v 0.000 000 024977 T
il

¢ I - =,
(AN TRUENATIONAL ATOMIO ENRHUY AOQGENOY m
NITRED NATIONS EDUCATIONAL, SCIENTIFIO AND CULTURAL CRGANIZATION

INTERNATIONAL CENTRE FOR THEORETICAL PHYSIOS

34100 TRIKSTE (ITALY) - 0. H. 8806 - MIRAMARK - HTHATIA COSTIERA 11 - TELEPHONK: $340-1
: CABLE:! CENTHATOM - TELEX 460394 - [

SECOND SCHOOL ON ADVANCED TECHN1QUES Computer Algebra. and Differential Equa.tions
IN COMPUTATIONAL PHYSICS

(18 January - 12 February 1988)

Eberhard Schriifer

GMD, Institute F1-P, D5205 St. Augustin 1, W. Germany
SMr.282/ 17

January 28, 1988

COMPUTER ALCEBRA AND DIFFERENTIAL EQUATIONS

Eberhard Schrufer
GMD, St. Augustin, West Germany




1 Introduction

Investigations of differential equations are an active area of research in Com-
puter Algebra. Besides the ultimate goal of finding exact solutions by some
method, the more modest aim to assist a scientist or engineer in formulating
his concrete problem for a numerical study is of great importance.

These lectures are therefore divided into two parts: the first is concerned with
the application of Computer Algebra while preparing a problem for a numer-
ical study. The second part is devoted to the study of differential equations
themselves, which leads to insight into their structure and, in some cases,
also to an explicit solution.

We can identify several crucial steps where Computer Algebra can be of help
in the course of solving a problem.

First, there is a theory, which very often has its differential equations written
in a concise 'symbalic’ form. Examples are

div(ps 7) = 0
F¥ o= dxnfcxj

e
—1/2% #(e® A AE)A Ry = B8x v g% #T°

The structure of these equations can be studied on its own, and we will
say more about that in the second part. In an application, however, these
equations must be expressed with respect to a certain coordinate system.
This can be quite a formidable task, especially if boundary conditions dictate
the use of some untabulated, nonorthogonal coordinates. The process done
by hand is very lengthy and thereby error-prone. However, with an appro-
priate Computer Algebra at hand it is no more than an easy exercise, as we
will see.

Having performed this step, a decision has to be made on a method to pro-
ceed further towards a solution. If there is hope for a closed form solution
we could try a method indicated in part 2 of these notes. Human intuition
can lead here to quite wrong judgments. A seemingly simple problem may
have no closed solution whatsoever, and a very complex problem in appear-
ance might have a simple analytical solution. Unfortunately, the methods for
finding closed form solutions are very costly, and the decision often must be

1

made on the basis of experience only.

If we are convinced that the solution can be obtained only by approximate
methods, there is of course the choice between an analytic approximation
method, like a truncated expansion into eigenfunctions, and numerical meth-
ods, like finite differences or finite element methods. It is obvious that in
the case of an analytic approximation, Computer Algebra is a very viable re-
source, but it can also do a great deal for the numerical treatment. Computer
Algebra systems usually can produce output in a language for numerical pro-
cessing, such as Fortran. In the case of finite differences, the translation of
the differential equations into appropriate finite difference equations can be
performed automatically, and output can be generated in a form for immedi-
ate numerical processing. In the case of finite elements ,the various matrices
needed can be generated and optimized by the Computer Algebra system.
Finally, the very tedious but very important task of investigating the stability
of the numerical code by a local Fourier analysis can be performed with the
help of a Computer Algebra system.

The plan for the lectures is to give some examples of the topics just men-
tioned. Some of them are quite simple, but they should provide enough
information on how to proceed in more involved cases. The participants of
the school should feel invited to redo the examples in these notes and to
construct their own examples.



2 Preprocessing

2.1 Boundary fitted Coordinates

The need and usefulness for the transformation of the original equations to
a coordinate system adapted to a problem can be very nicely demonstrated
in the case of a free boundary. In general, for the formulation of boundary
conditions (and also in view of an easy discretisation for a numerical study)
the coordinate lines are profitably chosen in such a way that some of them
form the boundary. However, in the case of a free boundary, only its ini-
tial shape is known. Coordinates fitted to the boundary therefore cannot be
given explicitly and are part of the calculation itself.

To be more concrete, let's consider a problem from a simulation of a crystal
growth experiment. In the beginning of the experiment, the melt is in a
crucible with a flat free surface. A crystal is then grown by putting a cool
piston into the melt and pulling out the solidifying melt on the piston. In the
course of the crystal growth, the level of the melt surface lowers as more and
more of the melt is converted into the crystal. The shape of the free surface
of the melt depends, of course, on parameters like the anguiar velocity of the
crucible, the surface tension of the melt, and the pulling rate of the crystal.

Xt

|
’_
}—n._

et
! T
1
. L
4 I .
4 : ] 4
] tinwy 4
" hn l wrel )
f
I 1
& r P
i L
]

In the above figure we have indicated cylindrical coordinates. The height
of the melt is a function of time and the radial distance. We can map the
problem to a rectangular fixed region if we use a coordinate q. given by
9= H » z/s(r, 1), instead of the z-coordinate. Here H is the initial height

3

of the meit surface and s(r,t) is a function describing its shape. With this
coordinate transformation the free surface of the melt is alwaysatg=H. In
the interior, the coordinates:form a nonorthogonal mesh varying with time,

N L . | o
\‘u- -

We are thus left with the problem of expressing the equations governing the
growth process in this coordinate system. It is not our aim to discuss these
equations. Rather, we look at their form to see what is involved {for a dis-
cussion see [10]). In the following equations, 7 denotes the velocity, ® the
gravitational potential, 8 the thermal expansion coefficient, g the gravita-
tional acceleration, T the temperature, i the viscosity coefficient, x the heat
conductivity coefficient and w, the pulling rate.

Navier-Stokes equation:

Oii=—iigradd~grad®+Brgx(Ti-T) s +v+Ad
Mass conservation:

divi =0
Heat flow in the liquid (index [):
O Ty = —div(d +« T)) + x; * AT,
Heat flow in the solid (index s):
O T, = —(wy(t) * &)+ grad T, + 5, + AT,

4



In addition to this, there are, of course, boundary conditions.

