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INTRODUCTION

EXCAIC {8 designed for easy use by all who are familiar with the
calculus of Modern Differential Geometry. 1Ita syntax is kept as close
as possible to standard textbook notations. Therefore, no great
experience in writing computer algebra programs is required. It is
almost possible to input to the computer the same as what would have
been written down for a handcalgdlation. For example, the statement

£rx*y + u_| (y*z*x)

would bs recognized by the program as a formula involving exterior
products and an inner product., The program is currently able to
handle scalar-valued exterior forms, vectors and operations between
them, as well as non-scalar valued forms (indexed forms). With this,
it should be an ideal tool faor studying differential equations,

doing calculations in general relativity and field theories, or doing
aimple things as caleulating the Laplacian of a tensor tfield for

an arbitrary given frame. With the increasing popularity of this
calculus, this program should have an application in almost any fleld
of physics and mathematics.

Since the program is completely embedded in REDUCE, all features and
facilities of REDUCE are available in a calculation. Even for those
who are not quite comfortable in this calculus, there is a good chance
of learning it by just playing with the program.

This ias still a very experimental varsion, and changes of the syntax
are to be expected. The performance of the program can atill be
increased conaiderably.

Complaints and comments are appreciated and should be sent to:

Dr. Eberhard Schriifer

Inatitut fuer methodische Grundlagen (Fl-p}
Gesellachaft fuer Mathematik und Datenverarbeitung mbH
Postfach 1240

Schloss Birlinghoven

D-5205 S5t. Augustin 1

WEST GERMANY

If the use of this program leads to a publication, this document should
be cited, and a copy of the article should be sent to the above address.



1. Declarations

Geometrical objects like exterior forms or vectors are introducad to the
system by declaration commands. The declarationa can appear anywhere in
& program, but must, of course, be made prior to the use of the objact.
Everything that has no declaration is treated as a constant; therefore
zaro-forms must also be declared.
An exterior form is introduced by

PFORM declarationl,declaration2,....;
where

daclnration::-<name>-<number>I<1dnnt1£ier>|<exp:esaion>
<name>::-<identifier>l<identifier>(<arguments>)

For example
PFORM U=K, V=4, F=(), N=DIM-1;
would declare U to be an exterior form of degree K, V to be a form of
degres 4, F to be a form of degree 0 (a function), and W to be a form of
degree DIM-1.
If the exterior form should have indicea, the declaration would be
PFORM CURV({A,B)=2,CHRIS {A,B)=1;

The name of the indices is arbitrary,

The declaration of vectors is similar. The command TVECTOR takes a list
of names.

Example:

To declare X as a vector and COMM as a vector with two indices, one
would say

TVECTOR X,COMM(A,B);

If a declaration of an slready existing name ias made, the old
declaration ia removed, and the new one 1s taken.

2. Exterior Multiplication

Exterior multiplication betwean exterior forms is carried out with the
nary infix operator * (wedge). Factors are ordered according to the
usual ordering in REDUCE using the commutation rule for exterior
productas.

Examples:
PFORM Usl,Val,H=K;
urv;
uv
v
- U~V
Uru;
0
Y,

K
{ = 1) *urv+w

(32U=AAW) ~ (H+54V) ~U;

A* (SO VAN = UNW)

It ia poasible to declares the dimension of the underlying space by

SPACEDIM <number>|<identifier>;

If an exterior product has a degres higher than the dimension of the

space, it is replaced by 0:
SPACEDIM 4;
PFORM U=2,Ve3;
urv;
0
3. Partial Differentiation

Partial differentiation is denoted by the operator 8.
the same as the REDUCE DF operator.

