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ABSTRACT

This single lecture, given as a seminar,

introduces the basic ideas which underlie

the subject of computational complexity and

illustrates some of the more commonly used

techniques with a number of examples. Although

the subject is of relatively recent origin there is

4 considerable research literature, but so far relatively
few books treating the subject in depth have appeared.

1. INTRODUCTION

In the early days of computers when all programming was in machine code
programmers would oftem challenge one another to find the most efficient way
of performing some computation. "Most efficient" usually meant "least CPU
time”, but sometimes it might mean 'least number of words of storage'. Two
particular examples that I recall, from about 1955, were

(1) to find the fastest combination of instructicns fo} deciding if
a given (36-bit) word contained exactly one'l' in its 36 bits
(I remember the result : 3 instructions taking 103p secs),

(ii) to find how many of the bits in a word were equal to 1} ("sideways
add") - on the first machine I programmed (Ferranti Mark I) this
was a machine code instruction.

The second problem is interesting in that one soluticn is to break the
36-bit word into 3 twelve-bit words and look up the number of bits in each
twelve-bit segment in a prepared table 4096 words long using the 12-bit
numbers in index registers. This is quite a good way 1f the operation is
to be performed many times; whether it is erfic.ien. aepends upon how we
Tegard the loss of 4096 words of store compared to the gain in speed.

From these early beginnings people began to take an interest in the
number of operations required to solve problems wheré one or more parameters
were involved. Some people learned to take such an interest the hard way;
I can recall an "open-shop" programmer around.1957 who was quite calmly
writing a program involving one bParameter, n, where the running time was
proportional to n! and n was quite likely to be in the regicn 20-40!

Had he not been stopped his program would still he running.
It is therefore clearly desirable that if an algorithm is proposed for

the solution of a problem then not only should we know that the algorithm
will work (possibiy under certain conditions) but also, if the algorithm
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involves parameters, how long the algorithm will take to complete its work
as a function of these parameters. Since the actual time depends on the

particular machine it is customary to measure
operations of various kinds (multiplications,
required. For some algorithms the number of
specified precisely, for others the number is
give "expected values'" or 'worst-case values'',

the algorithm by the number of
comparisons, additions, etc.)
such operaticons can be
data-dependent and one can only

2. NOTATION , Suppcse that we haﬁe an algorithm which involves a parameter
n; if the algorithm requires f(n) operations of some kind,
we say that the algorithm has complexity O(f(n)) in that
operation. We shall see that algorithms may have different
orders of complexity in different operations. Usually the
oumber of multiplications is taken to be the most significant
in numerical algorithms but this need not hecessarily be so
and some combination of arithmetic operations and/or storage
mey be more important in Some cases.

3. PRODUCT OF TWO COMPLEX NUMBERS

As a simple example consider the problem of multipiying two complex
numbers x=(a+ib) and y=(c+id), On a machine which possesses only ‘real!
multiplication the obviocus way of finding the product is to note that

Xy = (a+ib){(c+id) = (ac~bd)+i(be+ad)

The expression on the right involves 4 multiplications and one addition and
one subtraction - there Appear to be 2 additions, but this is due solely to
the notation for complex numbers; the + between the brackets is symbolic,

Consider however the identities:
(a+b)e + (d-e¢)a = ad+be = Im({xy)
(a+blc ~ (d+c)b = ac-hd = Re (xy)

which reveal that the real and imaginary parts of the product can be found
with 3 multiplications - one of the products being used twice, We have
paid a price of course since wWe have increased the number of additions/
subtractions from 2 to 5 but if minimising the number of multiplications is

our criterian of efficiency this second metheod is superior. The algorithm
above can be neatly described by:
£ = a+b
1 ;
= *
f2 fl c
f3 = d-c
= *
f4 f3 a
Im(x,y) = fs = f2+f4
f6 = d+c
f6 = fs*b
R (x,y) fg = f,-f,
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- the number of operations of various kinds is now easy to see.

4. PRODUCT QF 2 n-BIT NUMBERS

Suppose we wish to multiply two n-bit numbers x,y; we shall suppose
for simplicity that n is a power of 2. The "obvious" way reguires O(n?)
bit operations. Let us break both of x,y into two halves

vy = EI

and treat each half as an %—bit number . Then the '"obvious" multiplication
of xy is
n/2 n/2
Xy = (a2 +b){(c2 +d)

a n/2
ac2 +(ad+bec) 2 +bd
n/

- involving four multiplications of 2 bit oumbers plus some additions and
shifts.

