2
{%% INTERKNATIONAL ATOMIC KN IMRGUY Ad ENCOY
= b‘y UNITED NATIONS EDUCATIONAL, HCIENTIFIC AND CULTUKRAL ORGANIZATION

e

INTERNATIONAL CENTRIEI O THEORKTICAT, PHYSICOS

34100 TRIKSTE (IPALY) - 1O I, 880 - MIRAMARIC + HTHA DA COSTIERA 11 - TELEPHONE: 9240-1
CABLE: CENTRATOM - TELENXN ¢6030% - |

SECOND SCHOOL ON ADVANCED TECHNLQUES
IN COMPUTATLONAL PHYSICS
(18 Jdanuary - 12 February 1988)

SMR. 282/ 20

The REDUCE Algebraic Computation System

A.C.HEARN
The RAND Corporat ion, Santa Monica, USA

(Paper to be published in the Proceedings of the International Workshop on Computing
Tools for Research and Development in Sciences and Engineering, held in Capri, Italy,
13-17 April, 1987)

The REDUCE Algebraic Computation System
Anthony C. Hearn

The RAND Corporation
Santa Monica, CA 90406 U.S.A.

REDUCE is an interactive software system designed for general mathematical computations of interest 1o
physicists, mathematicians and engineers. It traces its beginnings to 1963, when I was undertaking
research in elementary particle theory at Stanford University. John McCarthy, a professor of computer sci-
ence at Stanford and the inventor of Lisp, suggested to me that his language was well-suited for automating
the hand calculations { was doing, and after a few experiments I became convinced that he was correct, [
have been working in the algebraic computation field ever since.

The earliest algebraic computation code 1 wrote was concemed with the properties of various diagrammat-
ic representations of the physical theories 1 was studying (1). It quickly became obvious that the tech-
niques were quite general, and in 1968 the first paper describing a general algebra system "REDUCE"” was
published (2). "REDUCE" is not an acronym although I continue to spell it in capital letters. The name is
acwally a joke: algebra systems then, as now, ofien produce very large expressions for many problems,
rather than reduce the results to a more manageable form. "REDUCE” seemed 10 be the right name for
such a system.

The first version of REDUCE was quite primitive by today’s standards. However, from the beginning it in-

volved a mix of both algorithmic and pattern matching techniques, both of which were necessary for soly-. -

ing the class of problems being considered. It was shortly replaced by REDUCE 2, which first appeared in
1570. The big breakthrough in this release was that the whole system was wrilten in an ALGOL-like di-
alect, now called Rlisp, rather than in the tather awkward parenthesized notation of Lisp of the original
REDUCE. By this time, the system was being distributed to other users, thus marking the beginnings of a
user community.

Whereas REDUCE 2 was essentially the work of a single person, REDUCE 3, first distributed in 1983, in-
cluded several significam packages that were the work of others, in particular those for analytic integration,
multivariate factorization, amitrary precision real arithmetic and equation solving. The number of people
now ernthancing the system is measured in the dozens, plus the hundreds of peaple who report problems or
suggest improvements,

Since the techniques of computer algebra continue 10 evolve, an algebra system must also evolve to keep
pace with these developments. As a result, we i1y to release a new version of REDUCE at yearly imervals,
A new release contains a combination of new capabilities, improved programming techniques and bug
fixes. The present version provides facilities for exact integers, arbiwrary precision real numbers, complex
numbers and algebraic numbers. It also supponts the evaluation, substitution, expansion, simplification,
factorization, differentiation and integration of polynomials, rational functions and general algebraic ex-
pressions. Built-in matrix algebra provides for the evaluation of determinants and inverses, resultants,
eigenvalues and eigenvectors, and the solution of linear equations with algebraic cocfiicients. Facilities for
exterior calculus computations, and for high energy physics calculations are also provided. The system
can also output expressions in a FORTRAN » C or Pascal format for direct use in numerical computations.

In addition 10 these specific capabilities, the program contains a powerful general purpose patern matching



REDUCE Algebraic Computation System Page 2

facility to permit the introduction of user-defined simplification rules and side relations, and to perform
algebraic computations not provided by the built-in routines. Further control over the simplification pro-
cess is provided by switches, which control, for example, the expansion of expressions or the cancellation
of greatest common divisors. Swilches also provide for a variety of output formats, by grouping parts of
expressions as required by the user.

From the beginning, REDUCE was desigued with a number of definite goals in mind. One such goal was
portability. In the early days, the computing requirements were relatively high with respect to the
resources available. As 2 result, I had to be able to use whatever computing equipment was available as
effectively as possible. Using Lisp provided a certain level of portability; in other words, any machine that
had a Lisp processor could be used, However, as time went on, the underlying Lisp language began to
evolve into different dialects. Consequently, the availability of a "Lisp” on a given computer no longer
guaranieed that I could use that machine. In order to compensate for this, I limited the REDUCE imple-
mentation to a specific subset of Lisp that one could find either directly or by simple mappings in any of the
available Lisp implementations. Thus developed Standard Lisp (3,4), a uniform subset of Lisp that could
be easily implemented on any computer that already suppored a working Lisp system. Initially, we would
map the Standard Lisp subset onto the Lisp of the target machine. However, 35 more programming tools
were written in Standard Lisp itself, culminating in a portable Lisp compilter in 1981 (5), we chose instead
10 force the Lisp on which were running to conform to the Standard Lisp definitions, 3o we wers nunning
Standard Lisp itself rather than some other dialect.

