino: CARDINAL; (sline numbers)
ch: CHAR; (elast character reade)
eof, eoln: BOOLEAN:

PROCEDURE NewFlle;
BEGIN
1F NOT eof THEN)
REPEAT Inchr(ch) UNTIL ch = FS: \
END; !
¢of ;= FALSE; eoln := PALSE; Ino := 0 i
END NewFile;

PROCEDURE NewLine;
BECIN
IF NOT eoln THEN
REPEAT inchr(ch) UNTIL ch = LF:
outchr(CR); outchr(LF)
END;
ecln : = FALSE; INC(Ino)
END NewLine;

PROCEDURE read(VAR x: CHARY);
BEGIN (sassume NOT eolr AND NOT oofe)
LOOP Inchr(ch); outchr(ch);
IFch>=""THEN
%= ch; EXIT
ELSIFch = LF THEN '
X:="" eoln:= TRUE; EXIT ;
ELSIF ch = FS THEN "
X:=""; ooln := TRUE; eof : = TRUE; EXIT
END
END
END resd;
BEGIN eof : = TRUE:; soln ;= TRUR
END Lineinput

The next example {s a module which operates a disk track reservation table, and protects it
from unauthorized access. A function procedure NewTrack ylelds the number of a free

f; Y

163

track which is becoming reserved. Tracks can be relessed by cafling procedure
ReturnTrack. .

MODULE TrackReservation;
EXPORT NewTrack, RetumnTrack;
CONST ntr = 1024; (= no. of tracks »)
w = 16; {» word size »)
m=nrDiVw;

VAR I: CARDINAL;
free: ARRAY [0 .. m-1) OF BITSET;

PROCEDURE NewTrack(): INTECGER;
(+reserves a new track and yields its index as result,
If & free track Is found, and -1 otherwises)
VAR 1J: CARDINAL; found: BOOLEAN;
BEGIN found : = FALSE; [:= m;
REPEAT DEC(I); 1:=w;
REPEAT DEC():
IFJIN free{i] THEN found: =TRUE END
UNTIL found OR (] = 0)
UNTIL found OR (1 = 0); ~
1F found THEN EXCL(freefl}f); RETURN low+}
ELSERETURN -1
END
END NewTrack; -

PROCEDURE ReturnTrack(k: CARDINAL);

BEGIN (sassume 0 {= k< ntr «)
INCL{free{k DIV w], Xk MOD w)

END ReturnTrack;

BEOIN (smark all tracks frees)
FORI:= 0TO m-1 DO freefi] : = {0.. w-1} END
END TrackReservation

12. System-dependent facilities

Moduls-2 offers certain facilities that are necessary to program Jow-Jensd operations
referring directly to objects particular of a given computer and/or implementation. These
include for example facilities for acoessing devices that are controlied by the computer, and
facilities to break the data type compatibility rules otherwise imposed by the language
definition. Such facilities are to bo used with utmost care, and it is strongly recommended
to restrict thelr use to specific modules (called low-level modules). Most of them appear in
the form of data types and procedures imported from the standard module SYSTEM. A
low-level module Is therefore explicitly characterized by the identifier SYSTEM appearing
In fts import list.

— Tae e e e L g
o e T e e S S

oo

S

166

Note: Because the objects imported from SYSTEM cbey special rules, this module must be known o the

:wn‘(’:':nmlll)t I3 therefore called & parudo-module and need not be supplied a3 4 separate definition module
see Ch.

The facilities cxported from the module SYSTEM are specified by Individual

implementations. Normally, the types WORD and ADDRESS, and the procedures ADR,

TSIZE, NEWPROCESS, TRANSFER, are among them (see also Ch. 13).

The type WORD represents an Individually accessible storage unit. No operation except
assignment is defined on this type. However, if s formal parameter of a procedure is of type
WORD, the corresponding actual parameter may be of any type that uses one storage word
In the given Implementation. If a formal parameter has the type ARRAY OF WORD, Its
corresponding actual parameter mey be of any type; In particular it may be & record type to
be interpreted as an array of words.