An an alternative method consider:

u = (a+b)*(c+d)

v = a¥¢

w = Db*d n/2

z2 = yriBi(y_yow)xg +w = xy

- this scheme requires 3 multiplications, 2 shifts and somé additions. If
multiplications are expensive compared to shifts and additions then this
algorithm is superior to the obvious one and furthermore if n is a power of
2 it can be applied recursively so that ultimately the number of
multiplications is not O(nz) but O(u1°g23) ¥ (nl'sg).

This 'fast' integer-multiplication algorithm can be applied to integers
in bases other than binary, e.g. in decimal.

Example Multiplication of two 4-digit numbers on a machine which can
only multiply two-digit numbers.

3741 x 2849
a =37, b = 41; ¢ = 28, d = 49
(a+b) = 78, (c+d) = 77

u = 78%77 = 6006
V= 37%28 = 1036
w = 41%49 = 2009
z = 1036x10% + (6006-1036-2009) x 107 + 2009
= 10360000
296100
2009

10,858,109

The technique adopted here is by no means optimal, Using a
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generalisation of this technique followed by an ingenious application of the
Fast Fourier Transform Schdnhage and Strassen produced an algorithm to
multiply two n-bit numbers in O(n logn log logn steps) (see [4]).

This last example is a2 particular case of the "divide and conquer”
approach which is frequently used in problem solving viz: break the problem
into smaller parts, solve each of the smaller problems and then combine the
solutions to give the solution to the original problem. If the technique
is applied recursively it may be possible to obtazin a functional equation
the solution of which gives a formula for the complexity of the algorithm.

Thus, suppose we have an algorithm which we propose to use to solve a
certain problem which involves a parameter n. Let T(n) denote the
(unknown) npumber of operations required by the algorithm to complete its
work. 1f we break the problem into two so that n is replaced by %n+%n we

will have two problems which will require T(%n) operations to complete and

we may be able to relate T(m) to T(%ﬂ) by a formula of the type
T(n) = F(T(%)) (4.1)

where F(.) is some known function, in which case (4.1) provides a
functional equation for T(n) and if we can solve this we will have a
formula for T(n).

The method can be simply illustrated by considering an”algorithm
which sorts n items into order. Suppose the algorithm requires S(n)
operations to complete its task; divide the n items into two sets each
containing %n items; sort each set, this takes 2S(%n)operations. We must
now merge the two sorted sets; merging for %n sorted items with another %n
sorted items takes about kn operations, where k is some constant. It

follows that, approximately:
S(n) = 2S(%n) + kn (4.2)
and the exact solution of (2) is

S3(n) = kn 1og2n (4.3)
(provided k#0)

In reality the situation is a little more complicated e.g. there may also
be a constant term on the r.h.s. of (4.2) but the analysis indicates quite
clearly that sorting based on recursive bisection ought to bhave complexity
O(nlogzn) - and this is, of course, the case for many of the bpetter sorting
methods. At the extreme ends of the spectrum of sorting methods, so to
speak, we have "bucket-sort" which is suitable only if n is fairly small and
"bubble sort", perhaps the simplest sort of all, which have complexity O(n)
and O(n?) respectively. Bucket sort corresponds to the case k=0 in (4.2)
when the solution degenerates to S(n) = An.

(%



5. POLYNOMIAL EVALUATION

It has been known for a long time that if we wish to evaluate a
polynomial of the n-th degree

p(x) = a0+alx+a2x2+...+anxn (5.1)

then Horner's method in which we perform the computation as

JX+ ... .. ) . (5.2)

p(x)=( (( anx+§.n_l JRta, )X+ .

completes the task in n multiplications and n additions. What is not
obvious, but can be proved is that Horner's rule is optimal (see (1], 438-
439) on a uniprocessing machine.

6. MATRIX OPERATIONS .

Direct methods for solving systems of n linear equations or for
inverting nxn matrices can be analysed very easily and the number of
operations of various kinds counted precisely. Some results are
summarised below.

