i R,
INTREMNMNATIONAL ATOMIO ENEHOY AORNOY Illizl
UNITED NATIONS EDIJUATIONAL, BOIENTIFIO AND CULTURAL ONGANIZATION

e

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

84100 TRIESTE (ITALY) - IO. 1. 086 - MIRAMANE - BSTRADA CORTIERA 11 - TELEPHONE: 2240-1
CARLE: CENTRATOM - TELEX 400803 -1

SECOND SCROOL ON ADVANCED TECHNIQUES
IN COMPUTATIONAL PHYSICS
(18 January - 12 February 1988)

SMR.282f 19

Solving Algebraic Problems with REDUCE

Reference Material

- JOHN FITCH

School of Mathematics, University of Bath, England



J. Symbolic Computation (1985) 1, 211-227

Solving Algebraic Problems with REDUCE

JOHN FITCH

School of Mathematics, University of Bath,
Ciaverton Down, Baih, England

(Received 26 February 1985)

The algebra system REDUCE is introduced by the exposition of 3 number of sample problems.
While these problems will inevitably be small in scale, and biased towards the interests of the
author, the aim is o show how many of the algebraic problems that are faced by scientists and
engineers can be readily solved with the powerful tool of computer algebra. No atiempt is
made to explain the inner workings and design of reDUCE, although there is some reference to
the international REDUCE user and implementor community.

Introduction

In the first issue of the Journal of Symbolic Computation the major algebra system,
MACSYMA, was presented by Pavelle & Wang (1985). In that paper the emphasis was
largely on the general capabilities of computer algebra. The present paper, as well as
introducing the capabilities of the REDUCE system, will emphasise the problem solving
potential of algebra systems. The sample problems that are used are drawn from a range
of disciplines, but it is impossible to ensure that the particular interests of ali readers are
mentioned. 1 have my own application intcrests and this bias will be obvious. Even if |
ignore your application I trust that onc or more of the examples will act as a pointer to
how computer algebra can be used in your service. A simpler step-by-step tutorial on how
1o use REDUCE may be found in Stoutemyer (1978). There are a number of more specialist
papers that have been written over the years presenting applications of computer algebra
(see for example Barton & Fitch, 1972a, b; Cohen et al., 1976; Fitch, 1979 and Brown &
Hearn, 1979). Here the approach is simpler, with more details of the programs.

When giving smali examples there is always the suspicion that the times taken are very
long. To demonstrate that this is not the case the execution time will sometimes be given.
All output in the paper was generated on a High Level Hardware Orion
Supermicrocomputer running Cambridge LISP and REDUCE 3-1 in 1-5 Mbytes. The Orion
is comparable to a VAX 11/750 in speed. In a later section the range of processors. both
larger and smaller, for which REDUCE has been implemented will be given.

A novice seeing computer algebra for the first time is often very impressed by its ability
to handle large integers. A session like that given in Fig. 1 can be surprising, but the
technology is really very simple. For a demonstration of this one only has to read paris of
Knuth (1981). However, this short sample serves 1o indicate the generat style of REDUCE.
After loading the program and the banner REDUCE prompts with a one followed by a
colon, We will see later how these prompts can be used, but for the present one can view
them as fabels on the statements. The user interactively types expressions or statements to

0747-7171/85/020211 + 17 $03.00/0 © 1985 Academic Press Inc. (London) Lid.

212 lohn Fitch

REDUCE 3.1 (Apr-15-84 {31 Jan 1985)) : 7 Feb 1985
on HLH Oricn/Cambridge LISF at the University of Bath under OTS

1: ON TIME,

TIME: 140 MS

21 2""10;

1024

TIME: 60 M5

I 27100
1267650600220229401496701205376
TIME: 100 MS

41 21000,

107150806071062673209484250495060001010561 404811705
5336074437503803703510511249361224931903780156958
S012759467291755314602510714528569211404359245775%
1&&!!5740039)15617740242309.5‘210745050623711‘1!1
7954182153046474983501941267398767559165541946077
0629145711964776065421676604290316526243060372056
68069376

TIKE: €20 NS
5: BYE;

Fig. 1. Big integers in REDUCE.

REDUCE terminated by a semicolon, and meDUCE replies with the answer. The first
Statement arranges that the time taken for each stalement is printed. In this
implementation of REDUCE the input is always mapped to lower-case, so to aid reading the
scripts the user input will be always in upper-case. The statement BYE causes an exit from
REDUCE.

This example also draws attention to one of the main reasons for using algebra systems,
that the results are exact. The thousandth power of two is not approximated immediately
by a floating point number. This attention to exact answers is at one and the same time a
power of computer algebra and a drawback. Although the times for calculating these
powers of two are fairly fast, they are slower than floating point calculation. Indeed, in
general algebraic calculations ace apparently slower than pure numerical ones. Of course,
there are problems which cannot be tackled in pure numerical terms. The decision
whether Lo use algebraic or numerical means depends critically on the problem. There are
many problems which are best solved by a mixture of algebraic and numeric methods. In
the examples that follow the emphasis will be on the algebraic aspects.