The type ADDRESS is deflned as
ADDRESS = POINTER TO WORD

It is compatible with all pointer types, and also with the type CARDINAL. Therefore, all
operators for integer arithmetic apply to operands of this type. Hence, the type ADDRESS
can be used to perform address computations and to export the results s pointers. Ifa
formal parameter Is of type ADDRESS, the corresponding actual parameter may be of any
polnter type, even If the formal parameter is 8 VAR parameter. Tho following example of &
primitive storege allocator demonstrates & typical usage of the type ADDRESS,

MODULE Storage;
FROM SYSTEM IMPORT ADDRESS;
EXPORT Allocate;

VAR lastused: ADDRESS:

PROCEDURE Allocate (VAR a: ADDRESS; n: CARDINALY;
BEGIN a := lastused; lastused : = lastused 4+ n
END Allocate;

BEGIN lastused := 0
END Storage

The function ADR(x) denotes the storage address of the variable x snd is of type
ADDRESS. TSIZE(T) is the number of storage units assigned to any varlable of type T.
TSIZE is of an arithmetic type depending on the implementation. (1)

Examples:
ADR(lastused) TSIZE(Node)

Besides those exported from the pseudo-module SYSTEM, there are two other facilities
whose characteristics are system-dependent. The first fs the possibility to use a type
{dentifler T as a name denoting the fype tranyfer function from the type of the operand to the

type T. Evidently, such functions are data representation dependent, and they involve no
explicit conversion instructions,

amg o S

167

The socond, non-standard facility may be provided in variable declarations, It allows to
specify the absolute address of a varlable and to override the allocation scheme of a
compiler. This facility is intended for access to storage locations with specific purpose and
fixed address, such as e.g. device registers on computers with "memory-mapped 1/0". This
address s specified as a constant integer expression enclosed in brackets immediately
following the identifier in the variable declaration. The cholos of an appropriate data type
is left to the programmer.

13. Processes

Modula-2 s designed primarily for implementation on a conventional single-processor
computer. For multiprogramming it offers only some basic facilities which allow the
specification of quasi-concurrent processes and of genuine concurrency for peripheral
devices. The word process 3 here used with the meaning of corvutine Coroutines are
processes that are executed by a (single) processor one at & thne.

13.1. Creating a process and transfer of control
A new process Is created by acall to

PROCEDURE.NEWPROCESS(P: PROC;
A: ADDRESS; n: CARDINAL: VAR pl: ADDRESS) 1

denotes the procedure which constitutes the process,
{8 the base address of the process’ workspace,

{s the size of this workspace,

1 [a the result parameter.

A now process with P as program and A as workspace of gize n Is exsigned to pl. This
process is allocated, but not activatad. P must be a parameteriess procedure declared at
Jevel C.

A transfer of control between two processes is specified by & call to
PROCEDURE TRANSFER(VAR pl, p2: ADDRESS) t

This call suspends the current process, assigns it to pl, and resumos the process designated
by pl. Evidently, p2 must have been assigned a process by sa carlier call to either
NEWPROCESS or TRANSFER. Both procedures must bo imported. A program
terminates, when control reaches the end of & procedure which is the body of a process.

Note: ssvignment to pl cocurs after ldentification of the new prooess p2; henos, the actual parsmeters may
be identical.

132, Device processes and interrupts

If a process contains an operation of a peripheral device, then the processor may be
transferred to another process after the operation of the device has been Initiated, thereby
Jeading to a concurrent exccution of that other process with the device process Usually,
termination of the device's operation Is signalled by an interrupt of the main processor. In

o e >0

168

terms of Moduls-2, an interrupt is a transfer operation. This interrupt transfer is (in
Modula-2 impiemented on the PDP-11) preprogrammed by and combined with the transfer
after device Initiation. This combination [s expressed by a call to

PROCEDURE IOTRANSFER(VAR pl, p2: ADDRESS: va: CARDINAL) ¢

In snalogy to TRANSFER, thlscallmspendst.heumngdeﬂcepmuxigmltwpl,
resumes (iransfers to) the suspended process p2, and in addition causes the interrupt
transfer occurring upon device completion to assign the Interrupted process 1o p2 and to
resume the device process pl. ulstheintemptvectonddreulslgnedtothedmm
procedure IOTRANSFER must be imported. and should be considered s PDP-11
implementation-specific.

Ithnmuylhuhwmpumbopmponed(dlub!ed)atcemlndmu.e.&m
variables common {0 the cooperating processes are accessed, or when other, possibly
time-critical operations have priority. Therefor, every module Is given a certain priority
level, and every device capsbie of interrupting is given a priority level. Execution of a
program can be Interrupted, If and only {f the interrupting device has a priority that Is
greater than the priority level of the module containing the statement currently being
executed. Whereas the dovice priority is defined by the hardwars, the priority level of each
module is specified by its heading. If an explicit specification {s absent, the level in any
procedure is that of the calling program. [OTRANSFER must be used within modules with
a specified priority only.