Examplea:

Its capability ia



B{SIN X,X); PFORM X=0, YmK, Z=M;
COS (X) D(X * ¥),;
BIF,X); X*d Y + d XY
0 D(R*Y);
Rad Y
An identifier can be declared to bs a function of certain variables.
This ia done with the command FDOMAIN. The following would tell the D{x*¥~2);
partial differentiation operator that F is a function of the variables X
and Y and that H is a function of X. K

{ = 1) *X*¥Y*"d T + X*d Y 2 + d X Y~2
FDOMAIN F=F(X,Y),HwH(X};

This expansion can ba suppressed by the command NOXPND D.
Applying @ to F and K would result in

NOXPND D;
8(F,X);

. Di{Y*2);

4 F

X d{y+2)

8 (X*F,X); To obtain a canonical form for an exterior product when the expansion {s

switched off, the operator D i{s shifted to the right if it appears in
F + X%t F the leftmost place.
X
DY * z;
A{H,Y);
K

0 = { = 1) *¥*d Z + d(Y*2)
The partial derivative symbol can alsc be an cperator with a single .
Argumént. It then represents a natural base element of a tangent Expansion is performed again when the command XEND D is executed.
vector.

Functions which are implicitly defined by the FDOMAIN command are

Example: expanded into partial derivatives:

A*@ X + B*g Y; PFORM X=0, Y=0,Z=0,F=0;

A*@ + p*@ FDOMAIN F=F (X,Y);

X Y
D F:

4. FExterior Differentiation
- " @ Fd X+ @ Fad ¥

Exterior differentiation of exterior forms is carried out by the X Y
operator d. Products are normally differentiated cut, i.e.
If an argument of an implicitly defined function has further
dependencies the chain ruie will be applied ao.g.



FDOMAIN Y=Y (2):
D F;

@ FrdX+@ Frg Yod 2
X Y 2

Expansion into partial derivatives can be inhibited by NOXPND @ and
enabled again by XPND Q.

The operator is of courss aware of the rulea that a repeated application

always lsads to zero and that there is no exterior form of higher degree
than the dimension of the apace.

bpDX;

\ﬂ

PFORM U=K;
SPACEDIM K;
D U;

0

S. Inner Product

The inner product between a vector and an exterior form ia represented
by the diphthong | {underscore or-bar), which is the notation of many
textbooks. If the exterior form is an exterior product, the inner
pProduct is carried through any factor :

Example:

PFORM X=0, Y=K, 2=M;

TVECTOR U, V;
U_{ (XAY~Z);
K

X¢({ - 1) *YAU_IZ + U_[¥~2)

In repeated applications of the inner product to the same exterior form
the vector arguments are ordered e.g.

(U+X*V}_[{U_| (3*2))

- 3%U_IV_|2

-8 -

The duality of natural base slements is also known by the system, i.e.
PFORM X=0,¥Y=0;
(A*@ X+B*@{Y)}_| (34D X-D Y);

3*A - B

$. Lie Derivative

The Lie derivative can be taken between a vector and an exterior form or
batween two vectors. It is represented by the infix operator |_ . 1In
the case of Lie differentiating, an exterior form by a vector, the Lie
derivative is expressed through inner products and exterior
diffsrentiations, i. e.

PFORM Z=K;

TVECTOR U

UiI_z;

u_id z + d(u_|2)
If the arguments of the Lie derivative are vactors, the vectors are
ordered using the anticommutivity property, and functions {zero forms)
are differentiated out,
Example:

TVECTOR U, V;

v o

- ULy

PFORM X=0,¥Y=0;

(X*U) |_{¥*v);

S URYAV_[d X + VAXU_|d Y 4 Xeyeu| v

1. Hodge-* Duality Operator

The Hodge-* duality oparator maps an exterior form of degree K to an
exterior form of degree N-K, whers N is the dimension of the space. The
double application of tha operator must lead back to the original
exterior form up to a factor. The following example shows how .the factor
is chosen here



SPACEDIM N;
PFORM X=K;
teX;

2
(K + K+N)
(-1 AX*SGN

The indeterminate SGN in the above exampls denctes the aign of the deter
minant of the metric. It can be assigned a value or will be
automatically set if more of the metric structure is specified (via
COFRAME), i.s. it ias then set to g/Igl, where g is the determinant of
the metric. 1If the Hodge—* operator appears in an exterior product of
maximal degree as the leftmost factor, the Hodge-* is shifted to the
right according to

PFORM X=K, Y=K;
$X*Y;
2

(K + K*N)
{=-1) bt 2 4

More simplificationa are performed if a coframe ia defined,

8. Variational Derivativae

The function VARDF returns as its value the variation of a given
Lagrangian n-form with respect toc a specified exterior form {a field of
the Lagrangian). 1In the shared variable BNDEQ!*, the expression is
stored that has to yield zero if integrated over the boundary.
Syntax:

