INTREHRMNATIONAL ATOMIO ENEROY AGENOTY
UNITED NATIONS EDUCATIONAL. SCIENTIFIC AND CULTURAL ORGANIZATION

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

34100 TRIESTH (ITALY) - P.O.B. 686 - MIRAMARE - STHADA COSTIERA 11 - TRLEPHONE ! 3340-1
CABLE: CENTRATOM - TELEX 4680303 -1

.

SECOND SCHOOL. ON ADVANCED TECHNIQUES
IN COMPUTATIONAL PRYSICS
(18 January - 12 February 1988)

SMR. 282/ 16

MODULA ~ 2 AND PASCAL
FART 2: PASCAL

V.B.A.FACK
University of Ghent, Belgium

TURBO-PASCAL REFERENCE CARD

To start TURBO Pascal, enter the command (MS-DOS) : turbo

Answer Y to the question "Include error messages (Y/N)?".

(! The file TURBO.MSG, which contains the compiler error messages, has to be in
your current directory. If not, copy it from the root directory on dnive C:)

A menu of TURBQ commands and the TURBO prompt (>} appears.

To give a TURBO command, press the associated letter, no <RETURN>.

Press <RETURN:> to see the menu again, if it has disappeared from the screen.

TURBO-COMMANDS

L : change current logged drive

A ; change current directory on current drive

W : select a workfile, which will be nsed 10 edit, compile, Tun and save
: invoke the full-screen editor and edit the workfile

: compile the workfile

: run the program

: save the workfile on disk

: directory

Q : exit TURBO system, back o MS-DOS

TURBO-EDITOR

gwmam

<CTRL>-<K> <D> : exit editor, back to TURBO system
<RETURNS> : insert new line at cursor position, if in insent mode

arrow keys : character left or right, line up or down
<PGDN> : page down

<PGUP> : page up

<HOME> : 10 beginning of line

<END> : 10 end of line

<INS>: toggle between insert and overwrite mode
<DEL:> : detete character under cursor

< > :delete left characier

<CTRL>-<Y> : delete line

<CTRL><K> : mark block begin

<CTRL>-<K> <K> : mark block end

<CTRL>-<K> <H> : hide/display block

<CTRL>-<K> <C> : copy marked block 1o cursor position
<CTRL>-<K> <V>: move marked block to cursor position
<CTRL>-<K> <Y> ; delete marked block

<CTRL>-<Q> <A> : find and replace a given string, option G for global search
COMPILER DIRECTIVES

U+ : user interrupt active (by <CTRL>-<C>)
B- : standard Pascal input/output
R+ :index range check
. Put them at the beginning of your program source as pseudo-comment : {$B-,U+,R+}

{sB-
PROG
CONS
VAR

BEGI
Re
Nr
Ma
Re
WH

FO
END,

ru"'nR'}
RAM Examplel (input, output}:;

T NMax = 100;

Nr, i, Max, Min : INTEGER;

Number : ARRAY [l.,NMax] OF INTEGER;
N

ad (Number{l]):
X i= Number[1l]; Min := Number(l]:

ad (Number([Nr]}:

ILE Number[Nr] <> -1 DO

BEGIN

IF Number [Nr] > Max THEN Max := Number [Nr]

ELSE IF Number[Nr] < Min THEN Min := Number [Nx]:

Nr := Nr + 1;

Read (Number{Nr))

END { while };

R 1 :=1TC Nr - 1D0

WriteLn (Number([i):6, Max-Number{i]:6, Number [i]-Min: &)

{$B-, U+, R+}
PROGRAM Example? (input, output):
{ Count the occurrences of the letters ‘a’,, ‘'z’
in a line of text, followed by ‘.’
TYPE
Letters - taf 2
Occurrences = ARRAY [Letters} OF INTEGER;
VAR
Occ : Occurrences;

Ch : CHAR;
BEGIN
FOR Ch := "a’ TOQ '"z' DO Occl[Ch] := 0;
Read (Ch}:
WHILE Ch <> "." DO
BEGIN

IF (Ch >= "a'"}) AND (Ch <= "2') THEN
Occ(Ch] := OcclCh] + 1;

Read (Ch)

END { while };

FOR Ch := ‘a’ TO 'z’ DO

IF Qcc{Ch] <> 0 THEN

WriteLn (Ch, * *, OccCh]:2)
END.

{sB-l U+Ik+l
PROGRAM Exampled (input, output);
{ Check whether a word is a palindrome }

VAR Word : ARRAY [1..B0] OF cHAR;
Ch : CHAR;
Len, first, second : INTEGER;
palindrome * BOOLEAN;

BEGIN

Read (Word[1)):
WHILE NOT Eof DO

BEGIN
Len := 1;
WHILE NOT Eoln DO
BEGIN
Len := Len + 1;
Read {Word([Lenl)
END { while }:
ReadLn;
FOR first := 1 TO Len DO Write (word[first]);
first := 1; second := Len; palindrome :w TRUE:
WHILE (first < second) AND palindrome DO
BEGIN

IF (Word{first} <> Word(second]} THEN palindrome

first := first + 1;
gecond := second - 1;
END { while }:
IF palindrome THEN WriteLn (' is a palindrome’})
ELSE WriteLn ('’ is not a palindrome’};
Read {(Word[1])
END { while }

END,

= FALSE:

‘SB"a U+f R"'}

PROGRAM Example5 (input, owtput);

{ Compute product of two matrices
and input/output of matrices }

CONST
NMax = 20;
TYPE
Matrices = ARRAY [1l..Nmax, 1. .Nmax] OF REAL;

PROCEDURE ProdMat (dim : INTEGER; VAR ml, m2, res : Matrices):;
(* Computes the product of two square matrices ml and m2
of dimension dim, result is res x})
VAR
i, J, k : INTEGER:
el : REAL;
BEGIN
FOR { := 1 TO dim DO
FOR J := 1 TO dim DO
BEGIN
el := 0.0;
FOR k := 1 TO dim DO
el := el + ml[di,k] * m2[k,§];
resfi,j) := el
END { for }
END { ProdMat };

PROCEDURE ReadMat (dim : INTEGER; VAR mat : Matrices);:
VAR
i, j : INTEGER;
BEGIN
FOR i := 1 T0 dim DO
BEGIN
Read (mat(i,1l]):
FOR j := 2 T0 dim DO
Read (mat{i,3));
END { for }
END { ReadMat };

PROCEDURE WriteMat {dim : INTEGER; VAR mat ; Matrices);
VAR

1, 3 : INTEGER;
BEGIN
FOR i := 1 TO dim DO
BEGIN
Write (mat(i,1]:12:6);
FOR § := 2 TO dim DO
BEGIN
Write (* f): Write (mat [1,3):12:6)
END { for };
Writeln
END { for }
END { WriteMat };

VAR
Dimension : INTEGER;
Matl, Mat2, Prod : Matrices;

BEGIN

Write (‘Dimension of the matrices ? ')f
Read (Dimension); '

Write {'Give elemencs of first matrix, in xows :’}); Writeln;
ReadMat (Pimension, Matl):
Write ('Give elements of second matrix, in rows :'); WriteLn;
ReadMat {(Dimension, Mat2):

ProdMat (Dimension, Matl, Mat2, Prod);
Write (’Product of the 2 matrices :*)y: Writeln:

WriteMat (Dimension, Prod)
END.

(SB-:U+rR+}
PROGRAM Exampleé (input, output};
{ Compute number of digits in a positive integer number |}

FUNCTION NrDigits {(num : INTEGER) : INTEGER;

VAR
tmp : INTEGER:
BEGIN
tmp := 0;
REPEAT
tmp = tmp + 1;
num := num DIV 10
UNTIL num = 0;
NrDigits := tmp
END { NrDigits }:

VAR
Num : INTEGER;

BEGIN
Write {’'Give a cardinal number : *):

Read (Num): .
WriteLn {’Number of digits = ¢, NrDigits (Num):6);

WriteLn {’Number = ’, Num:6)
END.