The transformation can easily be performed with the Computer Algebra sys-
tem REDUCE [5] by using the package EXCALC [12] in the REDUCE library.
EXCALC is an implementation of the exterior calculus, of which, however,
we need at the moment very little to know. Let us recall that a reference
frame in Euclidean or Riemannian geometry is specified by a set of basis
vectors and a metric. For those not familiar with this notion, let us take the
expression for the square of a line element

ds® = gy v da'  dat
The symmetric matrix g;, the metric tensor, together with the basis dz! de-
termine the frame of reference. Since it is possible to partition the expression
for ds? in many different ways, we also write:

ds? = give vek

The €''s are now arbitrarily chosen basis elements (for example, one of them
could be e¥ = r » dy in an orthogonal cylindrical frame).
In our case, we start from cylindrical coordinates ds? = dr? + 12w dp? + d2?,
To intreduce the new coordinate g = H » z/s(r,t) we simply express dz in
the new coordinates. As a basis we choose dr, dy and dq.
Our frame of reference could now be defined in EXCALC by:

fdomain s=s(r,t);
piorm z=0,q=0,s8=0,r=0;

let z = g#s/h;

d z;

d Q*5 + d R+¢ S*Q
R

coframe e(r) =4d r,
e(phi) = d phi,
e(q) =dgqg
with metric
g = e(r)»»2 + r*2%e(phi)*s2 +
(e(q)*s/h + e(r)*q*@(s,r)/h)*»2;

To calculate expressions for mass conservation, heat conduction etc., we
need to know how to express operations of vector analysis in the language
of exterior forms. Here is a table:

Vector product i x7 #u " v)

Gradient grad f df

Laplacian Af #ded £

Cud curl i du

Divergence divd #d# u

C-derivative (Fgrad)d U I_u - 1/2%d(U _| u)
Vector Laplacian Ad #d#d u - d#d# u

Ail we have to do for the continuity equation is to define the velocity vector
and declare the dependence of its components on r and q:

fdomain u=u(r,q);
pform u=1,u k=0;

u = u(k)ve(-K)$

#d#u;

R qQ R R
QW)+ Q(U) + U #mmem—eaeeee
R Q RS



and, equally simple, the advection and diffusion term of the heat conduction
equation.

fdomain temp=temp(r,q);
pform temp=0;

#d# (ustemp);

R R Q B
U@ SsR + U #5 + @ (U )*R+S + @ (U )*RsS
Q R Q R
@ TEMP*U <+ TEMP=* -
q RS

R
+ U »@ TEMP
R

#d#d temp;

= (-@ TEMP - @ TEMP#--==—mmcmurmcea + @ TEMP*Q+
R R QQ 2 qQ

2
@ S*R+*S5 - 2%Q S *R + ¢ SeS
RR R R
—-— +
2
RS

2+¢ 5»@  TEMP*QsR - ¢ TEMP#S
R QR R

--- - )

RxS

To fully appreciate how much work has been automized this way, let us
finally calculate the viscous term in the Navier Stokes equation, i.e. the
vector Laplacian of the velocity field.

frame x;
pform visc(k)=0;

visc(k) := x(k) _] (d#d# u - #d#d u):

2 2 2
@S *Q +H
R R R R
VISC =2 - (-0 (U)=-@ (U )¥mwmomomcmmanne +
RER Q0 2
]
R R
240 (U )*Q S*Q -e(Uu)
QR R R
——— mmemmcc——— +
S R
2
@ S#R*S5 - 24Q 5 xR + @ S5 R
R RER R R i
¢ (U )=Qs == 4 emee)
Q 2 2
R*S R



PHI PHI PHI R
VISsC =8 (U Y+ (U Dememmmmmmmmemo +
RR QQq 2

PHI1 PHI
- 2x@ (U )*Q S«Q 3= (U )
QR R R

=@ SeR*S + 2%Q 5 *R - 3%Q S*§
PHI RER R R
0 (U g -==)
Q 2
Rs3

Q R RR R R
VISC = 2%@ (U )#»Q+ + 2#Q (U )*Q S»

R 2 qQ R

2 2 2 2
Q@ S« *3S+ QS +H
RR R 1]

v, 3 RR Q9

“+Q (U)+e (U)s+

2 2 2 q

S *«Q +H - 2%@ (U )*Q S
R QR R
-------------- + == -4
2 S
S
2#Q SxR + S @ S*sR+0S
Q R Q RR R
Q@ (U )#—mmmommmmmeee = (@ (U )*Q)smcmmommmmm e +
R R*S Q RxS
R 2 2 2 2
U »Q«(Q Se¢R #5 - 3%Q@ S*Q S*R %S + Q@ S#A*S +
RRR RR R RR
3 2 2 2 2 3
240 S #R - @ S *R+S + @ S5*5 )/(R *5 ) +
R R R
@ S*R + 05
Q RR R
U=
R*S

The obtained equations could now be used either to write a finite difference

program or a finite element code to solve them.,

10



2.2 Generation of Finite Difference Expressions and Local Fourier

Stability Analysis

The translation of the differential equations into a finite difference approxima-
tion can be automated, or at least assisted, by a Computer Algebra system.
Let us recall the basics of the finite difference method: first, the continuous
domain of the variables is replaced by a discrete domain, a grid. If we have
a function f depending on t,2,y, for example, one writes

It
to denote the function at the point f(n + Atk x A z,0* Ay). Next, an
approximation to the differential operators is constructed using values on the
grid points. The so-called forward differences, for example, approximate a

derivative by using values at the point of evaluation and a point lying one
grid point ahead.

(flz+Az) - f(z))/Ax
=(f@)}+ f(2) s Az~ f(z))/Dz +O(A )
= f(z)+ O(A )
The two most common differences used are:
Forward difference:

(f(k +m)~ f(k})/(m= 1)

Centra! difference:

(F(k+m/2) - f(k ~ m/2))/(m* A)
It is easy to impiement operators fike this (see also [17] for a realization
in MACSYMA). We do this here in REDUCE.
First, we associate with any coordinate its discrete analog and a correspond-

ing increment by using operators IND and DELTA. If it is supposed that our
differential equation involves coordinates t and x, the statements

operator ind,delta;
ind(tt) := p$
ind(x) := k%
delta(tt) := dt¢§
delta(x) := dx$

11

set up the correspondence. All finite difference operators can be expressed by
shifts in certain coordinate directions. Therefore we define a shift operator
for this purpose:

algebraic procedure shift(u,x, k);
#Shift expression u in direction x by k.
sub(ind(x)=ind(x) + k,u);

Procedures for calculating forward and central differences now can be easily
constructed

algebraic procedure fdiff(u,x,k);
4Forward differencing in x by k steps.
(shift(u,x,k) - u)/(kxdelta(x));

algebraic procedure cdiff(u,x,k);
UCentral differencing in x by k steps.
(shift(u,x,k/2) - shift(u,x,~k/2))/(ksdelta(x));

Assuming we want to discretize the simple equation

Gu=08,, u*
by forward differences in time and central differences in space, we could say:

pde := dif(u,tt) - dif(us+5,x,x)$
for all ex let dif{ex,tt) = fdiff(ex,tt,1);
for all ex let dif(ex,x,x) = cdiff(cdiff(ex,x,1),x,1):
operator u;
let u = u(n,k);
factor dt; on rat;
pde;
5 5 5
- U(NK - 1) - UNK + 1} + 2+U(N ,K)
2
DX

12



-1
+ DT *(U(N + 1,K} - U(K,K))

We can solve for u at the advanced time level and output the £Xpression in
FORTRAN, which in turn could be used as pait of s FORTRAN prograin ic
solve the differential equation.

solve(pde,u{n+1,k))$
on fort; off period;
u{n+1,k) := rha first ws;

U(N+1,K)=(DT*(U(N JK=1) 354U (N, K+1) %#5-220(N ,K) %%5))/
. DX*%2+U(N,K}5

Of course, this was a very simple problem, and a real appreciation of such
a software tool is gained by more complex tasks like the one of the crystal
growth.