VARDF (<Lagrangian n-form>,<extarior form»)

Example:
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SPACEDIM 4;

PFORM L=4,A=1,J=3;

L:==1/2%D A * $ D A - A# J§ SLagranglan of tﬁe e.m., field
VARDF (L, A) 7

~{($ T+dédAa tMaxwell’s equations

BNDEQ!*;

=~ ‘A d A SEquation at the boundary

Restrictions:
In the current implementation, the Lagrangian must be built up by the
fields and the operaticns d, #, and Q. Varilation with respect to indexed
quantities is currently not allowed.
For the calculation of the conserved currents induced by symmetry
operators (vector fields), the function NOETHER is provided. It has the
ayntax:

NOETHER (<Lagrangian n=form>, <field>, <symmetry genarator>)
Example:

pform l=d,a=1,f=2;
apacedim 4;

liw ~1/2%d a*4d a; VFree Maxwell field;
tvector x(k}; ‘ SAn unspecified generator;
nosthex (1,a,x(-k));

(= 2%d(X _IM " dA- (X _JdR*EdA+dA (X _I#dA)}/2
K K K

Comment :The above exprasaion would be the cancnical energy-mementum
3~forms of the Maxwell field, if X is interpreted as a translation;

8. Handling of Indices

Exterior forms and vectors may have indices. On input, the indices are
given as arquments of the object. A positive argument denotes a
superscript and a negative argument a subscript. On output, the indexed
quantity is displayed two dimensionally if NAT is on. Indices may be
identifiers or numbers. However, zerc is currently not allowed to be an
index.



Example:
PFORM OM(K,L)=M,E (K)=1;
E(K})"“E(~L);
.4
E "B
L

OM(!:'Z, H

4

oM
2

In the current release, full simplification is porformed only if an
index range 1s specified. It is hoped that this restriction can be re-
moved scon. If the index fange (the values that the indices can obtain)
is specified, the given expression is evaluated for all possible index
values, and the summation conventicn is understood.
Example:

INDEXRANGE T,R,PH, Z;

PFORM E{K)=1,5(K,L)=2;

N = E(K)*E{-K);

T R PH Z

W:=B* 4+ E*E 4 g 2 + E *E
T R PH 1

S(K,L) :=E(K) “E(L};

TT

H] I )

RT T R

] im = E B
PH T T PH
] iw - B AE

If the expression to be evaluated is not an assignment, the values of
the expression are displayed as an assignment to an indexed variable
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with name N$. This is done only on output, i.e. no actual binding to
the variable NS occurs.

E{K)*E(L);

TT
NS t= 0

RT T R
NS t= - E “E

.

It should ba noted, howevsr, that the index poaitions on the variable NS
can sometimes not be uniquely determined by the system (because of
possible reorderings in the expression) . Generally it ia advisable to
use assignments to display complicated expressions.

In certain cases, one would like to inhibit the summation over specified
index names, or at all. For this the command NOSUM <indexnamel>,..; and
the switch NOSUM are available. The command NOSUM has the eaffect that
summation is not performed over those indices which had been listed.

The command RENOSUM enables summation again. The switch NOSUM, if on,
inhibits any summation.

It is possible to declare an indexed quantity completely antisymmetric
or completely symmetric by the command ANTISYMMETRIC <namel>,..: or
SYMMETRIC <namel>,...;. If applicable, these commands should be issued,
since great savings in memory and execution time result. Only strict
components are printed.

10. Metric Structures

A metric structure is defined in EXCALC by specifying a set of basis one-
forms (the coframe) together with the metric. .

Syntax:

COFRAME <ident£f1e:><(index1)>-<expresainn1),
<1denti£1er><(1ndex2)>-<expraaaion2>.

<ident1fier><(1ndexn}>-<expteuslonn>
WITH METRIC <name>=<sxpression>;

This statement automatically sets the dimension of the space and the
index range. The clause WITH METRIC can be omitted if the metric is
Euclidean and the shorthand WITH SIGNATURE <diagonal elements> can be
used in the case of a pseudo-Euclidean metric. The splitting of a metric
atructure in its metric tensor coafficients and basia one-forms 1is
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conpletely arbitrary including the extrems of an orthonormal frame and a
coordinate frame.