SECOND EDITION

Kathleen Jensen
Niklaus Wirth

133

1. Introduction

The davelopment of the language Paacal is based on two principa
aims., The firet is to make available a languape suitable t
teach progremsming as a systamatic discipline basad on cartai
fundamental concepts clearly and naturally reflectad by th
language. The second s to develop implementations of thi
language which are both relisble and afficiant on presentl
available cosputers,

Tha desira for s new languags for tha purpose of teachin
programsing is dus to my dissatisfaction with the presently use
®ajor langusges whoss features and constructs too often canno
bhe sxplained logically and convincingly and which too often defl:
systamatic reasoning. Along with this dissatisfaction goes m
conviction that the language in which the student is taught t.
exprsas his ideas profoundly influsncas his habits of though
and invention, and that the disordsr governing thess language

directly imposss itsglf onta ths prograssing atyls of th
students .,

Thers 1is of courss plenty of reason to ba cautious with thy
introduction of yat another programmaing language, and th
objection against teaching progremming in a language which {:
not widely used and accepted has wundoubtedly soms
Justifrication, at laast based on short ters commercia’
reasoning. Howaver, the choice of a language for teaching base
on its widespread acceptance and availability, together with the
fact that the language most widaly taught is thsreafter going tg
be the ons mast widely wused, forms thae safest recipe for
stagnation in a subject of such profound pedapogical influsnca.
1 consider 1t therefors wsll worth-while to make an effort t
bresk this vicious circle,

Of courss a naw language should not be developed just for the
Sake of novelty: existing languages should be used as a basis
for development wheraver thay meat tha criteria mentioned and dc
not jwpede a systematic structurs. In that sense Algal 60 was
used as a basis for Pascal, since 1t meets thes demands witr
respect to tsaching to a such higher degree thaa any othar
standard languege. Thus the principles of structuring, and ir
fact the fors of sxprassions, are copled from Algol &0, It was,
howsver not deamad appropriate to adopt Algol 60 as s subset of
Pascal; certain constructian nrinclplel.particulnrly those of
declerations, would have been incompetible with those allowing &

hatural and convenient reprasentation of the additional feature;
of Pascal,

The main aextensions relative to Algol 60 lig in the domain oif

data structuring facilities, since their lack in Algol 60 wa:
considered as the prime causs for its ralatively narrow range ol
aoplicability. The introduction of record and file structurae:
should wmake 3t possible ta s0lve commercial type problems witt
Pascal, or at lgast to smploy it successfully to demonstrat
Such probless in a pProgramming coursse.,

1M

Summary of the langusge

algorithm or computer program consists of two essential
ts, a description of actiona which are to be performed, and a
cription of the gata, which are manipulated by these actions.
lans are described by so-called Almtements, and data are
cribed by so-called declarations and definitions .

data are representad by values of varisables . Every variable
urring in & statement must be introduced by a
laration which associates an identifier and e date types with
t wvariabls., The data Lfvags essentially definea the set of
ues which may be assumed by that variable, A data typas may in
cal bhe either directly described in the variable deaclaration,
it may be refesranced by a type identifier, in which case this
ntifier must be described by an explicit fyom .

basic data types ars the acnlar types., Thair definition
icates @an ordered set of values, 1.8. introduces identifisrs
nding for wsach vaelus 4in the set, Apart from the dafinable
lar types, thera exist four standarg hasic Lyoea: Boolman,
SQer. ghar, and rzeal. Except for tha type Boolean, their
ves &are not denoted by fdentifiers, but instead by numbars

quotations respectively. Thess ars ayntactically distinct
m identifiers, The set of values of type char 1is the
racter set availeble on a particular inatallation,

type may alsoc be definesd a3 & auhranga of a scalar type by
icating the smallest and the largest valus af the subrange.

uctured tvges are defined by describing the types of thair
ponents and by indicating a atructuring ssthod. The various
ucturing methods diffsr in tha selaction meachanism sarving to
ect the components of a variable of the structured type. In
cal, there are four basic structuring methods availsble:

ay structure, record atructurs, aet structure, and file
ucturae,

an array siructure, all components ars of ths aame type. A
panent is salected by an array selector, or gom .
se typs is indicated in the array type definition and which
t be scalar, It is usually a praogrammer-defined acalar.type,
a subrange of the type integer. Given a value of the index
8, an array selector yields a value of the component tyoe.
"y array variable can tharefore be regarded as a mapping of

index type anto the component type. The time needed for »
ection does not depend on the value of the aelector (index),

‘array structure 1s therafors called a rcandom-acceasy
icture .

a8 record structure, the copponents (called fiplgs) are not
Basarily of the sams type., In order that the type of a
rtted componant be evident from the program text (without
uting the oprogram), a record selector is not a computablae
Ja, but inatead 1s an identifier uniquely denoting the
Jonent to be selected., Theae component identifiers are

declared in the racord type definition, Again, the time needed
to access n selected component does not depend on the selector,
and the record ia therefore also a random-access structure,

A record typs may ba specifisd as consisting of aseveral
¥arianta. Thia implies that different variablea, although said
to be of the seme typs, may assume structures which differ in s
certain manner. Tha difference may consist of a different number
and different types of components . The variant which is assumed
by the current value of a record varisble may be indicated by a
compenent field which 4s common to all variants and is called
the fag fisld. Usually, the part common to all verfants will
consist of saveral companents, including the tag field,

A ant atrycturs defines the oot of values which is the powersat
of its base typs, 1.,e, the gut of all subsets of vslues of the
base type., The base typs must be a scalar type, and will usually

bs a progremmer-defined scalar type or a subrange of tha trpe
intagng.

A file structurs s = amquence of components of the same tyope, A
natural ordering of the components 1is definad through the
sequence., At any instance, enly one component 1is directly
accessible, The cther components are made accessible by
grogreasing sequentially through the file. A file is generated
by sequentially appending components at its end, Consequently .
the file type definition does not determins the number of
components ,

Variables declared in explicit declarations are called atatic.
The declaration associates an tdentifier with the variable which
is used to refer to the varisble, In contrast , variables may be
generated by an exscutable atatament. Such a dynapic gensration
vields a so-called aoloter (a substitute for an explicit
identifier) which subaequently serves to refer to the variable.
This pointer may be assigned to other veriables, namely
variables of types pointer. Every pointer variable may assume
values pointing to variables of the aame type T only, and it is
sald to be . bhound to this type T, It may , howevar, slso assume
the value pil, which pointa to no variable. Because pointer

veriables meay also occur as components of structured variables,

which &are themsplves dynamically jenerated, the use of painters

permits the representation of finite grephs in full generality.

Tha most fundamental statement is the asajonment statemant. It
specifies that a newly computed value be assigned to a variables

(or components of a variasble)}, The value 43 obtainad by
evaluating an sxoreasipn. Expressions consist of variables,
constants, sets, operators =and functions opersating on the
denated quantities and producing new wvalues. Variables,
constants, and functions are sither declared in the program or
are atandard entities., Pascal defines a fixed set of operators,
each of which can be regarded as describing a mapping from the
oparand types into the result type. The set of operators is
sutidivided into groups of

1. Reithmatic coerators of additian, Subtraction, sign

138

inversion, multiplication, division, and computing the
remainder.

2. ?nnlﬁgn_nng:a;nna of negation, union {or), and conjuéction
and).

3. apt ogoeratgrs of union, intersection, and set diffarence.

4, relatiqnal gpoerators of eguality, insquality, ordering, sat
membership and set 4inclusion, The raesults of rslational
operations are of typs Loglean.