One consequence of this activity has been that when implementors target a new machine for Lisp develop-
ment, they know that they can run REDUCE if they remain compatible with the Standard Lisp protocols,
In particular, they can use the portable compiler for producing high quality efficient code. A look at statis-
tics we have collected for running REDUCE on a variety of different computing systems that use the port-
able compiler show a strong correlation between the published execution speeds of the machines znd the
times for running standard tests (6). Invariably, the times for other Lisp implementation models are slower
than the Standard Lisp model,

The Lisp standards we adopted have enabled us 1o implement REDUCE on a wide variety of machine ar-
chitectures with essentially no changes ia the REDUCE sources themselves. OFf course ¢ach machine re-
quires some system dependent suppon to allow for differences in such things as input and output and char-
acter formats. However, this support has been kept to a minimum. In this manner we have been able to
implement the full REDUCE on at least twelve differem architectures ranging in power from the IBM PC
to the Cray X/MP, a difference in the ratio of REDUCE execution speeds of over five hundred!

Another goal that has been very important in the REDUCE development has been modularity. In order for
a system as large and complicated as REDUCE to be maintained and extended, it is necessary that new fa-
cilities can be added without requiring changes to the existing code. In paricular, a knowledgeable user
should be able 10 add a new application with some assurance that his program can coexist with the existing
code. To achieve this goal, many of the facilities in REDUCE 3 are written to depend only on the underly-
ing Standard Lisp subset, and interfaced to the rest of the system through entries in various system tables.
In this manner, we were able 10 add facilities for handling various types of arithmetic such as arbitrary pre-
cision real numbers without requiring any major system changes (7).

From the start, REDUCE was designed to be used interactively. This is not unusual in these days of per-
sonal computers, but was not common when the system was first written. Many users can solve problems
by simply writing expressions, where necessary augmenting the built-in capabilities of the system by
straightforward rules defining the particular transformations needed. REDUCE also provides the user with
a complete programming language that includes control structures such as FOR and WHILE, block struc-
tures, procedure definition, and a variety of algebraic and symbolic data types. The entire REDUCE pro-

REDUCE Algebraic Computation System Page 3

gram and most support packages are written in this language.

REDUCE has been installed on over 1000 main-frame computers world-wide, as well as a growing
number of workstations and personal computers. The use of personal machines for algebraic computation
should grow remendousty in the years ahead, given their relative low cost and suitability for such calcula-
tions (8).

There is a now a well-established base of knowledge about the use of the program in a wide variety of ap-
plication areas, including quantum electrodynamics and quantum chromodynamics, electrical network
analysis, celestial mechanics, fluid mechanics, general relativity, numerical analysis, plasma physics, and a
variety of engineering problems such as trbine and ship huil design,

Fot further information about REDUCE, Gerhard Rayna's recent book (%) is an excellent source.

References

1) Hearn, A.C., "Computation of Algebraic Propenies of Elementary Particle Reactions Using a ngital
Computer", Communications of the ACM, 9, 573-577, 1966.

2) Hearn, A.C., "REDUCE - A User Oriented Interactive System for Algebraic Simplification”, Interactive
Systems for Experimental Applied Mathematics, 79-90 {edited by M. Klerer and J. Reinfelds, Academic
Press, New York, 1968).

3) Hearn, A.C., "Standard Lisp," SIGPLAN Notices, ACM, New York, 4, No. 9 {Sept. 69). Reprinted in
SIGSAM Bulletin, ACM, New York, 13, 1969,

4) Marti, 1.B., A.C. Hearn, M.L. Griss, C. Griss, "Standard Lisp Report”, SIGPLAN Notices, ACM, New
York, 14, 48-68, 1979,

5) Griss, M.L., A.C. Hearn, "A Portable Lisp Compiler”, Software Practice and Experience 11, 541-805,
1981.

6) Mani, 1.B., A.C. Heam, "REDUCE as a Lisp Benchmark”, SIGSAM Bulletin, ACM, New York, 19, 8-
16, 198S.

7) Bradford, R.J.,, A.C. Heam, LA, Padget, E. Schruefer, "Enlarging the REDUCE Domain of Computa-
tion”, Proc. of the 1986 Symp. on Symbolic and Algebraic Comp., ACM, New York, 1986, 100-106.

8) Heam, A.C., "The Personal Algebra Machine”, Information Processing 80 (Proc. IFIP Congress 80),
North-Holland, 621-628, 1980.

%) Rayna, G., "REDUCE Software for Algebraic Computation”, Springer-Verlag, New York, 1987.