An Algebraic Calculator

REDUCE can be used in much the same way that a pocket calculator can be used for
numerical calculation, except that as yet it is not available on a computer that can be
carried regularly in a pocket. A typical example of this kind of use is supplied by the
problems faced in high school mathematics. At an carly stage in mathematical instruction
one is asked to verify that two expressions are equal; perhaps that (x + y)? is the same as
x?+2xy+y*. In REDUCE this calculation is very simple



Solving Algebraic Problems with aepuce Rk}

& (X407,

2 7
E 4 2emvy 4y

TIMNE: 100 M8
31 (Xex)rey - geeg o 29KeY - Yreyg
a

TINE: 200 w3

The first calculation shows how the brackets in the input expression are multiplied out
and the result displayed in a simple two dimensional form. From the answer to statement
4 we can visually check the result. A more complete approach is in statement § where
the zero is made explicit. This is one fespect in which REDUCE differs from MacsYMA. The
normal action of REDUCE is to multiply out all brackets, and combine any similar terms,
while MaCsYMa does this in response to a command. It is possible to make REDUCE
produce its output in a bracketed form at a time cost.
&: ON PACTOR,

TINE: A0 w
T XPeRopeagevIYIey;

2
(-7

TIWF: 260 Mx

These examples also show how REDUCE treats names as indeterminates in the absence of
nher information. It is not always convenicnt or possible to €xpress a problem simply as
1 series of expressions. To help in these cases REDUCE provides two simple mechanisms.
“he first is that the result of any calculation can be referenced in subsequent input by
sing ws fotlowed by the number of the relevant prompt.

8 (4} - W)
arzry

TINE 190 S

The other mechanism is to use assignment. In this next section remember that the
\CTOR switch is still on so the input expression is factored where possible
Tr A:eNesy-i,

2
A e (x 4R 4Lz - 1)

TINE, 150 Ms
10: A=1y

k]
X -4

TINE: 300 ME

REDUCE has a number of flags like FaCTOR that control the style of printing of algebraic
pressions, such as the order of variables, partial fraction representation and the like, but
is not necessary to use or understand them to use REDUCE for reai problems; their main
€ is to improve the style of output to match conventions, as in the quantum theory
ample below. With this short introduction to the syntax and style of REDUCE it is

ssible to start to solve problems. Further syntax and facilities will be introduced from
ne to time,

214 John Fitch

The £ and g Series

Physical situations are frequently described in terms of expressions which are defined
by recurrence relations. A particular example of this situation has been often used in
demonstrations of algebra systems. the fand g series. Lagrange (1869) showed that the
co-ordinates of a body in Keplerian motion about an attracing mass can be written as
the sum of two terms. a lunction S times the initial position and a function ¢ limes the
initial value of the velocity. These lunctions can be expanded as Taylor scries, und the
coefficients of the Taylor serjes satisfy a recurrence relation. It was shown by Cipolletti
(1872) that the coefficients of the expansions can be expressed as polynomials in three
variables, conventionally called #t. 0 and &. The recurrence relations for Jand g are

fEny = df{n— 1>/t~ pg¢n—1>
giny = dgin—1>/d: +f{n—1>

where
du/de = - 3o
da/dt = ¢ 242
de/dr = —a(p 4 2¢)
and
Ko =1
g{0> = 0.

Using these relations it is easy to gencrate the first few terms of the Taylor expansion by
hand. but the probability of error increases as the expressions gel longer. With an algebra
system this problem poses no difficulty. The input and part of the oulput from REDUCE
calculating the first 12 terms in the series is given in Fig. 2. A few notes will clucidate this
figure. The differentiation operation dy/dx is denoted in REDUCE by DF(Y. X). und this

%: ARRAY PF(12), GG{12),
TIME: 80 MS

5: DEPS:= -SIG*(MU+2*EPS),
deps = gigey - Zreps - mu)
TIME: 320 MS

61 DMR)i= -3°MI0S1G,

dmu = - 3Jemyusgig

TIME: 180 MS

7: DSIG:= EPS-2+51G=*2;

2
deig 1= aps - 2*3ig

TIME: 200 MS
B: PF{O):=» 13

"TIME; 60 MS

Fig. 2. Calculating the £ and ¢ series.



Solving Algebraic Problems with rEpUCE 25

9: GG{O)i= O3

TIME: 60 M3

10:
FOR I:= 1:12 DO
BEGIN
FF(I)i= -WI"GG(I-1) + DEPS*DF(FP(I-1),EPS) +
DMUDF({PPF{I-1).M0} + DSIGDP{PP(L-1)},91G);
WRITE “F{*.1,"} := ", PF(I):
GGL )= PP{I-1) + DEPS*DP{GG(1-1),EPS) +
DMU*DP{GG{ X-1),WU) + DSIG*DP(GG(I-1),51IG);
WRITE "G{",I,") 1= ™, GG{I}
END;
P{l) := O
G{Ll) := 1
Fl(2) s - mu
G{2) := 0
F{3) := I*muraig
G{3) 1= -~ mm