It is obvious that we could write a complete program generator this way.
Besides the simple switch ON FORT that caused the translation of output
into FORTRAN syntax, a more advanced generator/translator package called
GENTRAN [9] is available in REDUCE. The interested reader should consult
the documentation.

Very often the expressions generated by a Computer Algebra system are very
long and unstructured. It frequently happens that naively generated code is
of a complexity not digestable by FORTRAN compilers. Therefore software
tools for structuring and structure preserving [6} and code optimization [8,2)
have been developed or are under construction, The effects of such programs
can be quite stunning. Interesting examples can be found in the cited liter-
ature.

Having generated a finite difference code, it is very important to investi-
gate its stability, depending on the choice of the spacings in the coordinates,
Roughly speaking, we should expect from our finite difference equations that
small perturbations should have a small effect on the solution.

13

We will demanstiate the raethdd on 1he sivaple diffcential aqualion above.
For the distretizaann, we ag-n Lzke forward diffesences a time: however,
tor ine space dernative we takz vieighied means of central aifferences 3¢
the wctual time and the adviared (e 1.e. )

for all ex Jet duzfow, s x)e(thetaeshift(df-2,t1t,1) +
{1 - theis;sdfcd]
dhare dfcd = cdifr{daif{ex,x,1),x,1);
pde,

) B
- ((U(N + 1,K - 1) *#THETA + UCN + 1,K + 1) «THETA

5 5 5
- 25U(N + 1,K) #THETA - U(N,K - 1) *THETA + U(N.K - 1)

5 5 5
- U(N,K + 1) *THETA + U(N,K + 1) + 2«U(N,K) #THETA

5 2 -1
- 2%U(N,K) )/DX + DT »( ~ U(N + 1,K) + U(N,K)))

The equation obtained is nonlinear at the advanced time level, and we
linearize in u(n+1,...).

for all k,r such that r>0
let u(n+l,k)**r = r+u(n+1,k)*un, k)**(r-1)
~(r-1)*u(n,k)*sr;

pde := pde$

Now we assume that there is a solution for u and study its behaviour under
small perturbations, i.e. we add perturbation terms, keep them only to first
order and subtract the zero order terms as they are assumed to be 3 solution:

14



for all k,1 let u(k,1)=u0(k,1)+ul(k,l)*eps;
weight eps=1;

ppdel := pde$

for all k,1 clear u(k,l);

for all k,1 let u0(k,1l)=u(k,1);

ppde := ppdal - pde$

ppde := ppde/eps$

We haven’t shown the result for ppde, as it is somewhat messy. For the
further analysis we replace the remaining unperturbed u(n,k)'s by some
representative value u. At the same time we introduce a Fourier ansatz for
the perturbation ul(n,m) = en(iskisdl) 4 gmaliskesds) - jampn & kappa®.

clear u;

for all k,1 let u(k,l)=u;

for all k,1 let ui(k,1l)=lambs+k*kappa*#l;
ppde := ppde$

solve(ppde,lamb)$

on factor;

ths first ws;

2
5+DT#(THETA ~ 1)«(KAPPA - 1) #U
2 4 2
5#DT+(KAPPA - 1) #U #THETA - DX *KAPPA

2
DX »KAPPA

2 4 2
5*DT#(KAPPA - 1) *U «THETA - DX +KAPPA

The difference equations are stable if the step sizes can be chosen such that
there is no exponential growth in the perturbation as time goes on. This

15

means that the absolute value of LAMB must be bound by 1. In the case of
THETA= 0:

let theta=0;
w8

2 4
S*«DT*(KAPPA - 1) *U
- + 1
2
DX *KAPPA

we readily obtain that we must have

DT < DX?/(10+ U%)

le. there is a maximal allowable - .. size for the time, depending on the
step size in space and the amplitude of the solution. The latter dependence
on the amplitude is a characteristic of nonlinear problems. The analysis for
arbitrary values of THETA is more involved and we leave this to the reader
and only note that a good choice of THETA improves stability appreciably.
This simple example should have demonstrated the usefulness of a Computer
Algebra system for stability analysis. In the case of several dependent vari-
ables there is of course a system of equations for the perturbations, and the
stability criterium comes out of the calculation of a characteristic polynomial,
which can be quite a formidable undertaking, even with a Computer Algebra
system at hand,

i6



3 Intrinsic Study of Differential Equations

When a normal person attempts to solve a differential equation, very often
the only solution methods used are ‘tricks’. It is very rare that a systematic
approach is taken. The reason for this is not because of the lack of theories.
Rather, the existing systematic methods are considered to be so cumbersome
in application that they seem impractical. With the availability of Computer
Algebra systems, however, this argument no longer holds. Candidate theo-
ries are those of Lie, Cartan, Differential Galois theory and those which are
generalizations of the methods used in integrating normal functions. In the
following we use Cartan’s theory of differential equations, which uses the
calculus of differential forms. An implementation of this calculus is available
in REDUCE through the EXCALC package. Related implementation efforts
can be found in the references [7.4]. We can treat ordinary and partial dif-
ferential equations at the same time as they can be formulated and attacked
by the same machinery.

In Cartan'’s theory the differential equations are expressed as differential form
expressions. A single first order ordinary differential equation, for example,
is written as

w=dy- f(z,y)*dxr.

Similiarly, a second order ordinary differential equation has the representation
w' = dyl - f(z,y,yl) +dz
w? =dy—ylsdz
and the partial differential equation f (%,¥,2,0;2,8,z) could be expressed as
w! = dz—psdr—qgsdy
w? = d f(I: ¥.z,p q)
W= dpAda+dqAady.

The equations appearing above are called exterior equations, or differential
systems. Before proceeding we have to recall some basic facts from the
calculus of differential forms, or the Exterior calculus as it is aiso called.
There are excellent textbooks on this matter [1.3.14,16).