Examples:
COFRAME E R=D R, E{PH)=R*D PH
WITH METRIC G=E (R) *E (R} +E (PH) *E {PH) ; fPolar coframe;
COFRAME E (R)=D R,E{PH)=R*D(PH); YSame a3 hefore;

COFRAME O(T}=D T, O X=D X
WITH SIGNATURE -1,1; SA Lorentz coframe;
COFRAME B(XI)=D XI, B{ETA)=D ETA
WITH METRIC W=-=1/2#(B(XI)*B(ETA)+B(ETA) *B(XI})}; NA lightcone coframe;

COFRAME E R=D R, E PH=D PH SPolar coordinate
WITH METRIC G=E R#E R+R®**2*E PH*E PH; tbasis;

Individual elements of the metric can ba accessad Just by calling them
with the desired indices. The valus of the determinant of the covariant
metric is stored in the variable DETM!*. The metric is not needed for
lowering or ralsing of indices as the syatem perfores thia
automatically, i.e. no matter in what index position values were
assigned to an indexed quantity, the values can ba retrieved for any
index position just by writing the indexed quantity with the desired
indices.

Example:
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COFRAME E T=D T,E X=D X,E Y=D Y
WITH SIGNATURE -1,1,1;
PFORM F{K,L}=0;
ANTISYMMETRIC F;

F(~T,-X) :=EX$ F(-X,~Y) :=B§ F(-7,-Y):=08
ON NERO;

F(K,~L}:=F{K,-L);

X
F im - BY
T
T
F im = EX
X
Y
F i= -~ B
X
X
F = B
Y

Any expression containing differentials of the coordinatae functiona will
be transformed into an expression of the basis one-forms.The system alaso
knows how to take the exterior derivative of the basis one-forms.
Example (apherical coordinates):

COFRAME E (R)=D(R), E{TH)=R*D(TH), E(PH) =R*SIN(TH) *D (PH) ;

D R*D TH;

R TH
(E "E )/R

D(E{TH) }:

R TH
(E “E )/R
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PFORM F=0;
FDOMAIN F=F (R, TH,PH);
FACTOR E;
ON RAT;
D F; YThe "gradient™ of ¥ in spherical cocrdinates;
R TH PH

E*" F + (BE *@ F}/R + (E +@ F)/(R*SIN(TH}))

R TH FH

The frame dual to the frame defined by the COFRAME command can be
introduced by FRAME <identifier>. This command causes the dual property
to bs recognized, and the tangent vectors of the coordinate functions
are raplaced by the frame basis vectors.

Example:
COFRAME B R=D R,B PH=R*D PH,E 2=D Z; $Cylindrical coframe;
FRAME X:
ON NERO;
X{(-K)_IB(L);
R
NS tm 1
R
PH
NS 1w ]
PH
4
NS HL
2
X{-K} I_ X{(-L); tThe commutator of the dual frame;
NS =X /R
PH R PH
NS = {-X /R 1. e. it i3 not & coordinate base;

R PH PH
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As a convenience, the frames can be displayed at any peint in a program
by the command DISPLAYFRAME: . .

The Hodge-* duality operator returna the explicitly constructed dual
element if applied to coframe base slements. The metric is properly
taken into account.

The total antisymmetric Levi-Cevita tensor EPS is also avalsble. The
value of EPS with an even permutation of the indlices in a covariant
poaition ia taken to be +1.

11. Riemannian Connections

The command RIEMANNCONX is provided for calculating the connection 1
forms. The values are stored on the name glven to RIEMANNCONX. This
command 1s far more efficient than calculating the connection from the
differential of the basis one-forms and using inner producta.