2
F(4) := Bur{3"eps + mu - 15%8ig )

G{4) := 6*BuU*pig

G{12) 1= S6"RMUBig®{ 1408375 eps + 914400

3 3 2
epE "EBU - 15790300 eps ‘mig +

z 2 2
139806 aps ‘mu - 15233400%aps *

2 2 4
mutaig + 116093250%eps *sig +

3 2
Sies eps*my - 2211)00*epstmu v

2 4+
8ig + 5434080 epsTmusig -

6 4
187960500 epe*sig + Jl*mu -

3 2 2 4
T2800°my *pig + 4987710*mu Tsig

]
- S0122800*'mu*sig + 99201375¢

»
»ig )

TIME: 2026G MS

Fig. 1 (cont))

216 John Fiich

fragment uses arrays, which have to be declared. The use of a $ instead of a semicolon at
the end of a statement suppresses printing of the result. The main new feature is the
introduction of small programs as distinct from single expressions, here represented by a
FOR loop, whose meaning is similar to that in languages of the aLcot family.

From the output it is possible to realise the necessity for algebraic assistance in this
calculation. As the order increases the polynomials become much more complicated and
rapidly become too difficult for hand algebra. The numerical coefficients also grow to
large integers. :

Three Dimensional Modelling

All the examples so far have been polynomial. It is obviously necessary to handle more
general expressions, and in particular expressions involving the elementary functions of
sine, cosine, exponential and logarithm functions. REDUCE knows about these functions,
how they differentiate and some of how they combine. As a simple case study we will
consider the equations for combining rotations about the v and y axes in three
dimensions. In addition to demonstrating transcendental functions this example naturally
brings in the matrix data type. The example comes from an undergraduate course on
computer graphics, and has been considerably simplified for presentation here,

The position of a point w expressed as a vector after a rotation of & about the x axis
is given by RX w, where RX is the matrix

1 0 0
0 cos 8 sin 8
0 —sind cosd |

and similarly the rotation about the y axis of an angle ¢ is expressed in the matrix RY
[cos¢p O —sin ¢
0 { 0

| sing O cos¢ |

The problem is to determine the co-ordinates of the point w after first the x axis rotation
by 8 and then the y axis rotation by ¢. It would be possible to express this problem
using two-dimensional arrays, but it is more natural to use REDUCE'S matrix facility.

In Fig. 3 the two matrices RX and RY are declared and initialised. As an alternative it
is possible to set individual elements of the array, but the MAT function is usually more
convenient for seiting all the values of an array. In statement 7 the two matrices are
multiplied using a natural notation, and the vaiue of the product printed. While this is
formally correct it may be more useful to change the representation of products of sine
{unctions by linearising them. There is no built-in facility for this in REDUCE as there are in
some specialised Fourier series systems (e.g. CAMAL (Fitch, 1983)), but three simple
patterns can be declared which implement this simplification. Patterns are introduced
with the LET statement. In this case we want the products to be simplified for any
arguments of the trigonometric functions, so the pattern is preceded by the ForR aLL
construction. Without this the patterns would only work for the particular functions
SIN{A) C0OS{) SIN(B) and cos(B).

The expectation for the destination of such calculations is a FORTRAN program for
transformation of pictures. REDUCE in common with most algebra systems provides a




Solving Algebraic Problems wilh REDUCE 7

3: OM TIMES

TIME: 220 MS

41 MATRIX RX(3.3), RY¥({3,3);

TIME: 120 MS

S: RX:= MAT( (1.0.0),
(0,CO5(TH),SIN(TH)),
(0,-SIN(TB),COS(TH)} H

Ex(1,1) = 1

rx{l,2) 1= 0

rx{1,3) := o

rx{2,1) 1= 0

rx(2,2) 1= cos{th)

rx(2,3}) := sin(th)

£X(3,1) = O

tx(3,2) t= ~ pin{th}

rX(3,3) 1= cos(th)

TIME: 940 M3

61 RY:= MAT{ (COS{PAI),0,-SIM({PHL}),
(0,1,0),
{SIN{PH1),0,COS{PHI)) );

ry(l.1) = cosiphi}

ry(1.2) 1= ©

ry(l,3} t= - sin(phi)

ry(2,1} = 0

ry(2,2) :~ 1

ry{2,1) 1= 0

ry{3.1) t= sin{phi}
ry{1,2) = 0

¥(2,3) = cos(phi)
TINE: 990 MS

71 RARY,

mat(1,1) t= cos(phi)
mat(l.2) = ©

mAt(1l,7) = - sin{phi)
mat{2,1) = sin{phi)*sin(th}

mat{2,2) t= cos(th)
Fig. 3. Simple rotation matrix calculations.