Method X 3 *
Gaussian —3]2[; 3 +n 2-—1{1 n %.n 3+—%—n2-§11
elimination 3
Jordan - ln3+n2-—ln, n ln3~£n

2 2 2 2
Inverse(Gauss) " nd n n3~2n2+n

Inverse(Jordan)

We shall now indicate how algorithms of lower order can be achieved.

6.1 Matrix multiplication

Consider the problem of multiplying two 2x2 matrices A,B

11 12 1 #12 bi1 Py,
C = o = (6.1)

721 e,y 221 22 ba1 by

c c

the elements of the resulting matrix C are given by four relations such as

€11 T B317TPyy tag by (6.2)

~clearly we require 8 multiplications and 4 additions to find C by this
method.

Generalising, we see that if we multiply two nxn matrices by this
method we shall require nd multiplications and (n3—n2) additions.

It seems almost aniomatic that the number of multiplications needed
when we multiply two nxn matrices must be O(n3) but this is not so. 1In
1969 Strassen [2) published a method which requires O(n2'81) arithmetic
operations; this is based upon the following identities, using the



notation of (6.2}.

Let
S U PGP TRLLPRRPPY)
m, = (a11+a22)(b11+b22)
Mg = (3)y-ay;)(by +by,)
Mg = (Bp;%a1,0b,y, (-3
M5 T 313(byg=by,)
Mg = Ayp(by,-by)
My = (ay *ayydb,,
then
11 T mytamy-m,emg
C12 = myrmg
Cyy = ng +m,, (6.4)

= Mm,-m, +m.-m
022 m

This method involves 7 multiplications and 18 additions/subtract;ons and it

follows that we can multiply two 2x2 matrices with 7 multiplications and 18

additions.

Suppose that now 4 and B are two nxn matrices (where we take n as a
Fower of 2 for simplicity), then all,alz,bzl,b22 are all %x% matrices and
if we look at (5.3) and (6.4) we see that the 18 additions in reality
involve us in

18(5)? | (6.5)
additions of actual elements. If T(n) is the total number of arithmetic
operations required to multiply two nxn matrices using (6.3) and (6.4) we

see that T(n) satisfies

T(n) = TNy + 18(5)2 5 (6.6)
from which we deduce that
i
T(n) = 0(n'%827) ; §(,2-81, (6.7)

i.e. we can multiply two nxn matrices in 0(n2'81) arithmetic operations.

A refinement of Strassen's method, due to Winograd, invoives 7

multiplications and 15 additioné (see (3], 181-1986).

Based upon these ideas it can be proved both that a system of n linear
equations can be solved and that any nxn matrix can be inverted in 0(n2.81)




arithmetic operations.
7. PARALLELISM

Everything that I have mentioned so far has assumed implicity that
the algorithms have been implemented on a serial machine. If however we
have available k parallel brocessors how should the algorithms be
redesigned (a) if the k processors are identical, (b)) if the Processors are
not necessarily ideatical, (c) if k can become arbitrarily large? Some
research has been done on such gquestions but there is plenty of scope for
more; one interesting result, guoted by Dr. Zacharov in his lectures, will
indicate the flavour : Maruyama's proof that polynomials of degree n might
be evaluated in log n + V7 Tog & + O(l) time steps if an unlimited number
of processors are available (see [5]}.
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PROGRAM LIBRARIES 1

Survey of Subroutine Libraries

Commercial Libraries:
NAG
IMSL
PORT
BCSLIB
MathAdvantage

Manﬁi‘écturers’ Libraries (machine-specific)
IBM (ESSL)
Cray

Libraries from large laboratories
SLATEC
Harwell
CERN

Public Domain Software
Linpack
Eispack
ACM algorithms



Comments on Libraries

The word ‘library’ may create the wrong impression.

Most 'subroutine libraries’ are not like libraries of books;
they are more like encyclopaedias.

They usually provide just one selected subroutine for each
distinct type of problem. (A choice of subroutines may be
provided if no one subroutine can be relied on to solve

all problems of that type with the desired reliability

and efficiency.)

All good libraries offer the following benefits:

* accurate, robust and reliable numerical methods

* tried and test software

* careful and consistent documentation

Even the commercial libraries are comparatively cheap,

and can save a great deal of programming effort.
Do not re-invent the wheel!