17

3.1 Differential Forms and Vectors

The basic objects of the Exterior Calculus are exterior forms and vectors. A
prototype of an exterior form is the differential of a function

df
In local coordinates z' the differential of the function f can be expressed as
df =0y feda’

We therefore call df also the gradient of f. It is customary to visualize forms

by surfaces in space. _ ‘
The above exterior form is a special form. If we adopt the dz' as a basis,
the most general 1-form can be written as

w=q;sdz'

where the a;'s are now general, not necessarily derivatives of a function.

It is useful to call a scalar function a 0-form.

A more common object is a vector with its visualization as an arrow. To give
it a more precise meaning, consider a curve x' with parametrization ¢ and a
function F. Taking the total derivative with respect to t gives

dF _dst
dt = dt
This equation has the same form for any F, and we therefore write

*aziF

In the usual view “L—’f are the components of the tangent to the curve, and
we can view the symbol 0,. as a basis for the tangent vector. This naturally

leads us to write for a vector
u=w xd,

in the coordinate system z.
In EXCALC we can introduce the exterior 1-form w and the 0-form f by
the declaration

18



pforn omega=1,f=0;

To have the function f depend on the coordinates x and y and to calculate
the gradient, we simply write

pform x=0,y=0;
fdomain f=f(x,y);

and ask for d f:
d £,
@ f*d x + 0 fed y
X ¥y
A vector v is introduced by the statement
tvector u;
and its coordinate representation would be
u = ux+@ x + uy*Q y;
U := UX«@ + UYsQ
X Y

In the older literature the 1-forms are called covariant vectors and the vectors
above contravariant vectors.

3.2 Exterior Multiplication and p-forms

Consider an integral over a 2-dimensional surface element in cartesian coor-
dinates
Jz,y)*xdz+dy

To obtain the same integral in a different coordinate system u,v, say, it is
not sufficient to replace the differentials by their transformed ones. Instead,
one has to calculate the following

¥z, y)
Ou,v)

sdusdy

flu,v) +

19

where the factor before the differentials is the Jacobian. We can write this
in the following way

f(u,v) *(6ux¢du=t6.,ytdv—avztdvﬂsa.,y:du)

This suggests a definition of an antisymmetric product between the differen-
tials called “exterior multiplication” which is usually denoted by A (wedge).

dzAdy=—-dyAdx
With this, we can rewrite the integral in u,v coordinates as
J(u,v) sdz{u,v) Ady(u, v},

thus leading to the correct expression by simply transforming the differentials.

The objects obtained by exterior multiplication of two 1-forms are called
2-forms, and those by exterior multiplication of three 1-forms are called 3-
forms, and so on. They could be pictured by intersecting surfaces, i.e. tubes,
honeycombs, etc., but. this is of limited value.

We can ask how many different forms of degree p in an n-dimensional space
can be formed. The value is

dim(p — formsinn — dimensions) = ()

Exercise: Verify this formula by taking general 1-forms with
coordinates x,y,z,t and multiply them to get the
higher forms

Let o be a k-form and 3 be a |-form. Then with the above we have the
following commutation law

aAf=(-1)"«BAa

The exterior product gives an easily applicable criterium for linear dependence
between 1-forms. It is obvious that the exterior product between two 1-forms
which are a multiple of each other vanishes due to the antisymmetry of the
product. By explicit calculation it is easy to show that a 1-form is hinear
dependent on a set of other 1-forms if the exterior product of this 1-form
with all others vanishes.

20



3.3 Exterior derivative and Integrability Conditions for Dif-
ferential Fquations

We aiready used the symbol d to generate from a O-form f the 1-form d I
The generalization of the exterior derivative to act on a form of amitrary
degree can be inductively defined by giving a rule for applying it to an exterior
product

d{aAB)={da)AB+ (1) xandg

and by defining the exterior derivative of an exterior derivative to yiek zero
Ild d —_ 0" .
That this is a reasonable definition can be seen by taking d of the gradient

af:
ddf=d0,f*da’) =d(0p [YAdT =B pfrdz’ Adzi =8

This expresses the commutativity of the partial derivatives and can also be
interpreted as the rule from vector analysis "curl grad = 0". These rela-
tions are the heart of integrability conditions of partial differential equations.
Through the application of the exterior derivative to a set of exterior equa-
tions we obtain new equations, which, if not already contained in the o-iginal
set have to be added to the set, as they constitute independent constraints
on the functions involved. If no new equations are obtained, one says the
differential system is closed.

There are, of course, no integrability conditions for ordinary differential equa-
tions, which can be seen from the fact that all differentials can be exp-essed
by the differential of the independent variable and hence all exterior prcducts
vanish.

Example: Integrability conditions

Calculate the integrability conditions of the following 4 linear pdes:

%+a1*z.+bl*zz=c1

2z

By :l-a?*zl+b2t22=c2

Oz
E%+f1*zl+91122=h1

21

%+f2*21+92*22=h2
pform u(k)-i,integ(k)=4.z(k)=0.xto,y-o.all.b=1,c=1,f=1,g=1,h=1.
a1=0,a2=0,b1=0,b2=0,c1*0,c2=0,f1‘0,f280.gl=0,g2=0,h1=0,h2={

fdomain al=al(x,y),a2=a2(x,y),bl=bi(x '¥),b2=b2(x,y),
¢l=ci(x,y),c2=c2(x,y) ,f1=£1(x,y) 12=£2(x,y),
gi=g1(x.y),g2=g2(x,y) ,hi=h1(x,y) »h2=h2(x,y);

1malsd x+a2ed y$
:=blsd x+b2+d y$
i=clxd xtc2#xd y$
:=f1ed x+f2#d y$
i=gled x+g2+d y$
‘=hixd x+h2+d y$§

FoR o oo

%The equivaleat exterior system:;
factor 4;

w(l) := d z(-1) + z(-1)%a + z(-2)sb - c;
i
W o imdZ +dXe(Z*Al+2Z+Bl-Ct)+dY(Z*A2 + Z #B2 - C2)
1 1 2 i 2
w(2) = d z(-2) + z(-2)*f + z(-1)*g - h;
2

W =d2 +dXt(Z*G1+ZtF1-H1)+dY*(Z*G2+ZtF2-H2)
2 1 2 1 2

indexrange 1,2;

factor z:

22



#The integrability conditioms:;
integ(k) := d w(k) - w(1) ~ w(2);

i
INTEG := 2 #d Z "d 2 "d X°d Y*(0 A2 - @ ALl + G2#B1 - G14B2) + Z »
1 1 2 X Y 2
dZ °d2"dXdY+(@ B2 - 0 Bi + F24B1 - FisB2 + B2*A1 -
1 2 X Y
Bi#A2) + d 2 "d Z "d X"d Y+«( - @ C2 + 0 C1 - H2sB1 +
1 2 X Y
Hi*B2 - C2%A1 + CixA2)
2
INTEG := 2 *d Z "d Z "d X"d Y+(Q G2 - @ G1 + G24F1 - G2=A1 - Gix

1 1 2 X Y

F2 + G1#A2) + 2 #d Z "d Z "d X"d Y*(¢ F2 - @ F1 - G2+B1
2 1 2 X Y

+G1%B2) + dZ "d2Z"dXdY+«( -QH2+ @KL - H2sF1
1 2 X Y

+ H1*F2 + G2+C1 - G1%C2)

23

3.4 The Inner Product between Vectors and Forms

The inner product is the familiar concept of a scalar product or the contrac.
tion of a contravariant and covariant quantity. The inner product between a
vector and a 1-form yields a number. This number can be imagined as the
number of surfaces that are pierced by the arrow of the vector. We use the
symbol | to denote the inner product.

The natural bases d z* of forms and 0y of vectors are duai. This means

Oy | do? = 8,

where 6 is the Kronecker symbol.

The definition of the inner product can be extended to arbitrary degree forms
by giving a rule for forming the inner product between a vector and an exterior
product.

Let EXCALC print the rule for us:

tvector u;
pform x=k,y=1;

u _| (x"y);

K
(U_IX)°Y + ( - 1) «x~(U_IY)

The inner product between a vector and a 0-form is taken to be zero,

3.5 Characteristic Vectors and Formal Solutions of Ordinary
Differential Equations

We can visualize a vector field as a smooth distribution of arrows in space.
These arrows can be thought to be the tangents to space-filling curves (a
congruence). The curves can be calculated by exponentiating the vector
field: _

x’(t) = {ehu'oﬂ,i}xj,
where t is a parametrization of the curve. It is natural to ask if we can
construct a vector such that the generated curves are solutions to 3 given

24



differential system, i.e. to a set of corresponding differential equations. To
explain the principle of such a construction it suffices to consider a single
first order differential equation, represented by dy ~ f (y,2)*dz. The vector
field in question has the form v = a0, + v*x3;. If we now calculate dy(t)
and d z(t) for small values of t, we get:

dy(t)=dtx+(v]dy)+O(1)
dz(t)=dts(v|dz)+O(t)

The condition for v to generate a solution follows from
dy(t) - f(ux) +da(t) = dtx (v | (dy - f +d)) +O(t)

which in turn gives the condition

v|]{dy- f(y,z)sdz)=0

This vector field is called the characteristic vector field.
If there are several equations in the differential system, v has to annihilate all
1-forms and map all higher forms to forms already in the differential system.
The determination of the characteristic vectors amounts to the solution of a
system of linear algebraic equations. In general there need to be no solutions
to these linear equations. However, as can be inferred from the calculation
Just carried out, they always exist for ordinary differential equations.
We can use this result to construct power series solutions to systems of or-
dinary differential equations,
As an example we solve the equation of motion for an electron in a con-
stant perpendicular electromagnetic field of equal strength. The differential
equations are:

W =E, s u*

W=FEsu-usB,
=0
i =u"+ B,
The corresponding differential system is:

du' —E «u*xds

25

du’—(E:+u'—w* xB,)+ds
du¥ =0
du'—u"+ B «ds

The characteristic vector can be written down just by inspection. At this end
we calculate with EXCALC the exponentiation of the vector:

algebraic procedure exponential(r,u,w,v0,n);
4r is the parametrisation variable, u the vector,
%v the name of the component sought,
%4v0 a list of initial values and n the number of
%terms to be calculated.
begin scalar y; integer k;
k= 1;
Yy = v;
return sub{v0,w)+
form := 1:n sum
resm*sub(v0,y = u _| d y}/(k := kem)
end$

pforn ut-o,ux=0.uy=0;uz=0,s=0;
let ex=by;
v = ex+*ux+@ ut + (exsut - uzsby)*@ ux + (ux*by)*Q uz + @ s$
exponential(tau.v,ut.{ut=ut0,ux=ux0,uy=uy0,uz=uzo.s=0}.4);
2 2

TAU *BY =(UT0 - UZ0)
-~ + TAU#BY#UX0 + UTO

2
exponential(tau,v,ux,{ut=ut0,ux=ux0,uy=uy0,uz=uz0, s=0},4);

26



TAU=BY=(UTO - UZ0) + UXO0

exponential(tau,v,uy, {ut=ut0, ux=ux0 ;uy=uy0,uz=uz0,s=0},4);
UYo

exponential (tau,v,uz, {ut=ut0,ux=ux0,uy=uy0,uz=uz0,s=0} »4);

2 2
TAU *BY =(UT0 - UZ0)
- + TAUsBY#UX0 + UZ0
2

exponential(taun,v,s,{ut=ut0,uxsux0 ,uy=uy0, uz=uz0,a8=0},4);

TAU

In the above example there are no higher terms than quadratic in TAU, even
though we asked for terms up to order four. The reason is that the series
indeed terminates with quadratic terms.

The simple procedure EXPONENTIAL can be used to calculate power series
solutions to arbitrary systems of ordinary differential equations and can also
be used for partial differential equations in the case when characteristic vec-
tors exist, which is rare, however.

27

3.6 Lie Derivative and Symmetries of Differential Equations

As we have seen, a vector field maps, through its congruences, a space into
itself.

It is possible to define a derivative telling us how much a form changes under
the transformation given by the vector field. This derivative is called the Lie
derivative.

u|lw= !i_t.r(}(w;(xj(t)) +dz'(t) - wi(z?) + d') Jt

= (ax-" (w,-) u + wj * . (uj)) *dzt

Expressing the above with the operations d and inner product, we get a
formula which is valid also for forms of any degree.

u[w——-d(u_]w)+ujdw

If the Lie derivative vanishes, one says the form is Lie dragged by the vector
field.

For a 0-form, the first term on the right-hand side vanishes, and Lie dragging
a function means that the gradient of the function in the direction of the
vector field is zero, or equivalently, that the function is constant along each
individual curve of the congruence. This makes clear that the existence of
vector fields which " Lie drag"” an exterior form is connected to the symmetries
of the exterior form.

Of special interest are transformations of the differential system that leave
it unchanged. Infinitesimally, these transformations are generated by vector
fields which aze determined by the condition that the Lie derivative between
the vectors and the differential system are forms in the differential system,
Vector fields satisfying this condition are called isovectors.

The global transformation takes one solution into another one.