18 John Fitch

mat(2,3) 1= cos(phi)j*sin(th)

mat{3,1) 1= cos(th)*sin(phi}

mat{3,2) t= - sin{th)

mat(3,3} := coa(phi)cos{th)

TIME: 920 WS

8: POR ALL A,B LET SIN(AYCOS(B) = (SIN{ AR )4SIN(A-D) )/ 2,
TIME: 320 MS

9; FOR ALL A, B LET SIN(A)}*"SIN(B) = (COS{A~B)-COS(A+D) }/2;
TIME: 300 WS

103 FORALL A.B LET COS(M)*COS{B) = {COS({ A+B)4+COS[A-B))/2;
TIME: 320 MS

11: wW8{7);

=at{l1l,1} 1= coa(phi)

Bat{1,2) = 0

mat(1,3) e - gin(phi)

®at(2,1) 1= {cos(phi - th) - cos(phi + th]}/2

mat{2,2) := cos(th)

mat(2,3) 1= ( - min{phi - th) + sin{phi + th)

Wi

WAL(1.1) s= (sin(Phi - th} + sin(phi + th)),2
mat{31,2) 1= - sin(th)
nat{3d,3} = (cos{phi - th) + con{phi + th})/2

TIME: 2020 ns

Fig. 3, (cont.}

facility for generating a FORTRAN program. After the statement ON FORT printing is
performed in a FORTRAN style. An example of this for the £ and g series example can be
found in Fig. 4. We will see later that if the needed language is PASCAL (say) it is not too
difficult to do that instead.

In REDUCE it is possible to do other operations on matrices simply and efficiently, such
as add them, invert them, calculate the trace, and transpose them.

Factorisation

It has already been seen in the introductory part of this paper that REDUCE can factorise
polynomial expressions. The factoriser code is a very large part of REDUCE in source lines
and incorporates the state of the art algorithms (Moore & Norman, 1981). In practice it is
rarely necessary to perform factorisation except in certain specialised fields, but here a



Solving Algebraic Problems with REDUCE 19

ANS=66 . "MU*SIG*( 1488375 . "EPS* " 4+914400. *EPS**3I*NU-
. 25798500, *EPS**3I*SIC**2+133d06. "ERS**2*MU**2-15233400, *EPS
. TF2*MUTSIGTYZ4116093250. "EPS 2 SIGT 445348, YEPS MUY 3~
. 2211300 *EPS*MU*"2+SIG**2454340040. *EPS*MU*SIG"*4—
. 187960500 . *EPS*SIG**6+3] . "MU**4-72000, *MU* *I*SIG* "2+
. 4987710, MU *2"SIG " *4-501226800, "MUSIGT*6+99201375, *SIG**8
-}

Fig. 4. FORTRAN outpul from REDUCE.

simple example can be used to illustrate not only factorisation but also the use of
p;ocedures in REDUCE. '

As well as using the swilch FACTOR to control output style factorisation can also be
invoked directly. and the factors assigned to elements of an array. QOur example uses this
form to investigate the size of coefficients in the factorisation of x*~ | for different values
of n. For low values of n all the non-zero coefficients are plus or minus one, but this is not
true for large values of n. The program in Fig. 5 defines a procedure which from a value
for n (called oW in the program) determines the largest absolute value of the coefficients
of the lactorisation of x"— |. It cails FACTORIZE to place the factors into an array and the
function COEFF to pul coefficients into another array. The procedure was compiled by the
standard Lisp compiler, but in this example the majority of the time is spent on the
factorisation. The sample values of 105 and 1155 for the power are not chosen at random,
but are the smallest powers for which the coefficient is 2 and 3 respectively. Indeed. it has
been shown (Vaughan, 1974) thai the maximum coefficient grows without bound, but
very slowly.

Integration Example

One of the other large packages in REDUCE is the integration function. It is rare thal
simple integration is used in real problems but it does happen. The integration method
offered by REDUCE is algorithm based, and follows the revised integration method of Risch
& Norman (Fitch, 1981). While this is not a complete decision procedure in practice it
solves most integrations with which it is presented. Like the factorisation package the
integrator is also capable of explaining the steps of the calculation.

Rather than take a real example for integration the script of Fig. 6 shows a few simple
integrals so the scope of the integrator can be seen. In broad terms it can handle integrals
involving rational functions, exponential and fogarithmic functions, and the trigonometric
{unctions. There is a limited capacity for algebraic forms and there is an extensibility
feature.

Quantum Mechanics Example

The earliest REDUCE system was built to solve problems in quantum electro-dynamics.
It would therefore seem inappropriate to ignore this area in any introductory tutorial to
REDUCE. However, quantum theory is in no way a speciality of the present author, who
therefore begs the indulgence of experts for this simplified explanation.

Our sample problem involves the interaction of an electron and a photon, in which an
electron and a photon emerge. The problem can be posed in terms of Lorentz fout vectors
and the gamma matrices. The variables which represent the four dimensional vectors need
(o be declared as such, which is achieved with the statement

VECTOR EI;

0 John Fitch

I: OM TIME,
TIME: 120 MS

2: ARRAY PP{10Q), CC(100};

L]
TIME: 160 M5

3:

ALGEBRAIC PROCEDURE LARGECOEFF PoMW;
BEGIN SCALAR N, M, MAX, ¥,
Vim)repOw--1;
MAX : =0 ;
N: «PACTORIZE( Y,PFY;
POR I:=l:N DO
BEGIN
M:+COEFF(FP(1),X.CC);
POR 3:=0:M DO
BEGIM
iP CC(J}<0 THEN CC(JI)s==CC(d ),
IF CC{J)>MAX THEN MAX:wCC(.J)
END;
ENDy
RETURN MAX
ENM;

¥+ 852 bytes 100 msecs compiling largecoeff
largecoeff

TIME: 1500 MS

4: LARGECOEPP(1};

1

TIME: 300 MS

5 = LARGECOEPP( 105 );
2

TINE: 4360 MS

&) LARGECOEFF( 1155 );
3

TIME: 161060 MS

T+ END,
Fig. 8. Factorisation and algebraic procedures.