14, Compilation units

A text which hmpwdbytheeompﬂerlumthcﬂledlmﬂarbnm There are three
kinds of compilation units: main modules, definition modules, and Implementation
modules. A main module constitutes & main program and consists of a s0-calied program
module. In particular, it has no export list, Imported objects are deflned in other {separately
¢ompiled) program pprts which themselves are subdivided Into two units, catled definjtion
module and implementation module.

The definition module specifies the names and properties of objects that sre relevant to
clicnts, Le. other modules which Import from f. The implementation modiule contains loca)
objects and statements that need not be known 10 a client. In particular the definition
module containy constant, type, and varjable declarations, and specifications of procedure
headings. The corresponding impiementation moduyle contains the complete procedure
declarations, and possibly further declarations of objects not exported, Deflnitfon and
Implementation modules exist in pairs. Both may contain !mport lists, snd all objects
declared in the definitfon module are available in the corresponding Implementation
module without explicit import.

$ DeflnitionModule = DEFINITION MODULE ident *;*
s {import} {definition} END ident *.* . t

$ definition = CONST {ConstantDeclaration e |

s TYPE {ident [~ =" type] ":"} |

— o ——

163

$ VAR {VariableDeclaration *:*} |
$ ProcedureHeading *;".

$ ProgramModule = MODULE ident [priority] ":" {import} block {dent ™",

$ CompilationUnit = DefinitionModule | {IMPLEMENTATION] ProgramModuls .

The definition module evidently ropresents the Interface between the implementation
module on one side and its clients on the other side, The definjtion module contains those
declarations which are relevant to the client modules, and presumably no other ones. Hence,
the definition module acts as the implementation module’s (extended) export list, and ol its
dectared objects are exported.

Definition modutes imply the use of qualified exporl. Type definitions may consist of the
full specificstion of the type (in this cese its export is said to be transparent), or they may
consist of the type Identifier only. In this case the full specification must sppear in the
corresponding implementation module, and its export is sald to be opague The type Is
known in the Importing client modules by Its name only, end afl its properties are hidden.
Therefore, procedures operating on operands of this type, and in particulsr operating on its
components, must be defined in theme.lmplememauon module which hides the type's
properties. Opaque export is restricied (o pointers. Assignment and test for equality are
applicable to ell opaque types.

As In local modules, the body of s implementation module scts as an nitiatization facility
for its local objects. Before its execution, the imported modules are initialized in the order
in which they are listed. 1f circular references occur among modules, their order of
initialization I8 not defined.

36
31
72

n

3 M4 1

20

Appendix 2
Standard Utility Modules

The subsequently listed modules have proven to be of general usefulness for a wide range of
epplications. In particular, they concern the subject of input and output. The module
Terminal represents a standard alphanumeric terminal for input and output. FlieSystem
represents the necessary operations (o generate, read, write, name, and delets files organized
as streams of characters or words.

The modules Windows, TextWindows, and Graphic Windows form a hierarchy of utllities for use
on & high-resolution display. The latter two both rely on the basic module Windows. Closely
connected with these window handlers are the modules CursorMouse and Merze. The former
assumes the presence of a poining device for input of coordinate values, a so-called mouse,
and 1t causes its current position to be reflected on the display by a cursor. The module
Merus relateses the mouse with the display by providing a general command input facility in
the form of so-called pop-up menus.

These modules are presented here In the form of deflnition modules. We emphazise that
they are not part of the definition of the language Modula-2, and it is recognized that
different implementations may either vary in detalls or in the selection of modules provided.

DEFINITION MODULE Terminal; (+S.E Knudsens)
PROCEDURE Read(VAR ch: CHAR):
PROCEDURE BusyRead(VAR ch: CHAR): (sreturns 0C, {f no character was typeds)
PROCEDURE ReadAgain; (scauses the last character read to be returned sgaln
upon the next call of Reads)
PROCEDURE Write(ch: CHAR);
PROCEDURE WriteLn; (stcrminate lines)
PROCEDURE WriteString(s: ARRAY OF CHAR);
END Terminal.

178

DEFINITION MODULE FlileSystem; (+S.E. Kaudsen
FROM SYSTEM IMPORT ADDRBg. WORD; ?