The study of the isovectors is of great importance for the understanding of
the problem, for the reduction of the number of variables, conservation laws,
efc..

The equations for the isovectors S

S|scg

28



are linear first order pdes. Their derivation is in general quite currbersome,
and Computer Algebra definitely is the right tool to generate the equations,
To give an impression of the complexity: in the case of Maxwell's equation
in vacuum one ends up with 176 equations.

There is the distinction of two classes of symmetries depending on the allowed
domain of the coefficients of the isovector. If the coefficients of the vector-
components in the direction of the dependent and independent var ables are
aliowed anly to depend on the dependent and independent variables and not
on the derivatives, one speaks of point symmetries, otherwise of generalized
symmetries. We will first give an example of point symmetries of the heat
equation and then generalized symmetries of the Kepler problem.

A differential system for the heat equation

OV - 8,,9 =0

can be generated by the exterior forms h0, h1 and h2 below, where ps de-
notes ¥, u denotes & ¥ and ph denotes 3, ¥. |t is easy to check that
the system is closed (exercise!). Note the domains of the coefficients of the
isovector, which are chosen to yield point symmetries.

pform ct=0,cx=0,cu=0, <ps=0, cph=0,t=0,x=0,uy=0) +P8=0,ph=0;
hO := d ps - u*d t - phxd x§

hi := usd x"d t - 4 ph-d t$

h2 ;= d ph*d x + d y~d ¢}

fdomain cx=cx(x,t,ps),ct=ct(x,t +p8) ,cps=cps(x,t,ps),
cu=cu(x,t,ps,u,ph),cph=cph(x,t P8,u,ph);

8 i® cxsQ@ x+ct#Q t+cusd utcpss@ Pps+cph*@ ph;

S := @ #CT + @ #CU + @ *CX + @ *CPS + @ =*CPH
T U X PS PH

factor d;

29

1h0 := 8 |_ ho$
1h0 := sub(d ps=u*d t + ph#d x,1h0);

2
LHO := - (d T+(Q CT#U + @ CT+U + @ CX+PH + @ CX+U*PH
T PS T PS

- Q@CPS - @ CPSsU + CU) + d X»(Q CT»U
T PS X

2
+ @ CT«U=PH + @ CX«PH + ¢ CX+PH - ¢ CPS
PS X Ps - X

- @ CPS*PH + CPH))
PS

-

factor ~;
1h1 := 3 |_ hi1$

1h1 := sub(d td ph=u+d t“d x,d x"d ph=d u°d t,
d ps=uxd t + ph+d x, 1h1);

2
LH1 := = (d T°d Us(@ CT - @ CPH) + d T"d X*(@ CT*U
X u PsS

+ Q@ CX+U + @ CX+UsPH ~ @ CPH - @ CPH#PH
X PS X PS

= Q@ CPHsU + CU) - d T"d PH*@ CTsU
PH PS

30



~ d X"d PH*@ CT+«PH)
Ps

1h2 := g |_ h2§

1h2 := sub(d t"d ph=u*d t°d x,d x°d ph=d u“d t,
d psmusd t + ph+d x, 1h2);

LH2 := - (@ T°d U%(Q CT + @ CT+U - @ CX+@CU-¢ CPH)
T PS X U PH

+dT°dX«(QCXsU + @ CU + @ CU«PH +Q CUsU
T X PS ’ PH

~Q@CPH ~ @ CPH#U) + d T"d PH#Q CX+U
T Ps PS

~dUdXs(0CT+0Q0 CT+PH + @ CPH)
X PS U

+ d X"d PH«Q CIX*PH)
Ps

eql := coeffn(lh0,d t,1)$
eq2 := coeffn(1h0,d x,1)$
eql := eql + cu$

€q2 := eq2 + cph$

let cu=eql, cph=eq2;

lhi := 1hig

1h2 ;= 1h2$

eqs := {}$
for each j in {t.x,ps,u,ph} do

31

for each k in {t,x,ps,u,ph} do
(if ordp(j,k) and (j neq k) and (x neq 0)
then eqs := x ,

eqs)

where x = coeffn(lhi,d j~d k,1);

for each j in {t,x,ps,u,ph} do

for each k in {t,x,ps,u,ph} do
(if ordp(j,k) and (j neq k) and (x neq 0)
then eqs := x .
vhere x = coeffn(1h2,d j°d k,1);

egs;

{ - @ CX*PH,
PS5

- @ CXx«U,
Ps

- & CX+«PH,
Ps

2
@ CX»U ,
PS5

@ CT*PH,
PsS

& CT=U,
PS

~ (240 CT + @ CTePH),

X

PS5

eqs)

32



QCT+U - @ CT»U - 252 CTsUsPH ~ ¢ CT+U»PH
T XX X P5 PS Ps

2 2
- Q@ CT+U + @ CX*PH -~ @ CX+*PH - 2+0 CX*PH
Ps T IX X PS
3

- 2#Q CXsU - @ CX+«PH - 2+Q@ CX#«U*PH -~ @ CPS
X PS PS PS ‘ T

. 2
+@ CPS + 2%Q CPS+PH + ¢ CPS#PH }
Xx IPs PS PS

let @(cx,ps)=0,@(ct,pa)=0,0(ct,x)=0;
factor ph,u;

eqs;

{0,

33

2

2
PH =@ CPS + PH¥(Q CX - @ CX + 2%@ cPs)
PS PS T IXx I PS

+ Us(@ CT - 2#0 CX) ~ @ CPS + @ CPS}
T X T IXx

Interactively the solution of the former equations can be found very easily:

81 ;= ¢
T

52 := @
X

S3 := PS»Q + PH+#@ + Us¢

PS PH U
S4 = 2+TsQ@ + X0 - PH#@ - 2sUsQ
T X PH U
S5 = - 2%T#Q + X#P5%Q + (PS +X#PH)*@ + (2+PH + U*X)»@
X PS PH
2 2
S6 := 23T *@ + 2+XaT«@ - ((X + 24T)/2)%P5%Q -
T X PS
2
((X *PH + 6+T+PH +2#X%PS)*@ -
PH
2
((X U + 10%UsT + 2%PS + 4+X+PH)/2)%¢Q
U
57 = F»d + F+@ + @ F»Q YeF-a& F=0
PS PH X U “T XX

34

U



Most of the above symmetries would have been expected: time translation,
space translation, phi scale change, t-x scale change, and Galilean transfor-
mation. 56 has no obvious meaning, whereas 7 expresses the linearity of
the problem.

These equations and vectors can, of course, also be found using a differ-
ent formulation. In REDUCE there is the package SPDE, realizing Lie's
method for point symmetries [15].