In the case of particles whose mass is known the simple declaration
MASS P1 = M;

would as;ogiale the mass M with PI and declare PI as a vector. The normal product
operator is insufficient for products involving vectors, so REDUCE uses the dot as a product
between Lorgntz vectors. As our example is concerned with real particles we know how
lhcyl react with each other, that is to say what the dot products are between them. In
particular we know that the dot product with itself is the square of the mass times a I.ll'lil

4 x 4 matrix. In practice it i
atrix, urns out 0 be unnecessary to mention the unit i
would like the simplification matri. so we

P1.PI =) M**),



Sciving Algebraic Problems with repUCE pa|

am————

The pattern matching facility already introduced can be used 1o implement these
simplifications, but as rules of this kind are so common REDUCE has a statement

MSHELL PI1;

which declares this refationship. provided that a pr_cvious MASS statement has indicated
the value, The. other product simplifications can be mlroduce:d with LET. .

The script in Fig. 7 gives a REDUCE program for calculating lhc' Compton scaucru_ug
cross-section barring a simple factor. Full details of the formulation can be found in
Bjorken & Drell (1964. ch. 7). The notation is that PI and KI are the incident electron
and photon respectively, and PF and KF are the final eleclrpn z'md photon. E and
EP (= E) arc two polarisation vectors. The heart of the calculation is to calculate

y-Ey-Ep.Ki y.Ey Ey.X ,
(1/4) trace ((«,v.Pf+M)( T Ki Pi 2KEPi (y.Pi+ M)
y-Kiy.Ey.E  y.Kfy.E'3.E
2Ki.Pi 2KI.Pi '

13 INT(X.X),

2
x /2

21 INT(X**5*LOG(X)**],X};

L} 3 2
{x "(3"log(x)} - 10*log(x) + Srlog(x) - 1))/218

$1 INT(E="(-Xv+2),X};
2
(x )
int( 1/ e 13
& INP{L/(X**8-1), XY,
{ - 2ratan(( - sqre(2) 4 2+x)/wqre(2))*aqrt(2) - 2°atan((eqrt(2) + 2¢x)/

2
. WqrE(2))*eqre(2) - s*atan(x) + log{ - sqrt(2)*x + x + 1)*sqre(2) - logf

2
MIt{2)*x + x + L)*sqrt(2) + 2*log(x = 1} -~ 2%log(x + 1))/16

S1 INT{1/SIN(X),X);

log(tan{x/2)}

6: INT(X*COS(X),X);

CON(R) + min{m)*x

7: POR ALL A LET nr(n:mqa).nl-wctl')/(l*ll;'
O INT{X*DILOG({X),X);

H 2 1
(4vdilog(x)*x -~ 4*dilog(x) - 2*log{x)*x + Alogiu)*x + X - 4vm)/0

%1 END,;
Fig. 6. Some integrals.

222 John Fich

REDUCE 3.1 (Apr-15-4 (31 Jan 1985)) : 12 Pab 185
on HLK OrionsCambridge LISP at the University of Bath under OTS

i: ON TIME,DIV;
TIKE: 100 MS L]
Z: MASS KI= 0, K= 0, PI= M, PF= M
TIKE: 160 MS
3: VECTCR E.EP;
TIME: 60 MS
4: MSHELL KI,KF,PI,PF;
TIKE: 220 MS
5: LET PI.E= 0, PI.LP= 9, PI.PF= M**24KI . KF, PI.KI=- L L}
PI.KPF= M*KP, PP.Es ~KP.E, PP.EP= K[.EP, PP.KI= M KD,
PP.XF= M*X, KI.E= O, KI.KPw= M*(K-KP}), KP.EP» 0,
E.E= -1, EP.FPe -1,
TIME: 12680 MT
6: (G(L.PPN'J)'(G(L.!P)'G(I..E)'G(L,llJIfZ'KI.PI) +
G{L.E)*G(L,EP)*G(L KF)/(2*KP P[]} *
(G(L.Pljm)-(cu.,n)'G(L.E)'G(L.zr)f(2'KI.PI) +
G(L,KF)"G(L,EP)*G(L,E)/{2*KF.PL)) §
TIME: 3220 MS
71 WRITE “THE COMPTON CROSS-SECTION 15 ", wS;

2 {-1) {-1)
THE COMPTON CROSS-SECTION 15 2ve . e + 1/2*k"kp + 172k *kp - 1

TIME: 420 MS
8 BYE;