TYPE
Responso = (done, notdone, notsupported, callerror,

unknownmedium, unknownflle, paramerror,
toomanyfiles, eom, doviceoff,
softparityerror, softprotected, softerror,
hardparityerror, hardprotected, timeout, harderror);
Command = (create, open, close, lookup, rename, ’

setread, setwrite, setmodify, setopen,

dolo, setpos, getpos, length,

setprotect, getpro set; getpe

o ol protect, setpermanent, rntanent,

Flag = (er, ef, rd, wr, ag, bytemode):
FlagSet = SET OF Flag;)

Flle = RECORD res: Response;
bufa, eis, ina, topa; ADDRESS:
elodd, inodd, eof; BOOLEAN;
flags: FlagSet;
CASE com: Command OF
create, open, getinternal: flleno, versionno: CARDIN, :
lookup: new: BOOLEAN |) ALl
setpos, getpos, length: highpos, lowpos: CARD
seiprotect, getprotect: wrprotect; BOOLEAN | ALY
E;:g'emmcnt. getpermanent. on: BOOLFAN

END;

(+ The routines defined by the fife system routt
1. Opening, closing and renaming of ﬂl?c.‘:l bo grouped in for
(Create, Close, Lookup, Rename)
2 (g:ggi and writing of flies,
SetWrite, SetModlfy, SetOpen
3. Pesitioning of files. fy Dolo)
(SetPos, GetPos, Length)
4. Streamiike handling of files.

(Reset, Again, ReadWord, WriteWord, ReadChar, WriteChar) «)

PROCEDURE Creste(VAR f: Fije: mediumname: ARRA CHAR,
* File: : Y
(* creates a new temporary (or nameless) flle f on the nameg :eme. -;:

PFOCEDWURB 'hCleose(VAR f: File):

. ates the operations on flie f, Le, cuts off

connection between variable f and the fils lme:e A temporary
flle will hereby be destroyed whereas s file with
8 not empty name remains In the directory for later use, »)

PROCEDURE Lookup(VAR f: Flle: filen ARRA CHAR BOOLEAN),
. * me: . .
(e searches file fllename”. I the flle does not exist mz g:w' I= TR. B :
a new file with the given name will be created. s) VB

PROCEDURE Rename(VAR f: File; filename: ARRAY OF CHAR);
(» changes tho pame of the flie (o ‘filename’. If the new =
name s empty, [Is changed to be a temporary flle. «)

PROCEDURE SetRead(VAR [Flle);
(» initializes the file for reading. ¢)

PROCEDURE SetWrite(VAR f: Flle);
(e initializes the file for writing. «)

PROCEDURE SetModify(VAR f: Flle);
(» initiatizes the file for modifying.)

PROCEDURE SetOpen{VAR f: Fllo);
(* terminates any input- or output operations on the file. »)

PROCEDURE Doio(VAR f: Fite);
(» iz used in connection with SetRead, SetWrite and
SetModify In order to read, write or modify & file
sequentially. »)

- PROCEDURE SetPos(VAR f: Flle: highpos, lowpos: CARDINALY);

(= sots the current position of flle f to byte
highpos « 2e+16 + lowpos. *)

PROCEDURE GetPos(VAR f: File; VAR highpos, lowpos: CARDINALY;
(* returns the current byte position of flis I »)

PROCEDURE Length(VAR f: Flls; VAR highpos, lowpos: CARDINAL):
(* returns the length of file ruf highpos and lowpos. +)

PROCEDURE Reset(VAR f: Flle);

{» scts the file into state opened and the position

to the beginning of the file. »)
PROCEDURE Again(VAR {: File);

(+ prevents & subsequent call of ReadWord (or ReadChar)
from reading the next value on the file. Instead, the
vatue read just before the call of Again is returned
onece mare.)

PROCEDURE ReadWord(VAR. f: Flle; VAR w: WORD);
(* reads the next word on the flle. ¢)

PROCEDURE WriteWord(VAR f: Flle; w: WORD);
(* appends word w to the flle. »)

PROCEDURE ReadChar(VAR f: Flle: VAR ch: CHAR),
(+ reads the next character on the file, «)

PROCEDURE WriteChar(VAR I Flle; ch: CHAR):
(» appends character ch to the file. «)

END FlleSystem.

119

_ﬁ

180

DEFINTTION MODULE InOut; (sN. Wirthe)

CONST EOL = 36C;
VAR Done: BOOLEAN;
termCH: CHAR;

PROCEDURE Openlnput{defext: ARRAY OF CHAR);
{+request a file name and open Input file "in",
Done : = "file was successfully opened”,
If open, subsequent input is read from this file,
If name ends with *.", append extenston defexts)

PROCEDURE OpenQutput{defext: ARRAY OF CHAR);
(erequest a file name and open output file “out”
Done := "file was successfully opened.
If open, subsequent output is written on this files)

PROCEDURE Closelnput;
(scloses input file; returns input to terminals)

PROCEDURE CloseQutput;
{=closes output file; returns output to terminale)