Commercial Libraries

NAG and IMSL

the most widely distributed
and most comprehensive
libraries (see below).

PORT

the in-house library of Bell
Labs.

BCSLIB
the in-house library of Boeing
Computer Services (>150 routines);
uses VectorPak for efficency
on Cray-like machines.

MathAdvantage

routines for linear algebra
and signal-processing, aimed
at supercomputers. From
Quantitative Technology
Corporation.



NAG and IMSL

Common Features

* Comprehensive coverage of the main areas of numerical
mathematics and statistics

* Comprehensive and consistent documentation (7 volumes)

* Library is normally provided as compiled and tested
object code (with source-text available for reference)

* Available on a wide range of different computers
* Available at >>1,000 user sites all over the world
* Provide a library service, in return (usually) for an
annual licence fee, including:

notification and correction of errors

periodic updates (new Marks or Editions)

consultation

newsletters

* Well-established organizations (since early 1970's)

* Sell or distribute other related software

NAG and IMSL

Common Features (continued)

* Library divided into chapters, each covering one area
of numerical mathematics or statistics

* Each chapter has a corresponding Chapter Introduction
document, giving background information and advice on
choosing a routine

* Each routine is documented by a routine document, which
includes a complete example program.



NA

Size of the Library

Mark 12 of the NAG Fortran Library contains 688 documented
routines.

Mark 13 (to be released in the second half of 1988) will
contain about 750.

Sublibraries
NAG Workstation Library (172 routines)
NAG PC50 Library (50 routines)
Supplements
NAG Graphical Supplement (56 routines for graph-plotting)
NAG On-line Information Supplement (an interactive help

system giving advice and machine-based documentation
on the NAG Fortran Library)

NAG (continued)
Libraries in Other Languages

NAG Algol 68 Library (350 routines)

NAG Pascal Library (81 routines)

NAG Ada Library (to be released shortly)
Specialized topic libraries

NAG/SERC Finite Element Library: a collection of

subroutines and template programs for solving

finite element problems

SLICE (Subroutine Library in Control Engineering):

a library of subroutines for control system design

(developed at Kingston Polytechnic with support
from SERC)

DASL (Data Approximation Subroutine Library): a
library of subroutines for fitting or interpolating
curves or surfaces (developed at the National
Physical Laboratory)



NAG (continued)

Statistical Packages
GLIM, GENSTAT, TSA, MLP
Distribution Services

Toolpack/1, Eispack, Linpack, Minpack

For further information contact:

Numerical Algorithms Group Ltd
256 Banbury Road

Oxford OX2 7DE

England

Tel: International +44 865 511245
Telex: 83354 NAG UK G

IMSL

On 1 April 1987 IMSL released a complete revision of their
library (Edition 10), which is incompatible with earlier
editions (but an interface is provided for about 80% of

the routines in edition 9).

The library is now in fact divided into three libraries:
MATH Library (426 routines)
SFUN Library (172 routines, for special functions)
STAT Library (351 routines)

(There is a small amount of overlap between the three
libraries.)

IMSL also sell PROTRAN, a problem-soiving environment
which provides an alternative interface to IMSL library
routines. It has the following modules:

MATH/PROTRAN
STAT/PROTRAN
LP/PROTRAN
PDE/PROTRAN



IMSL (continued)

IMSL provide a distribution service for the following

public domain software: ACM algorithms, B-Spline, Eispack,
EDA, Elefunt, Graphpak, Linpack, LLSQ, Minpack, Quadpack,
Rosepack, Toeplitz}

For further information contact:

IMSL

2500 ParkWest Tower One
2500 CityWest Boulevard
Houston

Texas 77042-3020

USA

Tel: (713) 782-6060
Telex: 791923 IMSL INC HOU

Manufacturers’ Libraries

Provided now mainly by manufacturers of modern high-
performance computers.

The libraries tend to be small collections of routines
for basic numerical computations (e.g. Linear Algebra,
FFT’s), optimized for a particular architecture. E.g.

SCILIB for Cray machines
ESSL for IBM 3090 VF
Paralin and Paraeig for Alliant FX/8

The code is not intended to be portable; often it is
written in machine-language.

The user-interface may be non-portable too (i.e. you

won'’t find a routine with the same name and argument-list
available anywhere else). However some routines do conform
to a widely accepted 'standard’ specification (e.g.