Once isovectors are determined, one can look for so-called similarity solu-
tions. These are solutions which are transformed by the isovector into itself.
The solutions are generated by the original differential system augmented
by the contractions of the isovector with all the forms in the differential sys-
tem. One observation is essential: the augmented differential system is again
closed and has the isovector as a characteristic vector.

As a final example we consider generalized symmetries for the Kepler prob-
lem. The symmetry given below generates the famous Runge - Lenz vector,
pform t=0.x=0,y=0,z=0,xl-0.y1=0.zl=0,12=0.y2=0,z2=0,r-0;

fdomain r=r(x,y,z);
let o(r,x)=x/r,e(r,y)=y/r,8(r,z)=z/r;

eqx2 := d x1 + gex/r+*3+d t$
eqy2 := d yl1 + gey/res3+d t$
eqz2 := d z] + gaz/res3sd t$

eqx :=d x - xi*d t$
eqy :=d y - yisd t$
eqz := d z - zixd t$

tvector v;

Vi= vEsQ x + vysQ y + vz4Q z + vxisd xi + vyl*@ y1 + vzisQ 2§

35

pform vi=0,vx=0,vy=0,vz=0,vxi=0,vyl=0,vzi=0;

fdomain vx=vx(x,y,z,x1,y1,z1},
vy=vy(x,y,z,x1,y1,21) ,vz=vz(x,y,2,x1,¥y1,z1),
vxl=vxi(z,y,z,x1,y1,z1),vyl=vyi(x,y,2,x1,y1,21),
vzi=vzi(x,y,z,x1,71,21)};

8x2 = v |_ eqx2$
sy2 := v |_ eqy2$
822 = v |_ eqz2$

sx = v |_ eqx$
sy = v |_ eqy$
8z := v |_ eqz$

let x2=-gax/r*»3, y2=-gry/res3, z2a-gxz/r¥33;

8x2 := sub(d x=xi*d t,d y=yled t,d z=z1sd t,
d xi=x2«d t,d yl=y2+d t,d zi=z2xd t,
8x2);
5 5 5
SX2 := (d T#(Q VIisR *X1 + @ VX1*R Y1 + @ VX1#R *Z1
X Y A

2 2
= @ VXi#GsR *X - @ VX1+GsR =Y
X1 ) £

2 2 2
- @ VX1*G*R *Z + G#R aVX - 3%GsX *VX
Z1
5
- 3*GrX*YsVY - 3+G»XxZ+VZ))/R

36



= VXale)

8y2 := sub(d x=xi*d t,d y=ylsd t,d zszisd ¢, : A1
d x1=x2+d t,d yl=y2«d t,d z1=:2+¢d t, 1VEImE VELXD + @ VEWYD i J VL) 9 memcmem e
8z2 := gub(d x=x1+d t,d y=ylsd &£,d z=z1¥d t, H
d xi=x2«d t,d yley2%d t,d zi=z2%d t, :
az2)$ = 0 bXxleY =@ VIO
Y1 1
8x := sub(d x=xi1#d t,d ysylsd t,d z=zlsd t, Attt ¥ oot ssme s}
d x1=x2¢d t,d ylsy2sd t,d z1=z2sd t, 3 3
3x); Rk R
3 3 3 8x2 ;= sub(ws,sx2);
SX := (d T*(Q VX*R *X1 + @ VE#R *Y1 + @ VIsR *21
X Y yA 2
SX2 := &  VIsd T#X1 + 2@ VXsd TeX1sY1
3 XX Xy
- @ VE#GeX - @ VX#G*Y - @ VXsGsZ - R *VX1))
) &1 Y1 71 - 2%Q VX#d T#GxX*X1
X X1
3 + 2%Q  VXsd T#X1#Z1 + -- -
/R - Xz 3
R
sy := sub(d x=x1%d t,d y=ylsd t,d z=z1#d t,
d x1=x2%d t,d yi=y2+d t,d zl=z2«d t, - 2%@  VXed T*GeYsX1
8y)$ in
sz := sub(d x=x1*d t,d ysylxd t,d z=zisd t, + - == ==
d x1=x2+d t,d yl=y2¢d t,d zl=z2sd t, 3
8z)$ R
factor @; on rat: - 2%Q Vied T*GeZxX1 = @ VIxd T*GsX
121 X
solve(sx/d t,vxl); + - + e ————
3 3
R R

37 I8



- 2»0 VXsd T*G*ZsZ1 = @ VX+xd TeGaZ

2 Z12Z1 4
+ @  VIsd TaY1L + 2¢@  VX#d THYisZ1 + - : + --
YY Yz 3 3
R R
- 2% VE*d T«G#XxY1 :
Y X1 2 2 2
+ ] VX+d T«G =X 20 VIsd T*G =XsY
3 X1 x1 X1 Y1
R + - + - I
6 6
- 2»Q VI*d T*GaYaY1 R R
Yy
+ - - 2
3 2+0 VX*d T*G »XxZ
R X1 21
+ + (@ VXIxd TG
- 2%Q VI*d T*GeZ»Y] = @ VIsd T#GxY 6 X1
Y 21 Y R
+ - -~ +
3 3 2 2 5
R R #( = R *X1 + 3sX #X1 + 3sX#Y#Y1 + 3eXsZZ1))/R
- 2%Q  VX#d T+G#XxZ1 2 2 2
2 Z X1 ‘ 0] VX+d T*G =Y 22 VIsd T+G *Y=2Z
+ @ VXed TeZl 4 —ommmme Yi Y1 Y1 74
Z2 ‘ 3 . + + —+
R 6 6
: R R
- 2xQ VX#d T*G*YfZi
v T (8 VXxd T+G
+ TETmmmSs T Y1
3
R 2 2 5

*( = R #Y1 + 3+XsY*X1 + 3&Y »Y1 + 3%Y»Z+Z1))/R

39 40



2 2 2 2 3 2 3 2

e VIsd T+G *Z @ *( -GsY =~ G#Z + R *Y1 + R #21 )
Z1 21 Xt
+ == + (@ VX+d T»G + == -
6 21 -3
R R
2 2 5 3 3
#( = R 21 + 3#X#Z#X1 + 3sYeZ#Y1 + 3%2 #21))/R @ *(G¢X*Y - R *XisY1) 0 *(G*X+Z - R *X1sZ1)
Y1 Z1
2 2 + -- -+ -
d T*G#(R *VX ~ 3X *VX - 3aX+Y#VY - 34X+Z#V2) 3 3
+ R R
5
R
8x2;

2 2 2 2 3
solve(sy/d t,vy1)$ = (3+d TeGe(R *Y#Y1 + R #29Z1 - X #YsY1 - X #Z+21 - Y Y1
8y2 := sub(ws,sy2)$
solve(sz/d t,vz1)$ 2 2 3 5
8z2 = sub(us'gzz)s = Y «Z*Z1 - Y*Z *Y1 ~ Z *Z1))/R
%A solution which generates the Runge-Lenz vector: 8y2;