Tha d:nggﬂung atatement causes the execution of the designated
procedure (see belaw). Assignment and procedure statsments arg
tha components ar building blocks of alructurad atatemants,
which specify seguential, selective, or repeated sxecution of
their camponants , Sequential exacutlon of atatementa is
spacified by the comogund atatemsnt, canditional or selective
exscution by the it atatement and the gaasg atatement, and
repeated exscution by the reoeat stategent, the ghila atatemant,
and the fgr statement. The 1if statament serves to make tha
execution aof a statement dependent on the value of a Ogolean
expression, and the cass statemant allows for thes selection
among many statements according to the value of a asslector. The
for atatement 1s used when thas number of iterationa is wnown

beforehand, and the repeat and whils statements are used
otherwine,

A statemant can be given a name (identif{ar), and be referenced
through that identifier, The astatement I8 than callsd a
Arocedyre, and ita declaration a grocedure declaratinn. Such a
declaration may additionally contain a set of variabla
declarations, type definitions and further procedure
declarations. The variables, types and procedures thus declared
can be referenced only within the procedure itaglf, and are
therefore called local to the procedura. Their identifiers have
significance only within the program text which conatitutes the
procedure daeclaration and which 1s called the Acope of these
identifiers. Since procedurss may be declared local to other
proceduras, scopes may be nested. Entitiss which are declared in
the main program, 1.e. not local to some procedurs, ars called
glotal. A procedure has & fixed number of paramgters, sach of
which {is denoted within the procedura by an 1ldentifjer called
the farpal oarameter. Upon an activation of the procedurs
statgment, an actual quantity hss to be indicated for sach
earameter which can be raferenced from within the procedure
through the formal parameter. This quantity is called the actual
narameter . Thers are four kinds of parameters: value
parameters, variable paramoters, procedurae and function
parameters, In tha first case, the actual parameter is an
enpression which 1s evaluated onca. The formal parameter
represents a local variable tao which ths result of this
evaluation 1s assigned bafore the exacution of tha procedure (opr
function). In the case of a variabla paramgter, the actual
parameter is a variable and the formal parametsr stands for this
variable, Posaible indices are evaluated before sxecution of the
procedure (ar function). In the case of procedure or function

137

paramaters, tha actual paramster 1is a procedure or function
identifier.

- functippna are declared analogously to procedures, The only

differsence lies 1in the fact that a function yields a result
which 4s confined to a acalar or pointer type and muat be
specified 4in the function declaration. Functians may therefors
be used as constituents of expresaions. In order to eliminate
silde-effects, assignmants to non-local variables should be
avoided within function declarations,

3. Notation, terminolopgy, snd vocabulary

According to traditional Backua-Naur form, syntactic constructs
ars denotad by English words enclosed between the angular
brackets < and > ., These words also describe tha nature or
meaning of the construct, and are uaed in thes accompanying
description of semantics. Possible repetition of a construct ia
indicated by anclosing the conatruct within matabrackets { and
]. The symbal <ampty> dsnotes the null seguence of symbols,

The basic vocabulary of Pascal consists of basic symbols
classified into letters, digits, and apecial symbols,

<letter> 1t A)BICIDIEIFIGIHITI{JIKILININIQIPIQIAISITIUIV]
wixivizlalbiclalslrigihlit iikiliminlolplalr!
sltiulviwlxlylz

<digit> 3te 0}112{3{4]5)6)718]9
<special symbol> ::m=

+ | =] J{e] <> <] >] <u})>=] (])]
O T I T TS I BT N IO R IO O I I B - POV
mod | gl | do | az | and | pat | if | then | glse |
cose | of | cepeat | until | while | do | far | o |
downto | hegin | end | with | gatn | consk | xac |
tvpe | array | record | aet | file | functian |

The canstruct .
<any sequance of symbolas not contailning “1"> }

may be inserted batwsan any two idantifiers, numbers (cf. 4), ar
special symbols, It is called a comment and may be removad from
ths program text without altering its meaning. The symbols { and
} do not occur otherwiss in the language, and when appearing in
syntactic descriptions they ars meta-aymbols like | and ::i=
The aymbol pairs {(* and *)} are used as synonyms for { and }.

4, Identifiera, Numbers, and Strings

Identifiers serve to denote constants, types, wvariables,
procedures and functions. Their aasociation must be unique
within their ascope of validity, 1.s, within ths procedure or
function in which they are declared {cf, 10 and 11),

138

<identifier> :i= <letter>[cletter or digits}
<letter or digit> :i= <letter> | <digit>

¢ uvsual decimal notation is used for numbers, which ars the
istants ©pf the data types Aptepger and rpal (see 6.1.2,). The
‘ter E preceding the scale factor is pronounced as “times 10
the powar of”™,

<digit sequence> i1is «digit>[<digits}
<unsigned integer> :i= <digit aequance>
<unsigned real> !t= <unsignaed inteper>,<digit aequenca>» |
cunaigned integer>.<digit sequence>E<acale Pactor> 1
<unaigned integer> E <scale factor>
<unsigned number> :im <unsigned {nteger> | <unsigned real>
<scale factor> :ie <unsigned integer> |
<sign><unaigned integer>

<sign> 1= 4 | -

implest
1 100 0.1 St -3 87.35E 48

juences of characters enclosed by quots marks are called
dngs . Strings consisting of a single character are the
1stants of the standard type char (see 6.1,2). Strings

'sisting of n (>%) enclosed characters aras tha canatants of
! types (see 6.,2,1)

packed agray [1..n] gf char

ret If the string is to contaln a quote mark, then this quote
mark is to be written twice.

<string> :1it= *<character>[<charactar>]’

imples:

‘Af L LEE I

*PASCAL * *THIG IS A STRING®

Constant definitions

ionatant definition introduces an identifier as a synonym to a
1stant ,

<constant identifier> ite <identifier>
<conatant> :ta cunsigned number> | <sign><unasigned number> {

<constant {dentifier> | <sign><constant identifier> |
<string>»

<constant definition> :1e <identifier> = <consatant>

130

6. Data type definitions

A data typs determines the set of vdlues which variables of that
tyos may assums and sssocilates an identifier with the type.

<typs> 1t= <aimple type> | <structured type> | <pointer typs>
<type definition> 3t= <identifier> = <type>

6.1, Bimola tvoma

<simple type> i1t= <acamler type> | <subrange typa> |
<typa identifier>
<type identifier> ti1= <identifier>

6.1.1, Scalar tvoes

A scalar type definas en ordered set of values by enumeration of
the }dnntif&ur. which danote these values,

<scalar type> ti1= (<identifier> [,cidentifiers})

Examplest
{red, orange, yellow, green, blus)
{club, diamond, heart, spadse)
{Monday, Tuesday, Wadnesday, Thursday, Friday,
Saturday, Sunday)

Functions applying to all scalar types {except real) are !

suce the succesding value (in tha enumeration)
pred the preceding value {in the enumeration)

6,1.2, Btandard tvpas

The following types ars standard in Pascal:

integer The values are a subast of ths whole numbers

defined by individual implementations. Its values
are the integars (see 4).

raal Its values are a subsst of the real numbers
depanding on the particular implementation. The
values ars danoted by real numbers (ses 4),

Boclean Its valums ars ths truth values denoted by the
identifiers trus and false.

char Its wvalues are & set of characters dstermined by
particular implementationas., Thay ars daenoted by
the characters themselves enclosed within quotes.

140

6.1.3, Zubrangs types

A type may bae defined a3 a subrange of anothsr scalasr type by
indication of the least and the largest valus in ths subrange.

The first constant specifiss the lower bound, and must not bs
greater than the upper bound,

<subrange typs> iie <constant> ,, <constant>

Examples: 1..100
-10 ,, +10
Monday .. Friday

6.2, Structured tvoes

A structured type 1is characterised by the typef{a) of 1its
components and by 1its atructuring msethod, Morsover, a structursed
type definition may contain an indication of the praferred data
representation. If a definition is prafixed with the aymbal
bagked » this has in general nao affect on the meaning of a
program (for a rastriction see 9.4.2.): but it 18 a hint to the
compller that storage should be sconomizad even at the price of
some loss in efficlency of access, and avan 1if this may sxpand
the cade necessary for expressing acceass to companants of the
structure,

<structured type> :i= <unpacked structured type>» |

packed <unpacked structured type>
<unpacked atructured type» :ta <array type> i
<record type> | <set type> | <file type>

6,21, arcav _typoes

An array type is a structure consisting of a fixed number of
components which are all of the sams typa, called thea comopansnt
Lyge. The elements of the array are designated by indices,
values belonging to the so-called dndex tvge. The array typs

definition specifies the component typs as well as ths index
typa.