BLAS or Linpack) and this is a welcome development:

it allows users’ programs which call these routines to be
moved from machine to machine and take advantage of the
optimized implementations.



Libraries from the | aboratories

Harwell

A collection of over 300 subroutines, mostly written by
people at Harwell {or visiting there). The contents

cover most of the standard areas of numerical mathematics,
but to some extent reflect the special interests and
requirements of people at Harwell.

The library is especially strong in subroutines for
sparse problems (real and complex linear equations,
eigenvalue problems, non-linear equations, linear and
quadratic programming, and non-linear optimization).

Available for a handling charge to academic sites
(higher charge for commerecial sites). Contact:
S.Marlow, Building 8.9, AERE Harwell, Didcot,
Oxfordshire OX11 ORA, England.

Libraries from the Laboratories

CERN

A collection of several hundred subroutines,

covering the standard areas of numerical mathematics
together with a number that are of special interest

to theoretical physicists.

¥

Source-text is available (usually for a small charge)
from: Program Library, Division DD, CERN,
CH-1211 Geneve 23, Switzerland.



Libraries from the Laboratories

SLATEC

The SLATEC Common Mathematical Subroutine Library is an
experiment in resource sharing by the computing depart-
ments of U.S. Department of Energy laboratories

(Air Force Weapons Lab.; Lawrence Livermore; Los Alamos:;
National Bureau of Standards; Oak Ridge; Sandia,
Albuquerque; Sandia, Livermore).

Based largely on public domain software (see below), but
adapted to meet consistent standards of software and
documentation. All documentation is machine-readable.
Fairly comprehensive covereage of the standard areas of
numerical mathematics.

Available to other sites from the National Energy
Software Center (see below for address).

W.H.Vandevender and K.H.Haskell,
The SLATEC Mathematical Subroutine Library,
Signum Newsletter, 17, no. 2, 16-21, 1982.

Public Domain Software

* quality of software is often high, but can be variable

* software may need to be modified to run correctly on a
particular machine (e.g. machine-dependent constants,
precision conversion)

* test programs vary in their thoroughness

* documentation may be nublished in a book or technical
report, or may be embedded in the source-text

* no support (except by goodwill of authors)

* free, except that there is usually a handling charge
for distribution

Available from: IMSL or NAG distribution services:
authors or their institutions; NESC (National Energy
Software Center, Argonne National Laboratory, 9700
South Cass Avenue, Argonne, lllinois 60439, USA).
See below for details.

Individual routines may be obtained from NETLIB
(see below)



Public Domain Software (continued)

Examples:

Eispack:

routines for matrix eigenvalue problems

Matrix Eigensystem Routines - EISPACK Guide,
B.T.Smith, J.M.Boyle, J.J.Dongarra, B.S.Garbow,
Y.lkebe, V.C.Kiema and C.B.Moler, Lecture Notes in
Computer Science 6, Springer Verlag, 2nd. ed, 1976.

Matrix Eigensystem Routines - EISPACK Guide Extension,

B.S.Garbow, J.M.Boyle, J.J.Dongarra and C.B.Moler,

Lecture Notes in Computer Science 51, Springer Verlag, 1977.

available from IMSL, NAG or NESC.

Public Domain Software (continued)

Linpack:

routines for systems of linear equations and linear least
squares problems

LINPACK User's Guide,
J.J.Dongarra, C.B.Moler, J.R.Bunch and G.W.Stewart,
SIAM, 1979.

available from IMSL, NAG or NESC.

routines for non-linear equations and non-linear least
squares problems

User Guide for MINPACK-1,
J.J.More, B.S.Garbow and K.E.Hillstrom, Argonne National
Laboratory technical report ANL-80-74, 1980.

available from IMSL, NAG or NESC.



Public Domain Software (continued) Public Domain Software (continued)

Quadpack: Fishpak:
routines for one-dimensional integration routines for solving elliptic P.D.E.’s,
| by P.M.Swarztrauber and R.A.Sweet (documentation
QUADPACK - A Subroutine Package for Automatic Integration, in source-text)
R.Piessens, E.de Doncker-Kapenga, C.W.Uberhuber and
D.K.Kahaner, Springer Verlag, 1983. available from: NCAR/SCD, P.0.Box 3000, Boulder,

CO 80307, USA.
available from IMSL.