Example (Calculate the connection 1-form and cucrvature 2-form on 5(2)):
COFRAME E THeR*D TH,E PH=R*SIN(TH)*D PH:
RIEMANNCONX OM;

OM(K,-L) ; Diaplay the connection forms;

TH
NS 1= 0

PH PH
NS = (E *COS{TH))/ (SIN(TH) *R)
TH

TH PH
NS s= (= E *COS(TH)}/(SIN{TH)*R)
PH

PH
NS H ]
PR
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PFORM CURV(K,L}=2;

CURV(K,-L) :=D OM(K,-L} + OM (K, -M) “OM{M~L} ; AThe curvature forms

TH'
CURV =0
TH
FH TH PH 2
CURV = { -E “E )/R A0f course it was a sphere with
TH Sradjus R.
TH TH PH 2
CURV = {(E *“E }/R
PH
PH
CURV ]
PH

12. Ordering and Structuring

The crdering of an exterior form or vector can be changed by the command
FORDER. 1In an expression, the first identifier or kernel in the
arguments of FORDER is ordered ahead of the second, and soc on, and
ordered ahead of all not appearing as arguments., This ordering is done
on the internal level and not only on output. The execution of thia
statement can therefore have tremendous effects on computation time and
memory recquirements. REMFORDER brings back standard ordering for those
elementa that are listed as arguments.

Another ordering command is ISQLATE. It takes one argument. The system
aAttempts to shift out this identifier or kernel to the leftmost
position, utilizing commutaticn and derivative rules. REMISOLATE
reatores normal ordering.
Example:

PFORM U=K, V=L, Wal;

U*D (V) *W;

U*d VW

FORDER V;

U~D (V) ~W;

{X*L + K)
-0 *d VAUSH
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ISOLATE V;
U~D{v);
(K*L + K) _ L
(-1 HA{VMO) .~ (- 1) *vrd )

An expreasion can be put in a-mcre structured form by renaming a
subsxpression, This is done with the command KEEP which has the syntax

KEEP <namel>-<nxpresaon1>.<name2>-<oxproaaion2>,...
The effect is that rules are set up for simplifying <name> without
introducing its definition in an expressicn. In an expressiocn the ayatem
also tries by reordering to generate as many instances of <name> as
posaible.
Example:

PFORM X=0Q,Y=(, Zu0, FaQ, Ju3;

KEEP J=D X“D ¥*D 2;

J;

J

D J;

J*D X;

[

FDOMAIN F=F({X);
D F*D ¥Y*D 2;

R} F*J

X

The capabilities of KEEP are currently very limited. Only exterior
products should occcur as righthand sides in KEEP.



13. Appendix

- 19 -

Al. Summary of Operators and Commands

~ Exterior Multiplication 2
] Partial Differentiation 3
4 Tangent Vector 3
* Hodge-* Operator 7
_ Inner Product 5
I_ Lie Derivative 6
ANTISYMMETRIC Declares completely antisymmetric indexed 9
quantities
COFRAME Declaration of a coframe 10
d Exterior differentiation 2
DISPLAYFRAME Displays the frame 10
EPS Levi-Civita tenscr 10
FDOMAIN Declaration of Implicit depsndencies 3
FORDER Ordering command 12
FRAME Declares the frame dual to the coframe 10
INDEXRANGE Declaration of indices 9
ISOLATE Ordexring command 12
KEEP Structuring command 12
METRIC Clause of COFRAME to specify a metric 10
NOETHER Calculates the Noether current 8
NOSUM Inhibits summation convention 9
NOXPND d Inhibits the use of product rule for d 4
NOXPND @ Inhibits expansion into partisl derivatives 4
PFORM Declaration of exterior forms 1
REMFORDER Clears ordering 12
REMISOLATE Claars ISOLATE command 12
RENOSUM Enables summaticn convention 9
RIEMANNCONX  Calculation of a Riemannian Connection 11
SIGNATURE Clause of COFRAME to specify a pseudo-
Euclidean metric 10
SPACEDIM Command to set the dimension of a space 2
SYMMETRIC Daclares completely symmetric indexed 9
quantities
TVECTOR Declaration of vectors 1
VARDF Variaticnal derivative 8
XEND d Enables the use of product rule for d 4
(1s set on defauilt)
XPND @ Enables expansion intc partial derivatives 4
{is set on default)
A2. Examples

The following examples should illustrate thQ use of EXCALC. It ia-not
intended to show the moat efficient or most elegant way of stating the

problems; rather the variety of syntactic constructs are exemplified.
The examples are on a teat file distributed with EXCALC.
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tProblem: Cslculate the PDE’'s for the isovector of the heat equation.
[