End of lisp run after 5.56422.14 5ECS - 31.4% store used
Fig. 7. Compton cross-section,

The contractions of the momenta with the gamma matrices is indicated in REDUCE with
the function G, whose first argument is 2 label on the fermion line in a Feynman diagram.
If more than one line is present, then in effect there is a separate set of Bamma matrices
ficeded. In the present problem there is only one line which the program labels as L. As a
slight gloss on an earier example this special use of G is the reason why the arrays to hold
the f and g series above were called FF and GG. The program of Fig. 7 has been adapted
from the program distributed with REDUCE as a test. It has been modifed 1o avoid some
shorthand notations, details of which can be found in the REDUCE manual (Hearn, 1984).
The first line of the program contains a change to the printing siyle by switching the flag
DIv on. This means that denominators are represented as negative powers, the style of
expression used in Bjorken & Drell (1964),

Duffing’s Equation

All the examples presented in this tutorial so far have been very simple and short. In
case the reader may be getting the impression that RepUcE and computer algebra are only



Solving Algebraic Problems with *epuce 223

useful for small problems. in this section will be presented a realistic_problem. that has
been used in computer algebra for some years (see, for example, Martin, 1967; Barton &
Fitch, 1972a and Fitch er al., 1981). The problem is also a special case of a number of
problems that arise in many branches of physics. _The problem is to produce an
approximate solution to the ordinary differential equation

dix s
ET + X = ex
where x(0) =a and dx/dr =0 and ¢ is a small quantity. The solution required is that
which does not have any secular terms, that is, terms that grow with Eime. A method for
solving this problem is the technique of Linstedt (1882) and Poincaré (I893): whe_re we
introduce a stretched time ct, with the constant ¢ constructed so the solution is periodic.
Changing the independent variable to v = ct we obtain

A +x=ex?
where the prime denotes differentiation with respect to v. The value of x wjll bc
' approximated in powers of the small quantity e. The zeroth order approximation is
determined by ignoring e
Xg = acos(ct) = g cos(v)
Cy = l.
We next make the approximation step, by assuming that the true solution is of the I'qrm
the nth approximation plus a small correction. We will attempt to produce an equation
for the (n+ U)th order correction
x=x.+e+0(n+2)
€ =c,+n+0n+2).
Substituting this into the transformed equation, and ignoring all terms of obviously
higher order than n+ 1, one obtains

" e+ 2 nxy = ex) —e2x]—x,+0(n+2).

If we now apply our knowledge that ¢ is smali, the c,e” term can be replaced by coe”, and a
similar argument reduces the term in n, so we get

Cot” +€—2na cos (v) = ex® —clx" - x + On+2).
A closer look at the right-hand side of this equation will show that as x is a c_osine series
(by consideration of the boundary conditions), sc is the RHS. Let us writc this as
inf

Y Bcos{ny).

=]
As long as # is not 1 it is easy to spot that
B, cos(nv)
ari “_HZ)
is an integral. By choosing n to be —B,/(2a) we have a complete integration, and so

we can produce the approximation to x to any finite order. To do this in REDUCE it is
necessary to introduce patterns to work in Fourier series, similar to the patierns used in

224 John Fisch

the rotation matrix example. We also have to construct the particular integral. The only
subtiety here is to arrange that the pattern does not get re-used over and over again. The
complete REDUCE program is given in Fig. 8 and the output 10 fourth order in Fig. 9. This
problem is not ideally suited to REDUCE, being the subject of many specialised algebra
systems, but it can handle it with judicious use of patterns and substitution.

This exampie is just one of a whole class of problems of expansion of functions in series.
Other examples can be found in Barton & Fitch (1972a) and Fitch et al. (1981). The
genera) approach outlined in this section can be applied to a very large number of these

cases. The author has used it widely in astronomical work, and as an aid 10 various
numerical processes.

Survey of Other Applications

This introductory review has indicated that REDUCE may be useful in the areas of simple
calculation. quantum clectro-dynamics and approximation methods. With the
distribution of REDUCE comes a small test file that includes a number of examples,
including some used in this tutorial, but also including a pro forma general relativity
program. There have been applications of REDUCE in a large number of fields (Fitch,
1979). These include: quantum mechanics, general relativity, optics, structural mechanics,
ordinary differential equation theory, electronics, geometry, fluid mechanics, centrifuge
design, windmill design, helicopter rotor design, astrophysics, celestial mechanics,
economics, stress analysis, plasma physics, finite element analysis, control theory, image
processing, symbaolic execution, and antenna design. It is beyond the scope of the current
work to consider these, but a register of papers that cite the algebraic work of REDUCE.in
their field has been maintained for some years and the range is considerable (Hearn,
1985). There arc currently over 200 papers in that list.