<array type> ii= array [<index type> [,<index typa>}] af
<componant type>»

<index type> ::i= <simple type>

<component type> i:i:w <typa>

If n 1index types are specified, the array type is called
. and & component is dasignated by n indices.

Examples : arrax [1.,100] gof real
array !1,,10,1,.20) g 0,.99
acray [anolaan] af color

"

6.2.2- ﬁmmﬂ.

A record types is e structure consisting of a fixad number of
components, poasibly of different typea, The record typas
definition specifiss for each component, called a Lield, its
type and en identifier which denotes it. The acope of thess
so-called fipld Adentifiers is the record definition itself, and
they ere also accessibls within a fiesld designator (cr. 72.2)
refarring to a record variable of this typs.

A racord type may have several yarianta, in which case a certain
fiald may be designated as the fag fisld., whoss valus indicatas
which variant 1s assumed by the record variabls at a given tims.
Each wvariant structure 1s identifiad by a cass labsl which is &
consgtant af the type of the tag field,

<reacord type> :ie rpcorg <field list> pad
<field list> :ie <fixed part> | <fixed part>;<variant part> |
<variant part>
<fixed part> :im <rscord section> [j<record section>]
<scord section> jie
<field i1dentifier>{ ,<field identifier>] : <type> | <ampty>

<variant part> i1is casg <tag fisld> <typa identifiesr> pf
<variant>» [;<variant>}

<variant> :i= <cases label list> : (<fiald list>) | <emoty>

“cass label list> i1t= <case label> | .<case labsl>)}

<case label> :iis <constant>

<tag field> t:= <identifier> 1 | <ampty>

Examples: recard day: $.,.3%;:
month: 1,,12;
year: integer

and

recard nsma, firastname: alfa;
agat: 0,,99;
married: Boolean

and

racordg x.y: real;
arsat real;
Laag s: shape nf
triangle: (side: real:
inclination, anglel, angled: angle);
rectanglet (sidel, side? : real:
skew, angleld: angle):
circle! {(diameter: real)
aad

6.2.3. Set _tyges

A set type defines the range of values which is thes powerset of
itas so-callied jhpap Ltype. Bass types must not be structured
types. Operators aspplicable to all aet types arasi

142

+ union

- set differsnca ’
* intersection

in membership

‘he seat difference X=y is defined as tha set of all elasments of
- which are not membera aof Y

<set type> i11= ngt pf <basae typs>
<base type> :i= <aimple type>

'«2.4, £1lp tvomes

file type definition specifies a atructure consisting of &
equence of companents which are 411 of the same type. The
umber of components, called tha lsagth of the file, 13 not

ixed by the rile type definition. A file with 0 components 1
alled ampty.

<file type> 1= £11p of <type>

iles with companent type char are callad textfilas, and are &
pecial case insofar as the component range of valuas must bs
onsiderad as extanded by & marker denoting the and of a line,

his marker allows textfiles to be substructured into lines. The
ype Ltext is a standard type predaclared as

Lyoa text = f1lp of char

«3. Pointer tvogs

ariables which ars declarsd in & program (see 7.) are
ceesalble by theipr fdentifier., They exist during the entire
xecution process of tha procedurs (scope) to which the variable
3 local, and thase variables are therafors called atatic (or
tatically allocated)., 1In cantrast, variables may alsc be
inerated dynamically, 1.s. without any correlatian to tha
tructure of the program. These dynamic variablss ares genesrated
* the standard procedurs nex (sea 10.1.2.); since they do not
cur in an axplicit varishle declaration, they cannot be
sferrad to hy a name. Instaad, access 4{a achisved via a
'=alled pplintar value which s provided upon generation of the
rnamic variable., A polnter type thus consists of an unbounded
st of values pointing to elemants of ths same type, No
‘erations are defined on pointers except the assignment and the
st for squality,

‘¢ pointer value pil belongs tu every pointar type; it points
) no element at all, i

<pointer type> 11m f<type identifsSar>

143

Examples of typs definitions:

eolor = {(red, yellow, green, blue)
asx * (male, female

taxt ® fila aof char

shaps = (triangle, ractangle, circle)
card = array [1..80] gf char

elfe = packed arpay {1..10] pf cher
complex = racord re,im: real and
person = racard name, firstnames alfa:

aget: integer:
married:Boolean:
father, child, siblingt! tperson:
cnag st sex pf
mala: (enlisted, bold: Booclean);
female: (pregnant: Boolean:
size: grrav(1..3] gf integer)
and

7. Declerations and denotations of veriableas

Variable declarations consist of a list of identifiers danoting
the new veriables, followad by their type.

<variable declaration> :ie <identifier>(,<identifriers} : <types

Every declaration of a file variabla f with components of typa T
implies the additional declaration of a so~called huffer
varlahle of type T, This buffer variable is dencted by *{ anc
serves to append components to the file during gensration, an¢
to acceas the file during inapection (see 7.,2.3, and 10,1,1,},

Examplest
x.y. 2t real
u,vi complax
1,Jt intager
ki1 0,,9
p.AQt Boolean
opsratort: (plus, minus, times)
at arrav(0..63] gf resl
bt arpravicolor Boolesn] of complex
¢t colaor
f: file of cher
hust hue2: pat of color
p1.p21 {person

Denotations of variables aither designate an entire variable, e
component of a variabls, or a variable reaferenced by a pointer
{senm 6,3). Variables occurring 4in examples in subsequent
chapters are assumed to be declared as indicated above,

<variable> ti= <antire variable> | <component variable> |
«<rafersnced variasble>

14

7.1, Eptire vapisples
An entire variablae is denoted by ita ldentifier,

<entire variahla> :t= <variable identifier>
<variable identifier> iie <identifier>

7.2, Compgnent varishles

A component of a variable is denoted by the variatls followed by
8 selector specifying tha companent . The farm of the selector
depends on ths structuring types of the varjiable.

<compaonent variable> :is <indexed variabla> |
<field deaignataor> | <file buffar>

7.2.1.1mmmn

A component of an n-dimensional array variable is danoted by the
variable followed by n index axpressians,

<indexed variablae> t:a

<array variable> [<expression> { .<exprasaions]]
<array variable> tia <variable>»

The types of the index expressions must correspand with tha
index typea declared in the definition of tha array typs,

Examples
al 12]
af1+3]
blred,true]

7.2.2, Elsld desigoatara

A component aof a record wvariable is denoted by the racord
variable followed by the field identifier of the compaonent ,

<fiald designator> it= <record variable>.<field Sdantifier>
<record variable> ::= <variables»

«field identifier> siw <identifier>

Examples:
u.re
blred, true)] .im
P2t size

145

7.2.3, Eila buffera

At any time, only the one component daetermined by the current
file position (read/write head) 1is directly acceasible. Thi:
compaonent ia called tha current file component and 4!
reprasented by the flle’s huffer variahla.

<fils buffer> :3= <file variablesf
<fils variabla> ::= <variable>

?7.3. Bafarenced variablea

<raferenced variable> tt= <pointer varisble>t
<pointer variable> :i= <variabla>'

If p is a opointer variabls which 4ia bound to a typs T , ¢
denotes that variable and its pointer valus, whersas p} denate:
the variable of type T referencad by p.