% (c.f. B.K. Harrison, f.B. Estabrook, "Geometric Approach,..™,
L) J. Math. Phys. 12, 653, 1971);

The hesat aquation.@ psi = @ pPai is equivalent to the set of exterior
L) xx B 3

Vequations {with u=8 psi, y=@ psi):

L) T x

pform pai-o,u-o,x-o,y-o,tno,n-l.datz,b-z;
a:=d pail ~ urd t - y*d x;

date- d u*d t - d y*d x;

biwu*d x"d t «~ d y*d t;

tNow calculate the PDE’s for the isovector;

tvector v;

pform vpsi=d, vt=0, yvu=), yx=0, vy=0; .

fdomain Vpaiovpaitpal,t,u,x,y},vt-vt(pal,t,u,x,y),vu-vu(psi.t.u,x,y)o
vx=vx(psi,t,u, x, ¥}, vy=vy(psi,t,u,x,y);

vimvpsi*@ pai + vE*@ t + vurg u + vxt@ x + vy*Q y;

factor d;

on rat;

1limv |_ a - 1l*a;

pform o=1;

omot*d t + ox*d x + ou*d u + oy*d y;

fdomain f=f(psi,t,u,x,y);

111s=v_|d a ~ 1*a + d £;

let vx--ﬁ(t,y),vn--gqf,u),vu.g(g,t)+uag(t,psi),vy-&(f,xl+y*!(£.psi)a
vpaimf-ut@ (£, u)-y*@ (f,y);

factor ~;

12:=v |_b - xi*b - o*a + zet*da;



- 2f =
let ou=0,oy=8(f,u,psi),ox=-u*g (f,u,psi},
ot=@ (f,x,psl)+u*@(f,y,psi)+y*qd (£, psi,psi);
i2;
let zet=-@{f,u,x}-8(f,u,y) *u-@(f,u,psi)*y;
i2;
let xi--a(t,t,n)-u*ﬁ(t,u,psi)+i(£,x,y)+u*@(f,y.y)+y'3(f.y1951l+ﬂ(f-pai):
iz;
let @(f,u,u}=0;
12; % Thesa PDE's have to be sclved.
clear a,da,b,v,il,11l,0,3i2,xi;
remfdomain f£;
clear @(f,u,u);
YProblem:
iCalculate the integrability conditions for the aystem of PDE’a:

%{c.f. B.F. Schutz, "Geometrical Methods of Mathematical Physics*
ACambridge Univeraity Press, 1984, p. 156)

V8 z /@ x+al*z + bl z = gl
1 1 2

S Bz /8y + a2% + b2tz = o2
L} 1 1 2

¥8 2 /8 x+ fltz + gl*z = h]
% 2 1 2

Veéz /@y + 2%z 4 g2%z ap2

] 2 1 2

pform H(kl-lrinteqlk)-d.z(k)-0.x-0.y-0.a-l.b—l,c-l.f-l,gnl,h-l,
al-O,aZ-O,bl-O,b2-0,cl*0,c2-0,f1-0,f2-0,g1-0,92-0,h1-0,h2-0;

fdomain al-al(x,y),az-aZ(x,yl,bl-bl(x,yl.bZ-ble.y);

cl-cl(x,y),cZ-cZ(x,y),fl-fl(x,y),fZ-fZ(x,y),
gl=gl (xr ¥} lgz-gz (x,¥),hl=hl (x, y) +h2=h? {x, y} H

ai=al*d x+a2+d y$
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bi=bl*d x+b2*d y$
tmcltd x+c2rd y§ .
fiwflrd x+£2+%d y$
g:=gltd x+g2*d y$
hi=hl*d x+h2+d y§
AThe equivalent exterior aystem:
factor d;
Wil) = d z(=1} + 2z(-1)%a + z2(=2)*b - ¢;
wi{2) = d z(=2) + z(-2)*f + z2{-1)*g - h;
indexrange 1,2;
factor z;
VThe integrabllity conditions:
integ(k) := d wik}) ~ w(l) * w{2};:

clear a,b,c,t,g,h,w(k),integ(k);

SProblem:

¥Calculate the PDE’s for the generators of the d-theta symmetries of
Sthe Lagrangian system of the planar Kepler problem.