2 2 2 2

let vx=y*yl + z#21,vy=y*x1-2%x¥yl,vzezex1-2¥x+z1, 3*d THGaYsXi*¢(R -X -Y -2)

VX12y*y2+Z4 224yl ke 24z 1952, Vyl=x2+y-2sxsy2-x1sy1, =T - ==
VZI=x2%zZ-24x%z2-x1%2]; 5
v; R
: 8z2;

@ *(YsY1 + ZaZ1) + @ »( - 2sXsY1 + YeX1) 2 2 2 2
X Y 3+d T+GeZ2#X1#(R - X -Y -2Z)
+ Q@ *( - 25X*Z1 + ZsX1) 5

YA R

4] 42



3.7 Conservation laws, potentials and pseudopotentials

A conserved current is a form whose exterior derivative vanishes on a solu-
tion manifold. In the non-form notation the corresponding formula has the
appearence of a continuity equation.
If there are closed forms in the exterior system, then any isovector generates
a conserved current, which can be seen from rewriting the definition of the
Lie derivative

dSfw)=8|w—-8|dw

l.e. the exterior form S | w constitutes a conserved current.
in our heat equation example, the exterior form A2 of the differential system
is closed and the isovector S3 gives the expected conservation of heat,
We can of course look for closed forms of the exterior system by solving
for coefficients of a combination of the forms in the exterior system. Let’s
iHlustrate this with the following example, the famous Korteweg- de Vries
equation.

O+ 0, ,u+12¢«uxdu=0

With the abbreviations z = 8,u and p = 8, ,u we can write for the equivalent
exterior ideal

al ;=dwu'd t - zsd x°d t;
a2 :=d z’d t - pxd x°d t;
a3 ;= d x"du+dpdt + 12%uszsd x-d t;

Exercise: Show with EXCALC that this ideal represents the
Korteweg-de Vries equation and that the ideal is
closed.

To construct closed 2-forms from the forms al,a2,a3 we make the Ansatz
beta := fixal + f2#a2 + £3*a3;
where
fdomain f1=f1(t,x,u,z.p),f2=f2(t.x,u.z.p).f3=t3(t.x.u.z.p):

13

Since 3 is assumed to be closed, its exterior derivative has to va nish, i.e.d g =
0 yields the equations for the unknown functions f1.£2.13.

Exercise: Find solutions to d beta = Q.
To proceed we select the special solution

beta := - 12#u*al - a3;
The corresponding 1-form is given by

omega := uxd x - (p + Gruse2)xd t;

which is a conserved current for the Korteweg-de Vries equation.
It is important to note that we can add any exact 1-form to omega without
changing its property of beeing a conserved curent

omega := d w + omega;

If we now regard w as an additional coordinate and add to our ideal the above
equation, w has to satisfy the following relation on the solution manifold:

fdomain w=w(t,x);

omega;
: 2
(@W+U)*d X+ (QW -P - 64U )ad T
X T

l.e. the new coordinate has to obey the equation
Qw4+ .,w—6x% (B,w)2 =0

Wiis called a potential, and the process of enlarging the number of variables
is called prolongation.

Of course, having obtained a solution for w, a solution of the Korteweg- de
Vries equation follows immediately. Thus we have a tool to obtain solutions
for an equation by solving a related, hopefully simpler, equation.

The systematic search for prolongations to a given equation is quite cumber-
some and can be done reasonably only with the aid of Computer Algebra,
A very important generalization of the above method can be obtained by

4



allowing the prolongation variable to be present in the f's from the very be-
ginning. The resulting equations for the f's are then nonlinear pde's. The
prolongation variables are called in this case pseudopotentials. It turns out
that the whole theory of pseudo-potentials can be stated very elegantly in
terms of Lie-algebra valued forms, but this leads us too far away.

45

References

(1] Burke, W.L. (1985), Applied Differential Geometry, (Cambridge Univ.
Press, Cambridge)

[2] Chang, T.Y.P, van Hulzen, J.A., Wang, PS., Code Generation and
Optimization for Finite Element Analysis, Proc. EUROSAM, LNCS
174 (Springer Berlin)

[3] Edelen, D.G.B. (1985), Applied Erterior Calculus, (Wiley, New York)

(4] Edelen, D.G.B. (1980), Programs for Computer Implementation of
the Ezterior Calculus, Comp. & Maths. with Appl. Vol. 6, pp. 415-424

[5] Hearn, A.C. (1987), REDUCE User’s Manual, Rand Publication CP7s,
The Rand Corporation, Santa Monica, CA 90406

(6} Hearn, A.C. (1985), Optimal Evaluation of Algebraic Expressions,
Proc. AAECC-3 Grenoble, LNCS 229 (Springer Berlin)

[7] Gragert, P.K.H., Kersten, P.H.M. (1982), Implementation of Differen-
tial Geometric Objects and Functions, LNCS 144 (Springer Betlin)

[8] van Hulzen, J.A, (1983), Code Optimization of Multivariate Polyno-
mial Schemes, Proc. EUROCAL, LNCS 162 (Springer Berlin)

[9] Gates, B.L. (1985), GENTRAN- an automatic code generation facil-
ity for REDUCE, ACM Sigsam Bulletin, vol. 19, no. 3

[10] Kopetsch, H., (1987), A numerical Method for the Time-dependent
Stefan Problem in Czochralski Crystal Growth, Journal of Crystal
Growth

[11] MacCallum, M.A.H. (1986), Algebraic Computing in Relativity, TAU
86 - 04, Queen Mary College, University of London, (see also other
reviews cited in there)

[12] Schriifer, E. (1987), EXCALC User’s Manual, Rand Corp. (appended
to these notes)

46



[13] Schriifer, E., Hehl, F.W.H., McCrea, J.D. (1987), Ezterior Culculus on

the Computer: The REDUCE-Package EXCALC Applied to General
Relativity and to the Poincare Gauge Theory,

General Relativity and -
Gravitation, vol. 19, nc. 2

[14] Schutz, B. (1980), Geometrical Methods
(Cambridge University Press, Cambridge)
[15] Schiwarz, F. (1987), SPDE User’s Manual, Rand Corp.

[16] Trautmann, A. (1984), Differential Geometry for Physicists, (Bib-
liopolis, Naples)

of Mathematical Physics,

[17] Wirth, M.C. (1981), Axtomatic Generation of Finite Differences and

Fourier Stability Analysis, {Proc. of the 1981 ACM Symp. on Symbolic
and Algeb. Computation)

47