Examples:

-] 1' LTather
P11 .siblingt «child

8. Expreasions

Expressions are constructs danoting rules af computation fo:
obtaining velues of variables anc genarating new values by thi
application of operators. Exprassions consist of opsratora anc
operands, i.e. variables, constants, and functions,

The rules of composition specify operator pracedancas according
ta four classes of operators. Tha operator not has the highesi
precedence, followsd by ths ao-callad multiplying aperators
then the wso-—called adding operators, and finally, with the
lowast precedsnce, ths relational opsrators, Sequences of
operators of ths asame precedsnca ars sxecutad from left t¢
right. Tha rules of precsdences ars raflected by the following
syntaxt

146

signed conatant> rie cunsignad number> | <string> |
<constant identifier> | pil

ttor> :im <variable> | <unsigned constant> t
<function designator> | <set> | {<exprasaion>) |
not <factor>

t> i1= [<element 1ist>]

Bment 1ist> ::= <element> [,<element>] | <empty>

ement> ::a <expression> | <gxpression>,.<expressiond>

rm> 1w <factor> | <term>e<multiplying operator><factor>

wle expression> it ctarm> |
<simple expression> <adding eperator><term> |
<sign><term>

ression> ii= <simple expression> |

csimple expression><relational operators«<simple expression>

ressions which are members of a set muat all be of the same
B, which is the base type of the set, [] denotes the ampty

, and [x..y] denotes the set of all valuss In the interval
S 2

nples:

tors: x
5
(xeyez)
sin{x+y)
[red,c,green]
[1,5,10..19, 23]
oot p

na ¢ xSy
1/{1-4)
P oraq
(x<ay)} and (v < z)

'le expressions: X 4y
-X
hue1 + huel
v i#] + 1

‘easions: x = 1.5
P <=
(1<)} = (3<k)
¢ in huet

» Unecataors

both operands of the arithmetic operators of addition,
raction and wmuitiplication are of type integer (ar &
‘ange thereof), then the resuvit is of type integer. If onms of

operands is of type real, then the result is alsp of type

. Ihn_nngnn:n:_nnﬁ

147

The operator ant desnotes negation of its Boolean operand.

8.1,2, Multiolving goaratora

<multiplying operator> t1e ® | /| div | mad ! and

|operatori operation | type of operends | type of result|
| | 1 | !
| » | multiplication | real, integer | real, integer |
| =uat intarssction| any set type T ‘ T ;
|
/ 1 division ; real, integer {f real }
1 |
div | diviaion with | integer | integer |
| truncation | i 1
! ! [| '
| ood { modulus } integer : integer =
and = logical "and” | Boolean : Boolean {
|
8.1.3. Adding noerators
<adding operator> ties 4+ | - | gp
|operator| operation | type of operands | type of result|

+ addition

set union

integer, real

integer, real
any seat type T T

subtraction

intager, real
set difference

integer, real
eny sat type T T

ar logical “or"™ Boolean Doolean

|
|
|
I
1 -
|
|
|
l

S — —— — s ——

| ——— e e .

When used as operators with one operand only, - denotes sign

inversion, and + denotes tha ident ity operatian.

8.1.4, Belational operatgra

<relational operator> 1:e = | < | « | <= | >a | > | 4n

operatar	typs of aperands	rasult
= <>		
< »	any scalar or subrange typs	Boolsan
<= >=	1	
	!	
} in : any scaler or subrange type | Boolean |

i]
i | |

and its set type respactively
|

Notice that all acalar types define grderad sets of values,

The operators <>, <, »» stand for unequal, lass or equal ,and
greater or equal respactively.

The operators <= and »= may slsa be used for comparing values of
sat typa, and then denote set inclusion,
If p and q are Boolean expressiona, p = q denotes theair

equivalance, and p <= g denotes implication of g by p. (Note
that false < trus)

The relational operatora = €> < <= > >= may also he yased to
compare (packed) arrays with camponents of typas char {(strings),
and then denote alphahetical ordering according to the collating
s&quence of the underlying sst of characters,

8,2, Eunction deajgnptors

A function designator apecifies the activation of a function. It
consists of the identifier designating the function and a liat
af actual parameters. The parametars sre variables, expressions ,
procedures , and functions, and are aubstituted far tha
corrasponding formsl parameters (cf. 9.1.2,, 10, and 11),

<function designator» ii= <function identifier> |

<function identifier>{<actunl paramstar>| ,<actual parametars])
<function ldentifier> i1ia <identifier>

Examples: Sum(a, 100)
GCD (147,k)
sin{x+y)
aof (1)
ord(ft)

9. Gtatements

Gtatements denots algorithmic actions, and are said to be
axecutabla. They may be prafixad by a labsl which can be
raferencad by goto atatemants ,

149

<statemeont>i1iecunlaballad statament> [
<label>i<unlabselled statement>
<unlabellsd statement> :ie <simple atatement> | ,
<structurad stataement>
<labal> ii= <unsigned integer>

9.9, Bigole atatsments

A simple statement is a statament of which no part constituts
ancther stetement. The empty statswent consists of no symbal
and denotes no action.

<simple statsment> ite <assignmant statement> |
<procadurs statemsnt> | <goto statements> |
<smpty atatement>

<swpty statament> 1= <ampty>

9.1.1. Aaalgngent atatements

The assignment statement serves to replace the current valus o
8 variable by a new value specified as an sxprassion,

<asslignment statement> ii= <variable> i= <expression> |
<function identifiar> := <axprsssion>

The variable (or the function) snd the sxpression must be o
identical type, with tha following exceptions being permitted:

1. the typs of the variatle is real, and the type of th
expresasion is integer or a subrangs thareof.

2. the typs of the axpression is a subrange of the type of th
variable, or vicewwersa.

Examnples: X Iw y4T
p t= (1<=1) ang (1<100)
) 1 1= sqrik) - (1%))
huet 1= [blue,succ(c)]

9.1.2, frocadure atatemants

A procedura statement serves to execute the procedure denoted b
the procedurs identifier. The procedurs statament may contain
st of actual aaranetears which are substituted in place o
their corresponding farmal ocarageters defined in the procedur
declaration (cf, 10). The correspondence is establishad by th
Ppositions of tha parameters in the lists of actual and forma
Parametsrs respectively. Thera sxist four kinds af parameters
so—called value paramaters, variable paramseters, procedur
paramsters (the sctual paramster is a procadure identifisr)}, an
function paramaters {the actual perameter i1s & functio
identifier),

In the cass of & yalus pRacamater . the actual parameter must b
an exprsssion {of which a variable 13 = aimpla casa)., Th

150

rresponding formal parametar repressnts a local variable of
* called procedurs, and the current value of the axpression is
ltially assigned tao this variable, In the case aof
cameter, the actual parameter must bLe a variable, and the
"responding formal parameter represents thia ectuel variabhle
ring the entire axecution of the procedurs, If this variahlg
& component of an array, its index is avaluated whan the
Jcedurs is called, A variable parameter must be used whenaver
} parameter represents a result of the procedurs.

wanants of a packed structure wmust not appear as actual
*lable parameters,

<procedure atatements ;1= <procedure identifier> |
<praocedure identifier> (<actual parameter>

[.<actual parameter>))
<procedure identifier> ita= <idantifier>

<actual parameter> ;im <expressian> | <variable> |
<procedurs identifier> | <function identsifiars

mplas i next
Transpose(a ,n,m)
BISECt (rct .-‘.0.1'1 'oo‘ "

1.3, Gotg atatemangta

goto stetemant serves to indicate that further processing

wld continue at another part of the program text, namely at
* place of the label,

<goto steatement> :1e aoto <label>

following restrictions hold concerning the applicability of
ela:

The scope of g label 4s the procedure within which it 4

defined. 1t 1a therefore not posaible to Jump into a
procedure.

Every label muat be specified in a label declaration in the

heading of the procedure in which the 1label marks a
statemant ,

« Biructured atateasnta

sctured statements are constructs tomposad of other
tements which have to be sxecuted either 1in sequance

"wound atatemant), conditionally {conditional statements}, or
atedly (repetitive atatements),

structursd statement> :iw <compound atatement> |

<conditional statement> | <repetitive statemant>» |
<with statement>

151

9.2.%, Conpound statemanty

The compound statsment specifies that its compeonent statemants
ars to be axscuted in tha same sequemce as they ars written. The
aymbols hegiln and pnd act as statement brackets.