There can be no doubt that REDUCE is a tool that is needed in many fields of science and
engineering. Recently, H. 1. Cohen and myself undertook a programme for the education
of industrial and technical companics in both Sweden and Britain in computer algebra,

ORDER A;
POR ALL A, 8 LFT COS(A)*COS(B) = (COS({ A+B )+COS(A-B})/2;
POR ALL A LET COS(A)**2 = {1+COS{2*A))/2;
K:=A®CQS(V);
Ciwly
OPERATOR C5;
FOR N=1:4 DO BEGIN
LET E**{N+1)=0,
Ro:= E » Yww) ~ Cue7 ¢ DP(X,V,2) - X
COMMENT GET THE COS(V) TERM;
COSTERM: =R—-SUB( COS({ V)=0,R),
R:=5UB{COS(V}=0,R);
C:= C - COSTERM/(2%A);
COMMENT BERFORM THE INTEGRATION;
FOR ALL J LET COS{J*V) = CS(JI*V}/(1-Jw+2),
TEMP := R;
POR ALL J CLEAR COS(J*V);
POR ALL A LET CS(A}=COS(A);
X := X + TEMP,
FOR ALL A CLEAR CS{A}s
END¢
X
Cy
END,

Fig. 8. Program (or approximate solution of Duifing’s equation.



Soiving Algebraic Problems with rReDUCE 215

] 4 L} 4 ]
{a*( 14700072 *cos(9*v)*e - 933328072 *Cos(a'v)*s + 125357820%a tcas( 1y

4 8 4 L ] 4
J*e 4+ 944457607a *Com(6*v)*s - 1434307140%a *Cos{S'v)re +

[} L} [} 4
13633042482 "com(A"v)*e + 37219A9285%a TCcos{3I*vi*e - 20523633040¢

L} 4 8 4 6 ]
4 "com(2*v)*e - 52012%90400*a *e - 4704000%a ‘con{Trv)re +

6 3 & 3 &
219662080a *cowm(6*v)ve - 2261212000°a “cos(5"v)*a ~ 279605760*a *

3 6 3 & k]
cos{ 4'v)*e + 11660745600%a "cos{3i*v)*e + 27049801600*a *Cos({2"v)*a

6 2 L 2 4
— 93731904000%a *s + 150528000*a "cos{ S5*v)'s - 5178163200%a *cos(4

2 4 2 4 2
"v}'e  + 164B2016000%a *cos(3I*v)re + Z49R7648000%a *Cos(2rv)re -

4 2 2 2
~152635392000%a *e - 4816896000*a *cos( I*w)*e + 57802752000%a *cos{2*

2
vite - 171408256000%a *e + 1541406720007Con(v)}]/154140672000

| ] L] -3 3 4 2
( - 2310027*a *cos{vi*s - 1347456*a *com(v)ta + 98304*a *com{v)'e -

2
1145728%a *cos{v)*e + 2097152)/2097152

Fig. 9. Solution to Duffing’s equation to fourth order.

and we discovered that once these techniques had been shown to them they immediatety
recognised that they would be able to ask the questions that they had been suppressing as
incapable of solution. Many of these companies are now acquiring algebra systems. At
present it is unfortunately still the case that much algebra is being done by hand.

REDUCE: Availability and Scope

The REDUCE system was originally the work of Hearn who wanted a tool to solve
problems in quantum electro-dynamics. From this beginning it has grown into a general
purpose algebra system with a wide distribution, and an international community of
algebra rescarchers refining and extending it. REDUCE is available on a large number of
different processors and operating systems. Table | summarises the availability. As new
implementations are [airly frequent this table is likely to be incomplete in some respects.
However, it shows the range.

REDUCE is written in a dialect of LISP that has shown itself to be portable (Marti et al.,
1979). At present there are two main familics of implementation, one based on PSL (Griss
et al., 1982) and the other on Cambridge Lisp (Fitch & Norman, 1977) and there are
other implementations based on various standard Lisp systems and adaptations of other
LISPS.

2% John Fitch

Table 1. Systems supporting REDUCE ((*)=old version)

IBM 360 Series and similar MVT, MVS. CMS, MTS, TSO

DEC 10 and 20 Jops-10, Tops-20
DEC VAX YMS, UNIX
68000, various manufacturers
SUN UNIX
HPY000 series 200 PASCAL, HPUS
Sage Tripos
Pinnacle Tripos, CP/M68K
HLH Oricn UNIX
Acorn 320t6 PANOS
GEC Syslem 63 UNIX
Apolto Domain Acgis
CRAY-I CTSS
Symbolics 3600
Xerox Dolphin, Dandelion
DG Eclipse MV AOS/VS
Honeywell 68/DPS Multics (*}
CDC Cyber series NOS, NOS,/BE, SCOPE (*)
UNIVAC 100 (*)
Burroughs Bo009, B7000 *)

In this wutorial it is inevitable that only some of the capabilities of REDUCE have been
described. It has been inappropriate to discuss the soLvE package that can solve certain
classes of equations, or the arbitrary precision floating point number package that can be
used very effectively to determine the source of some numerical errors. Only the very
simplest use of the high energy physics package has been mentioned.