$c.f. W.Sarlet, F.Cantrijn, Siam Review 23, 467, 1981:

$Verify that time translation is a d-theta symmetry and calculate the
Mcorresponding integral.

pform t-o,q(k)-o,v(kl-o,lam(k)-o,tau-o,xi(k)~0,et(k)-o,theta-l,f*o,
l-0,glq(k)-0,glv(k)-0,glt-0;

tvector gam,y: *

indexrange 1,2;

fdomain tau-tau(t,q(k).v(k)),xi-xi(t.q(k),v(k)),t-f(t.q(kl,v(kll5
liml/2% (v {1} **24v (2) #*2) +m/x$ %¥The Lagrangian

pform x=0;

fdomain rer{g{k));

let @(x,q 1)=q(l) /r,8(x,q 2)=q(2) /5, q (1) **2+q(2) **2mph42;

lam(k) :=-m*q(k} /r; $The force
gam:=# t + v(k)*@(q({k)) + lam(k}*@(v{k))$

ot{k} := gam _| d xi(k) - v(k)*gam .| d taus

Y :=tau*@ t + xi(k)*@{qtk)} + et (k}*@(v(k))$ \Symmetry generator
theta := l1*d t + @(1,v(k))*(d q(k) - vik}*d t}$

factor @;
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8 :=y | theta - d £$ pform w=l,a(k)=0;

glqik) :=4 (q k}_Is; fdomain a=a(u,v,ph);
glv(k) :=@(v k)_|s;

glt:=a(t)_|a; wima({=k)*a k;

AThe curl:
$Translation in time must generate a aymmetry.

X :=#dw
xi(k) :e 0;
tau := 1; factor @;
AThe divergenca:

giq k; Yy = ¢8d# w;
glv k;
glt;

remfac 8;

AThe corresponding integral is of courss the energy.

clear x,y,w,a;
integ := - y | theta;

remfdomain a,f;

clear 1,lam k,gam, et k,y,theta,s,glq k,glv k,glt; $Problem:
remfdomain r,f;

[ P,

\Calculate in a spherical coordinate system the Navier Stokes squations.
%Problem:
coframe & r~d r,e ther*d th,e ph=rtsin th*d ph;

ACalculate the "gradient”™ and "Laplacian® of a function and the "curl* frame x;

tand "divergence” of a onae-form in elliptic coordinates.
fdomain wv=v({t,r,th,ph),p=p(r,th,ph);

coframe & u=aqrt (cosh (v) **2~sin(u) *#*2) #d y,
@ ve=sqrt (cosh(v) **2-ain(u)**2)*d v,
& ph=cos utainh v#*d ph;

pform v (k) =0, p=0;

e first calculate the convactive derivative.

plom f=0; v t= vi{-k)*a(k)$s

fdomain f=f (u,v,ph); factor e; on rat;

factor e, ";

cdv t= @(v,t) + {v(k)*x(-k}) |_v - 1/2%d(vik) *v{-k)};

on rat,ged;

order cosh v, ain y; inext we calculate the viscous terms.

3The gradient:

dt; visc := nu*(ddd# v - #did v) + nustdidé v;

factor 4;  %finally we add the pressure term and print the components of the
¥The Laplacian: twhole equation.

$dadft; '

pform nast=l, nast (k)=0;
‘Another way of calculating the Laplacian:

~hvardf(1/2+d £*8d £,£); nast := cdv - viasc + 1/rho*d p$

remfac @; factor A:

WNow calculate the ®curl® and the "divergence” of & one-form: naat {~k} := x(~k} | nast;



- 25 -

clear v k,x k,nast k,cdv,visc,p;
remfdomain p,v;

tProblem:

$Calculate from the Lagrangian of a vibrating rod the equation of
% motion and show that the invariance under time translation leads
$ to & conserved current.

pform Y0, %=0, w0, q=0, j=0, lagr=2;

tdomain y=y(x,t),quq(x}, =] (x)

factor ~;

1aqr:-1/2*(rho*q*a(y,t)*'Z-Q*j'G(y,x,x)*'Z)*d x*d t;

vardf (lagr,y);

$The Lagrangian does not explicitly depend on time; therefore the
VWvector fleld @ t generates & symmetry. The conserved current is

prform c=1;
factor d;

¢ := noether(lagr,y,® t);

AThe exterior derivative of this must be zero or a multiple of the
Vequation of motion {weak conservation law) to be a conserved current .

remfac d;

d c;

ti.e. it is a multiple of the equation of motion.

clear lagr,c;

iProblem:

VShow that the metric structure given by Eguchi and Hanason induces a
Vself-dual curvature.