<compound statement> its bagin <statsments {:<statemant>] gpnd
Example: hegin z t= x ; x 1. Yiry t=r and

9.2.2, Conditional atatements

A conditional statemant selacts for exscution a single one of
its component stataments,

<conditional statesment> t:ia
<if atatement> | <caas atatemant>

9.2.2.1, qulhlklllntl

The 1f statewmant specifies thet & statement be executed only ir
& certain condition (Boolwan exprassion) is true, If it is
falsa, than either no statement iz to be axscuted, or the
statement following the symbol £las is to be executed.

<if statemant> 11 Af <expression> than <atatement> |
1L «<expression> then <statemant> Elag <atateamant>

The expressiaon between tha symbols Af and then muat be of typs
Boolean,

Nota}
The syntactic ambiguity arising from the construct

1L <expression-1> then if <expresaion-2» Lthen <statement-t>
alan <atatement =2»>

is resolved by interpreting the construct as equivalent to

if <expression«i> ghaqg

bagin if <expression-2> Lthen <statement -1> Blap <statement-2>
and

Examples:

df x < 1.5 then 2z 1= x4y glag z := t.5
if p1 <> pil thep pt t= p it .Father

9.2.2,2, Laas atetemants

Tha case atatement consists of an maxpresaion (the selector) and
a list of atatements, each being labelled by & constant of the
type of the selsctor. It apecifims that the one atatement be
exscutsd whose 1label 1is equal to the current value of ths

152
selector,

<case statement> itwm £a3g <expression> gf
<case list element> [;<case list slamant>] ang '
<caanm list slement> iis <case labal list> i <statament» |
<ampty>
<case lsbel list> i11= <cass label> | ,<case lahel> }

Examples: .
Laan operator gpf &Kaae 1 gf
plus: X Im x4y 15 x 1= ain(x):
minust x tm x.yg 2t x 1= cos(x);
times: x t=» xuy 31 x 1= axp{x):
eond 41 x 1= ln(x)

and
9.2.3, Beaetitive stataments

Repetitive statements specify that certa
executed rapsatedly., If the number af repetitions ia known
beforshand, 1.a. before the reapstitions ara started, the for

statement is the appropriate construct to exprass this

situation; otherwias the while or repeat statemeant ahould be
usad,

in statemanta are to ba

<repatitive statement> :im <whila statement> |
<repsat statement> | <for statement>

2.2,3,1, Bbile statements

<while statement» ::w while <expression> do <statement>

The expression controlling repetition must be of typa Boolean.
The atatement 1is repeatedly esxecuted wuntil the expression
becomes false, If its wvalus 1a falsg at the beginning, the
statement is not sxecuted at all., The while statament

xblla B dg §

is equivaleﬁt to

1L 0 theq
begip §5;
- ahile B8 gg 5
end '

153
Examplas:
while af1] <> x ga 1 1= 141
while 150 fdq
beain if odd(i) than z 1= z#;
1 e 4 diy 2;
® = gqrix)
and

shilg r{r) da
baain B1F1): oet(f)
and

9.2.,3.2. Repaat atatesenta

sat atatament> i1ts=
<r.pn:nagh <statement> [;<atatemant>] yntil <expression>

t be of type Boolean.
The esxpression controlling repstition mus

The sequence of statements betwsen tha symbols reaeat and unfxl
is reaspeatedly exscuted {and at least once) until the exprassion
becomes trus. The repeat statement

repeat 5 until B

is equivalent tao

Legin S;
Af not B fthen
ceopat S until B8
&nd
Examples:

cansat k = 1 pod J3;
i 1 § 3
J 1= k

until § = 0

ceoeat P(f?); get(r)
unti) eafr(r)
9.2.3,3, Eor_atatameats
The for statement indicates that a statement is to be repeatedly

igned to a variabls
executed while a progression of values is asas
which is called the cantrnl warisble of the for statament,

154

<for statement> 1:1w
Lor <control variable> := <for 1ist> gdg <statement>
<for list> ::s <initial value> fn «<final value> |
<initial value> downtn <finm} value>
<control variable» i1:= <identiffier>
<initial value> t:» <axpraasions
«final value> ::= <axpression>

The control variable, the initial valus, and the final value
must be of the same scelar type {(or subrange thereof), and muat
not be altered by the repeated atatement. They cannot be of type
real.
A for statement of the form

for v :« a1 tg e2dg S
is eguivalent to the sequence of statemants

v t= 8t 5; v = aucelv): S: .,. T v im g2: 8§
and a for statement of the form
fac v :e e downtn e2 gp S
is equivalent to the statemant

v im 81; 5:v tmpred(5); 8: ... ; v i= e2; 5

Examples :

63 do Af al1] > max then max t= afi)

far c = red tg blue da Q(e)

9.2.4. ¥Ath satstementa

<with statament> 11w 2iih <record variable 1ist> do <statamant>
<record variable list> ti= <record veriable>(,<record variables}

¥ithin the component statement of the with statement, the
components (fields) of the. record variable specified by the with
clause can be denoted by their field identifier only, 1.e,
without preceding them with the denotation of the antire recard
variable, The with clause effectively opens the scope

containing the field identifiers of the apecified record

variable, so that the Field idantifiers may occur as variable
identifiers.,

155

Example:

rith date gg
if month = 12 then
beain month := 1; year ite year + 1

and
alam month :s month+!
1a equivalant to

if date.month = 12 then
hegln date.month := 1; date.year t= date.years!
end

filas date.month := date.month+?

No assignments may be made in the qualified statement to any
elaments of the record variable 1ist, Howaver, assignments are
possible to the components of these variables.

10. Procedurs declarations

T o e - o S e A S T s

Procedurs declarations serve to define parts of programs and to
associate identifiers with them go that they can be activated by
procedurs stataments.

<procedurs declarstion> :1s <procedures heading> <block>
<block> ii1= <label declaration part>
<conatant definition parts><type definition part>
<variable declaration part>
<arocedurs and function declaration part>
<statement part>

The procadura hesding specifies the identifier neming the
procedure and the formal parameter identifiers {(if any).

The parametera are sither wvalue-, variable-, procedurs-, or
function parameters (cf. elso 9.1.2,). Procedures and functions
which ars used as parameters to other procedures and functions
must have valus parameters only.

<procedure hsading> :t= procedurs <identifisr> H |
arocedure <identifier> (<formal parameter section>
[i<formal parameter secticn>)) ;

<farmal parameter section> 1=
<parameter group> |
¥ar <parametsr graup>»
fuoction <parameter group»> |
arocedurs <identifiers> [, <identifier>]
<parametsr group> :i= <identifier>{ <identifiers):
<typs identifier>

A parameter group without preceding specifier implies that its
constitusnts are velus parameters.

The lahml gdaclaratign gart specifies all labels which mark a

156

statement in the atatement part,

<label declaration part> :i=s <emptys> i
dabel <label> [,<label»| ;

The constant .definfition part contains all conatant synonym
definitions local to the procedurs,

<constant definition part> :ie <empty> |
£Qnalk <constant definitions [:<constant definition>];

The tyng defioition part contains all type definitions which aras
local to thg Arocedure declaration,

<tyos dafinition parts> iia <empty> |
f¥oe <type definitions f:<type definition> |;

The variable declaration gart contains all variable declarations
local to the procedure declaratian,

<variable declaration part> :is <ampty> |
¥ar <variahle declaratians {:<variable declaration>») :

The pracedure aad function geclaratign aart contains all
procedure and function declarations local to the proceduras
declaration, *

<procedure and function declaration part> tim
{ <procedure or function declaration> H |

“@raocedure or function declaration> it
<procedure declaration> | <function declaration>»

The atatement part specifies the salgorithmic actions to be

expcuted wuwpon an activation of the frocedure by a procadure
statement .

<statement part> :i= <compound statement>

All 1identifiers introduced 1p tha formal rarameter part, the
constant definition part, the type dafinitian part, tha
variable-, procedure or function decleration parta ars local to
the procedura declaration which is called the acoop of thess
identifiers, They aras not knawn outaide their scops., In the casa

of 1local variables, their values are undefined at the beginning-

of the statement part.

The use of the procedura identifier in a procedure statament

within 1tse declaration implies recursive exscution of the
pracedure.