PROCEDURE Read(VAR ch: CHAR);
(+Done := NOT In.cofs}

PROCELURE ReadString(VAR 8: ARRAY OF CHAR);
(ereed string, Le. sequence of characters not containing
blanks nor control characters; leading blanks are jgnored,
Input is terminated by any character (=" ";
this character Is assigned to termCH,
DEL is used for backspacing when input from terminals)

PROCEDURE ReadInt{VAR x: INTEGER);
(sread string and convert to Integer. Syntax:
integer = ["+"|"-"] digit {diglt}.
Leading blanks are ignored,
Done ;= "Integer was read®s)

PROCEDURE ReadCar&(VAR x: CARDINAL);
(eread string and convert 10 cardinal. Syntax:
cardinal = digit {digit}.
Leading blanks are {gnored.
Done ;= "cardinal was read™s)

PROCEDURE Write(ch: CHAR);
PROCEDURE WriteLn; (sterminate lines)
PROCEDURE WriteString(s: ARRAY OF CHAR);

PROCEDURE WriteInt(x: INTEGER: n: CARDINAL}:
(»wrile integer x with (at least) n characters on file 'A:l‘l)l."
If n i greater than the number of diglts needed,)
blanks are added preceding the numbers)

PROCEDURE WriteCard{x.n: CARDINAL);
PROCEDURE WriteOct(x,n: CARDINALY);
PROCEDURE WriteHex(x,n: CARDINAL);

END InOut.

DEFINITION MODULE ReallnOut; (+N. Wirths)
VAR Done: BOOLEAN:

PROCEDURE ReadReal(VAR x: REAL);
(+Read REAL number x according o syntax:

[*+"|"-") digit {digit} [*." digit {dight}]
["E°["+"|"-"] digit {digit]]

Done ;= "anumber was read”. .

At most 7 digits are significant, leading zeroes not

counting. Maximum exponent i3 38. Input terminates
with a blank or any control character. DEL is used

for backspacings)

PROCEDURE WriteReal(x; REAL; n: CARDINAL):
{»Write x using n characters. If fewer than n characters
‘" are needed, leading blanks are inserieds)

PROCEDURE WriteRealOct(x: REAL);
(sWrile X in octal form with exponent and mantissas)

END ReallnOut, :

181

136

the dights of "cmd™ (from right to left),
interpreted as an octal numbers)

END Menn.,

DEFINITION MODULE Storage; (»SEX 5.10.80+)
FROM SYSTEM IMPORT ADDRESS;

PROCEDURE ALLOCATE(VAR s: ADDRESS; size: CARDINAL):
{» ALLOCATE allocates an area of the given 2126 and returns :
ft's address in a. If no space is available, the caliing
program is killed. «)

PROCEDURE DEALLOCATE(VAR a: ADDRESS; size: CARDINALY;
(» DEALLOCATE frees the arca at address a with the piven sizeo.+)

PROCEDURE Avalisble(size: CARDINAL): BOOLEAN;
(+ Availabie returns TRUE if size words couid be allocated. »)

END Storage.

DEFINITION MODULE MathLib0;
(»standard functions; J.Waldvogel/N.Wirth, 10.12.80+)

PROCEDURE sqrt(x: REAL): REAL;
PROCEDURE exp(x: REALY: REAL;
PROCEDURE In(x: REAL): REAL;
PROCEDURE sin{x: REAL): REAL;
PROCEDURE cos(x: REAL): REAL;:
PROCEDURE arctan(x: REAL): REAL:
PROCEDURE resi(x: INTEOER): REAL:
PROCEDURE entier(x: REAL): INTEGER:
END MathLib0.

Appendix 3
The ASCII Character Set

0 20 40 60 100 120 140
0 ol de 0 @ P ‘
1 soh el !) | A Q a
2 stx de2 " 2 B R b
3 otx dc3 #] C s ¢
4 eot dod § 4 D T d
5 engq nak % L] E U ¢
6 sk sm & 6 F v r
7 bel et 7 G w [
10 s can] H X h
11 ht em) 9 I Y i
12 If mb e : J z J
13 " esc + H K I k
14 fr ;| . £ L \ 1
15 cr o] - = M } m
16 0] . > N + n
17 sl us / ? 0 . 0
Layout characters

b backspace ‘

ht horizontal tabuistor

If line feed

" vertical tabulator

fT form feed

cr carriage return
Separator characters

[, § file separator

g8 Rroup separator

n record separator

us unit separator

|
3

g;w—aumuq«:wﬁ‘*-ﬂ‘ﬂ