Vc.f. T. Eguchi, P.B. Gllkey, A.J. Hanson, "Gravitation, Gauge Theories
% and Differential Geometry”, Physics Reports 66, 213, 1980.

for all x let COI(X) **2=]—gin (x) x42;

pform f=0,g~0;
fdomain f=f(r), ge=g(r);
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coframe o{r) =fd r,
of{theta) ={r/2)*{asin(psi)*d theta-sin(theta) *cos(psi)*d phi),
o{phi} ={r/2)*(-cos{pai)=*d theta-sin{theta)*sin{psi)*d phi},
of(pal) =(r/2)*g*(d psi+cos (theta)*d phi);
frame a; '
pform gammal (a,b)=1,curv2 (a,b)=2;
antisymmetric gammal,curv?;

factor o;

gannul(-a,-b):--(llzf*( e(-a) if{el(-c)_l{d o(~b)))
-e{-b)_[(ai-a)_Il{d ol~c}))
te{-c)_)le(-b}_|{d o(-a}}) )%o(c)$

curv2 (~a,b} i=d gammal(-a,b) + gammal (~¢,b) “gammal {~a,c} $
factox ~;

curv2{a,b) := curv2(a,b)s

let f=1/g;

let g=aqrt {1-{a/r)**4q);

Pform chekik,l)=2;

antisymmetric check;

SThe following haa to be zero for a self-dual curvatura.

chck(k,l):-1/2'opa(k,l,m,n)‘cuer{-m,-n)+curv2(k,1);

clear gannul(a,b),curvz(a,bl,t,g,chck(a,b),o(k),o(k):
remfdomain £, g;

tProblem:

ACalculate for a given coframe and given torsion the Riemannian part and

Mthe torsion induced part of the connection. Calculate the curvatura.

fFor a more elaborate example see E.Schruefer, F.W. Hehl, J.D. McCrea,

V"Exterior calculus on the computer: The REDUCE package EXCALC applied to

tgeneral relativity and to the Poincare gauge theory", to appear in
AGRG Journal.

pform ff=0, gg=0;
fdomain £f=£f(r), gg=ggir);
coframe o(4)=d u+2*bl*cos {theta) *d phi,

o(l)=f£*(d u+2*bl*cos (theta) *d phi}+ d r,
o(2}=gg*d theta,
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o(3)=gg*ain(theta)*d phi
with metric q--o(d)*o(i)-o(4l*olli+o(2)*o(2)+o(3)*o(3):
frame e;

pform tor(a)»2,gwt (a)=2,gam(a,b) =1,
ul=0,u3=0,u5=0;

antisymmetric gam;

fdomain ul=ul{r),u3d=ul{r),uS=us(r);

tor(4) :=08

tor(ll:--u5*o(4)“o(l)~2*u3*o(2)‘o{3)$

to:(2):-ul‘o(i)“o(2)+u3*o(4)‘o(3)$

tor(3) :=ul%o (4) “0(3)-u3*o (4) “0 (2} 5

gwt(-a}:=d o(-a)-tor(-a}$

AThe following is the combined connection.

AThe Riemannian part could have equally well been calculated by the

SRIEMANNCONX statement .

gam(-a,-b} :=(1/2)*( a(~b)_| (a{-c}_|gwt{-a))
te({-c)_lle({-a)_igwt (-b)}
-e(-a)_[(e(-b}_lgwt(-c)) )*o(c);

pform curvia,b)=2;

antisymmetric curv;

factor ~;

curv(-a,b) :=d gam({~-a,b) + gam{-c,b} *gam(~-a,c);

showtime,
end;