167

Examplas of procaduras daclarations:

ergceadura readintegear (uar fi text; war x: integer) ;
var 1.3: integer:
heqla mhilg rt = ° ° dg get(r); 1 = 0
xbila ft in [‘0°,.°9°) gq e
baaln J t= ord(ft)- ord{"0");
1 1= 1081 & §;
get(f)

.
Ll

X 1= §

end

orocedura Bisect{functing f: real; a,b: real; yar z! real);
MAL ®: real:
hegin [assume f{a) < 0 and f{b) > 0 |
- ahile abs(a-b) > 1E-10%abs{a) gg
Legiag » 1= (a+b)/2,0; -
df f(m) <« 0 thpn a = m £lag b ienm
and;
Z i=m

aod

GCD {m ,n: integer; war x.y,z: inteager):;
iﬁﬁ‘fﬁff%, b1,b2,c.d,9,r! integer; {m>=0, n>0}
beglp {Greatest Common Divisor x of m and n,

Extended Euclid’s Algorithm]
8l t= 0; 82 1= 1; b1 i=1; b2 ;= 0;
C is m; d e n;
hilas d <> 0 gg
begin {a1®m + bi%*n = d, a2*n + b28n = €.
ocd{c.d) = ged(m.n}}

Q t=c diy d; r e c mud d ;

82 1= a2 - q*al; b2 = b2 - a*h1:

C jad; d (= p;

F 1s a1 al 1a 82;: a2 i» !

r t= bt b je p2: b2 i p

:ng; C; ¥y = a2; zim h2
{ x « gcd(m.n) = y#m + z#n [
eod :

0.1, Standard orocegurea

dard rocedures ares supposed to be predeclared in svery
f::;a::ntuzian of Pascel. Any implementation may faatuig
additicnal predeclared procedures. Since they are, as a
standard quantities, assumed as declared in a scope surrounding
the program, no conflict arises from a declaration redefining
the same fdantifier within the erogram. The standard pracedurss
ars liated and axplained below,

158

+1.%, Eile handling orgceduras

s(r) appends tha value of the buffer variable ft to the
file f. The effect 1is defined only if prior to
exscution the predicate mof(f) s trus. eof(r)
remains true, and the value of f{ becomes undefined.

t(r) advances the current file positicn (resd/write head)
to the next component, and assigns tha value of this
component to the buffer variable ft. If no next
component exists, then eof(f) bescomes trus, and the
velue of f! 1s not defined., The effect of get{f) is
definad only 4f eof(f) = false prier to 1its
exscution, (see 11,1.2)

et {f) resets the current file position to its beginning
and nassigns to the buffer variable ff the value of
the first element of f. eof (f) bacomes falss, if f
is not empty; otherwise f{ 1s not defined, and
eaf () remains true,

srite(f) discards the current value of f such that a new fils
may be genersted, eof(f) becomes trus,

carning the procedures read, write, readln. writeln, and page
® chapter 12,

-1.2. Dypamic allocation nrocedurns

wip) allocates a new variable v and assignas ths pointer
to v to the pointer variable o, If the typs of v is
8 record type with variants, ths form

w#lp,t1,...,tn) can be used to allocate a variable of the
variant with tag field values t1{,.,..tn, The tag
field values must be 11isted contiguwously and in tha

order gof their declaration and must not be changed
during execution,

spose(p) 4indicates that stormge eccupied by the variable pi!
is no longer needed, If the second form of new g
used to allocate ths variable then

sposa (pet1,,.4ytn) with idantica) tag field values must be
usad o indicate that storage occupiead by this
variant {8 no longsr neesded,

1.3, Rata transfer orpcedures
! the variasbles a and z be declared by

a: array [m..n}l g v
z: gacked array {v..v) ar T

:ré n-m >= v-u, Then the statement pack(s,l,z) means
far § :=u ta v da 2(J) 1= alju+t)

d the statement unoack{z .,a,l) means

150
far 3 1= v to v dg alJ-usi] = 2[4]

where J denotes an auxiliary variable not cccurring elsewhare in
the program,

11, Function declarations

Function declarations serve to define parts of the program which
compute & scalar valus or a pointer valus, Functions are
activated by the evaluation of a function designator (cf., 6.2)
which 1s a constituant of an expression.

<function declaration> t:e <function heading><block>

Tha function hsading specifies the identifier naming the
function, the formal paramsters of the function, and the type of
the function. :

<function heading> 1t= fupctinn <identifisrs:<result types; |
Lunction <identifier> {(<formal parameter section>
{ ;<formal parameter section>l) : <result type> ;
<ressult type> itm <type identifier>

The typs of ths function msust bs a scalar, subrange, or paointer
type, Within the function declaration thara muat be at lsast ona
aysignmant statemant assigning a value to the function
identifier. This assignment detarmines ths rasult of the
function., Occurrence of the function identifler in a function
designator within itas declaration implies recursive sxecution of
the function.

Examplas:

fupction Sgrt(x: real): real:

yar =0, x1t real:;

heain x1 t= x; [x>1, Newton's method}
raceaat x0 1= x1; x1 t= {x04+ x/n0)®0.5
wntil ebs({xt—x0) « sps®xt ;
Sqrt t= x0

angd

function Max{at vector; n: integer): real:
¥Ar x: real: 1: integer:
bheoin x 1= al1];

for 1 1= 2 to n do

begia [x = max(a[1]).....a(1=1])]

Af x < s{3] thep »x 1= a{i])

and

(x = max{a[1},....aln]}]

Nax 1= x

160

fupction GCO {m,n: integer):integer;
gﬁgln if nwD then GCO 1 m glag GCO ;= GCD{n.m mpd n)

function Pewer(x: real; yt intager): real ; {y »>= 0}
¥ar w,z! real; 41! integer:
hegln w = x; z ta 1; | tm» ¥
xhils 4 > 0 gp
bhegin [z#{wesi) = x a» y]
if odd(i) Lthen 2 3= z%w;
i 1= 1 div 2;
w = sqriw)
end:
[z = xsey)
Power = 2
end

11,1, Standard functions

Btandard functions ars supposed to ba opredeclared in avery

implementation aof Pascal, Any implementation may featurs
additional predeclared functions (cf. also 10,.1).

The standard functions are listed and explained below:

11.9.1. Acithmetic functiona

aba (x) computes thas absolute wvalue of x, The type of x

muat be either rpgal or Anteger, and the typs of
the result is the typs of x,

sar(x) computes x*#42, The typs of x muat ba sither rgal
o; dnteger, and the type of the result is tha typs
of x,
sin(x}
cos (x)
;x?(;) the type of x must be either rgal or dnteger, and
nix .

the type of the result is resl .
aqrt(x) .

arctan(x)
11.1.2, Predicates

odd{x) the typs of x must be iptsger, and the result is
true, if x is odd, and false otherwiss.

sof{f) eof (f} indicates, whether the file f is in the
end-of-file atatus,

eoln(r} indicates the end of a line in a textfile (sme
chapter 12),

161

19.1.3, Iranafer fuoctigna

trunc (=) the real wvalus x 18 truncated to its integral

: part.

round(x) tha real argument x 1is rounded to the nearast
intager.

ord(x) % wmust ba of a scalar typs (including Boolsan and

char), and the ressult ({(of typs integer) is the
ordinal number of the valus x in the set defined
by tha type of x.

chrix) x must be of typs integer, and the result (of type
char) 1s the character whoss ordinal number 1s x
(1F 1t exists),

19.1.4. Eurther atandapd functigna -

sucg(x) %X 1s of any scalar or subrange typs, and the
result is the successor value of x {if 1t exiats).

prad{x) % is of any scalar or subrange typs, snd thas
result 3is the predecessor valus of x (if it
axists).