One of the important aspects of REDUCE is that the source is distributed with the
system. Thus it is possible for interested scientists to {ook into extending REDUCE with new
capabilities. Indeed, the factorisation, integration, solving and big float packages began in
this way. REDUCE is a system that is still evolving. As new algorithms are discovered the
system is revised and modified. At present the author knows of new packages in an
advanced state of development or testing for integer factorisation, heuristic GCD
(Davenport & Padget, 1985), exterior calculus, common subexpression detection {Wang
et al., 1984), integration of algebraic functions, algebraic numbers, factorisation over
algebraic fields and Taylor series. REDUCE is a living system that is always being reviewed
to provide the best possible service lo the scientist or engineer who needs algebraic
computation. There are many people over the world who can maintain REDUCE. It is for
this reason that it was suggested earlier that writing a PASCAL output package would be
comparatively easy,

The author is indebted to the members of the Computing Group at the University of Bath for
advice and understanding while this paper was written, and to Tony Hearn for providing some
additional information about Re»DUCE. The opinions aboul REDUCE expressed in this paper are,
however, entirely mine.

References
Barton. D., Fitch, J. P. (1972a). Applications of algebraic manipulation programs in physics. Rep. Prog. Phys.
35, 235-314.

Barton, D., Fitch, J. P. (19725). A review of algebraic manipulative programs and their application. Comput. J.
18, 362-381.

Bjorken, J. D., Drell, . D. (1964). Relativistic Quantum Mechanics. New York: McGeaw-Hill,



Solving Algebraic Problems with repucE 227

Brown, W. 5., Hearn, A. C. (1979). Applications of symbolic algebraic computation. Comput. Phvs, Commun.
7, 207-215.

Cipol:ﬂ‘i- D. (1872). Espressioni generah dello svituppo in secie delle coordinate di un corpo celeste. Pubf.
(Fsservatorio Ji Firenze.

Cohen. H. L. Leringe, O., Sundblad, Y. (1976). The use of algebraic computing in general relativity. Gen.
Relativ. Gravir. 7, 269-2386.

Davenporl. . H., Padget. J. A. (1983). HEUGCD: How clementary upper-bounds give cheaper data. Pruc.
EUROCAL 85, (10 appear).

Fitch. J. P.. Norman, A. C. (1977). Implementing LISP in a high level language. Software—Pruc. Experien. 7,
T13-725.

Fitch. J. P. {1979). A survey of symbolic computation in physics. Symbolic and Algebraic Computation, Proc.
EUROSAM 79. Lecture Notes in Compuier Science, 72. New York: Springer-Verlag.

Fitch. 1. P. (1981). User-based inegration sofiware. Proc. SYMSAC 81, pp. 245-248. Snowbird, Utah.

Fitch. J. P.. Norman, A. C.. Moore, P. M. A. {1981). The automatic derivation of periodic solutions to a class
of weakly nonlincar differential equations, Proc. SYMSAC 81, pp. 239-244. Snowbird. Utah.

Fitch. J. P. (1983). caMaL User's Momul, Ind edn. University of Cambridge Computer Laboratery.

Griss, M. L.. Benson, E., Maguire, G. Q.. Jr {1982). PSL: A poruable Lisp sysiem. Proc. ACM Sympotium on
LISP and Functional Progrumnting.

Hearn, A, C. {1984). gepucE User’s Manual: Version 3.1. Santa Monica: The Rand Corporation.

Hearn, A. C. (1985). REDUCE Publications List. {Available from the author.)

Knuth, D. E. (1981} The Art of Computer Programming. Vol. 2. Reading, Mass: Addison-Wesley.

Lagrange. J. L. (1869). Ouvres, Vol. 1V, 500.

Lindsiedi, A. (1882). Ueber die Integration einer fuer die Stoerungstheorie wichtigen Differentialgicichung.
Astron Nach 104, Col 211-20.

Martin, W. A, (1967). Symbolic Mathematical Laborarory. PhD Thesis, MIT, MAC-TR-36.

Marti, J. B., Hearmn, A. C., Griss, M. L., Griss. C. {1979). Standard LISP reporl. SIGPLAN Notices 14, 10,
48-68,

Moore, P. M. A., Norman, A. C. (1981). Implementing a polynomial factorisation and Gco package. Proc.
SYMSAC 81, pp. 109-116. Snowbird, Utah.

Pavelle. R.. Wang. P. 5. (1985). Macsyma from F to G. J. Symbolic Compuiation I, 69-100.

Poincare. H. (1893). Les Mérhodes Nouvelles de la Méchanigue Céleste, Vo, 2. Paris: Gauthier-Villars, ( Available
in English as NASA TTF-450, 1967.)

Stoutemyer. D. R. (1978). REDUCE interactive lessons |-5. REDUCE Newsletter 2, 8, 6 and 7, 1978-79.

Vaughan. R. C. (1974). Bounds for 1he coefficients of cyclotomic polynemials. Mich. Math. J. 21, 289-295.

Wang, P. 8., Chang, T. Y. P,, van Hulzen, J. A. (1984). Code generation and optimization for fnite clernent
analysis. Proc. EUROSAM B84, Lecture Notes in Computer Science 174. pp. 237-247. New York: Springer-
Verlag.