12, Input snd output

The basis of legible input and output are taxtfiles {cr.6.2.4)
that are passed as oprogram parameters (cf. 13) to a PASCAL
program and in its anvironment represent some input or ocutput
device such as a terminal, a card reader, or a line printar. In
order tao facilitate the handling of textfiles, the four standard
procedures prasd, xrita. rsadln, and griteln arse introduced in
addition to the proceduras ggpt and put. The textfiles theas
standard procedures apply ta must not necessarily rspresent
input foutput davices, but can also be local files. Tha new
procedures ars used with a non-standard syntax for their
garamater lists, allowing, among other things, for a variable
numsber of parassters. WHorsover, the paramsters must not
neceasarily bas of type char, but may also bs of certain other
types., in which case tha data transfar is accompanied by an
implicit data conversion operation, If ths firat paramater is &
fila variable, then this 4is the file to be read or writtan.
Otherwisse, the gtandard files ipgut and putoyt are automatically
assumed as default valuea in the cases of reading and writing
respactively,. Thase two files are pradeclared as

¥aAr input, output: taxt
Textfilas raepresent a special case among file types insofar as

texts are subatructured into 1lines by so-called lina markers
{cr. 6,2.4.). 1If, upon reading a textfile f, the file position

162

advanced to a line marker, that ia past the last character of
line, then the value of the buffer variablas ! becomes a
nk, and ths standard function g {and gt lipe) yields
value truse, Advancing tha file pasitian once more assigns to
the first character of the naxt line, and eoln(f) yields
58 (unless the next line consists or 0 characters), Line

kers, not being elements of typs cher, can only be genarated
the procedure writeln.

1. Ibe orocedurs rasq

following rules hold for the pProcedurs rpad: f denotes "
tfile and v1,..vn denote variables of tha typas char, integer
subrange of integer), or resl,

‘sad{vi,,,. vn} 1 equivalent tg raud(lnput.v1.....vn)

‘sad(f,v1,... vn) is

equivalant
‘ead(f vn)

to r'ld(r.v‘)z (XX H

f v i3 a variable of typs char, then resd{f ,v) is equivalent
‘o v ts ft; get(r)

f v 1is a variable of typs integer (or subrange of integer)
T real, then read(f.v) implies the resading from f of a
equences of characters which tfora a number according to tha
yntax of PASCAL (cr. 4.) and tha assignment of that number
8 v. Preceding blanks and lina markers ars skipped,

Procadurs raead can also be used to read from a file ? which

not a textrile. read(f,x) 1is 4n this case squivalant tgp
rl: gat(r),

- Ihe_procedura reagin
sedin{vi,,..,vn) 13 equivalent to readln{input v1,..,,vn)
:udln(f,vi....,vn) i wquivalant to

read(f v, .., ,vn); readin{r)

1adln(f) is equivalent to

xhile pot eoln(f) gg get(r):;
pet (r)

‘adln fa used tp read and subsequently skip to the baginning
the next 1ine.

Procedure write cen also be usad to write onto a file ¢

I 18 nat a tentfilo.writa(f.x) 18 in this caae squivalent
= x; put(r),

Ibe oracedure wreite

following rules hold for the procedure writg: denotes a
ile, pl,on denots so-called urita-uaranatcrl. e denotes
pression,_n.and n denote exprassions of type intager,

itelpt,....0n) 1a equivalant tg -rltu(outaut.p1,..}.pn)

2,

5.

12,

1.
2-

3.

writs(f ,p1,..,.0n) 18 equivalent tp
write(f 0 1): .,, i write(f on)
The write-parameters p have the following forms:
ein atmin .

€ represents the value to ba “written” on the file ¥, and m
and n are so-called field width parameters. If the valua v,
which 4 either 2 number, a character, & Boolean valua, or a
string requires leas than " characters for ita
f!oroslntatinn, then an adequate number of blanks {s issued

If o 14 of typa char, then
write(f, oim) 1a equivalant to
Ft 1= % put(r); (repaated m=1 times)
t 1= o ; put(r)

Hotm: the default value for m 1s in this case 1.

If & is of type {or = subrange of intager), then the
decimal reoresentation of the number o will be written on the

file f, precadad by an appropriatae number of blanks as
specifisd by m,

If & 18 of type rpal , a decimal rapresentation of the numbsr
® is written pn the fils f. preceded by an appropriate numbar
of blanks as specifisd by m, If the paramster n is missing
{ses rule 3), a floating-point repressntation consisting of a
casfficient and a scale Pactor will be chosen. Otharwise a
fixed-point represantation with n digits after the decimal
point is obtained,

If & 3is of type Bgelaan, then the words TRUE or FALSE are
written on the file f. preceded by an sppropriate number gf
blanks as spacifiasd by m»,

It ¢ 13 an {packed) array of characters, then the string a 1s

written on the file f, precedad by an appropriats number of
blanks as soacified by m,

4. Ibe orocedurs writaln
writeln{n1,..,.60n) 1a equivalent to writeln{output,p1,...,pn)

writeln(r,p1,...,an) 1s equivalent to write{f p1,....0n);
writeln{fr)

writeln(f) appends 8 line marker (cf.6.2.4) to the file r.

164

12,5, Adaitionn) orocedyres

paga(fr) causes akipping to the top of & naw page, when the
textfile f is printed.

13, Programs

-

A Pascal program has ths fora of a procedurs declaration except
for its heading.

<progras> ti= <prograa heading> <block> .

“program hsading> :i=
argaram <identifier> (<program parametsars>) ;

“Arogras parameters> iis <identifier> [, <idantiriars }

The identifier following the symbol grogram is the program name:
it has no furthar significance inaide the pragram, Tha programs
farameters denots aentities that exist outside the program, and
through which tha program communicates with 1its snvironment .
Those antitles {usually files} are called » and must ba
declared in the block which constitutes ths program 1liks
ordinary laocal variables.

The two standard files jngut and Qutout must not be declarasd

{cf. 12), but have ta ba listed as parameters in the program ..

heading, ir thay are used, The initialising statements
reset {(input) and rawrits{output) are automatically generatsd and
muat not be specified by the programmer.

Examplas ¢

grooram copy(f,.g):;
¥ar f.gt file of real;
hegln reset(r); rewrite(g):
while aot eof(f) dg
beain gt i= ft; put(g); get(r)
end
and .

graoram cooytext (input,output);
¥ar ch: char:
heain

ahile nat eof(input) gg
heain

khils not eoln{input) gg
bealn read{ch); write(ch)
and:
readln; writeln
and
Bod .

e e e — e e E— — — e o —— p———— .

165

14, A atandard for implementation and program interchangs

A primary motivation for the development of PASCAL was ths nesd
for a powerful and flexible language that could be rsasonably
sfficiently implemented on most computars . Its fpatures wars tec
bs dafined without refsrance to any particular machine in aorder
to facilitats the interchange of programs. The follaowing set of
Proposaed rustrictions is designad an a guidelins fo:
implementors and for prograssars who anticipats that thei:
Arograms be used on differsnt comsputsrs. Tha purpose of thes:
standards is to increass the 1likelihood that differant
implemantations will be compatibls, and that oprograms arg
transfarable from one installation to another,

1, Identifiers denoting distinct objects sust diffar over thei:
first 8 characters.

2. Labels consist of at most 4 digits.

3, The 1implemantor may sat a limit to the size of a base typ:
ovar which a set can be definad. (Conssquently, & bit patter:
rsgressntation may resasonably be usad for ssts.)

4. The first character on esach 1ins of printfiles may b
interpreted as & printer control character with tha followin
meaninga:

blank single apacing
‘a’ double spacing
:1: print on top of next page
+ H no line feed (overprinting)

Reprasentations of PASCAL in tarms of svailabls charactar sat:

should obey tha following rulas:

- e

5. Word symbols - such as heain. naod, etc. - are written as ¢
ssquence of letters (without surrounding eacape characters).
They may not be used as identifiars.

6, Blanks, ends of lines, and comments are considered ar
separators, An arbitrary number of separators may ococul
betwesn any two consscutivae PASCAL symbols with tha following
restrictiont no separators wmust occur within identifisrs
numbers, and word symbols,

7. At leaat one separator muat occur betwesn any pair aof
consscutive identifiers, numbers, or word aymbols .