FFTpack:
PPPack:
routines for Fast Fourier Transforms,
routines for interpolation and approximation using splines by P.M.Swarztrauber (documentation in source-text)
A Practical Guide to Splines, available from: NCAR/SCD (see above)

C.de Boor, Springer Verlag, 1978.

available from IMSL
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Public Domain Software (continued)

Y12M:

routines for large sparse unsymmetric systems of equations,

Y12M,
Z.Zlatev, J.Wasniewski and K.Schaumburg, Lecture Notes in
Computer Science 121, Springer Verlag, 1979.

available from: J.Wasniewski, UNI-C, DTH, Bygning 305,
DK-2800 Lyngby, Denmark.

ACM Algorithms:

as published in ACM Transactions on Mathematical Software

available from IMSL.

%

NETLIB

Distribution of mathematical software
via electronic mail

Send fequests to
netlib@anl-mcs (on arpanet/csnet)
or

researchlnetlib  (from unix)

Advantages:

* rapid response (if you have good
connections to email network)

* Up-to-date software

* free (but someone will be paying for
the phone-calls)



NETLIB (continued)

Requests may take the following forms:

To obtain index to netlib and general
advice:

send index

To obtain the index from an individual
library (e.g. Linpack):

send index from linpack

To obtain one routine from Linpack,
with all the routines that it calls:

send ssifa from linpack
To obtain one routine on its own:

send only ssifa from linback
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NETLIB (continued)

Points to beware of:

* not to be used to obtain complete
libraries (only for selected
routines or programs)

* No support (bug reports forwarded
to authors)

* no claim for quality of software

Caveat Receptor!

Other information available:

Addresses of numerical analysts
Details of high performance computers
Linpack benchmark and programs
Errata to books on numerical analysis



NETLIB (continued)

Quick summary of contents

alliant - set of programs collected from Alliant users

apollo - set of programs collected from Apoilo users

benchmark - various benchmark programs and a summary of
timings

bihar - Bjorstad’s biharmonic solver

bmp - Brent's multiple precision package

conformal - Schwarz-Christoffel codes by Trefethen;
Bjorstad+Grosse

core - machine constants, blas

domino - communication and scheduling of multiple tasks:

Univ. Maryland
eispack - matrix eigenvalues and vectors
elefunt - Cody and Waite’s tests for elementary
functions

errata - corrections to numerical books

fishpack - separable elliptic PDEs: Swarztrauber and
Sweet

fitpack - Cline’s splines under tension

fitpack - Swarztrauber's Fourier transforms

fmm - software from the t?ook by Forsythe, Malcolm, and

Moler
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NETLIB (continued)

fn - Fullerton’s special functions
go - "golden oidies" gaussq, zeroin, lowess, ...
harwell - MA28 sparse linear system
hompack - nonlinear equations by homotopy method
itpack - iterative linear system solution by Young and
Kincaid
lanczos - Cullum and Willoughby's Lanczos programs
laso - Scott’s Lanczos program for eigenvalues of
sparse matrices
linpack - gaussian elimination, QR, SVD by Dongarra,
Bunch, Moler, Stewart
Ip - linear programming
machines - short descriptions of various computers
microscope - Alfeld and Harris’ system for
discontinuity checking
minpack - nonlinear equations and least squares by
More, Garbow, Hillstrom
misc - everything else
ode - ordinary differential equations

odepack - ordinary differential equations from Hindmarsh

paranoia - Kahan's fioating point test
pchip - hermite cubics Fritsch+Carlson
pltmg - Bank’s multigrid code

port - the public subset of PORT library



NETLIB (continued)

pppack - subroutines from de Boor’s Practical Guide to
Splines
quadpack - univariate quadrature by Piessens,
de Donker, Kahaner
siam - typesetting macros for SIAM journal format
slatec - machine constants and error handling package
from the Slatec library
specfun - transportable special functions
toeplitz - finear systems in Toeplitz or circulant
form by Garbow
toms - Collected Algorithms of the ACM
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PROGRAM LIBRARIES 2

Methods of Library Development

The purpose of this lecture is to give
some understanding of what is involved
'behind the scenes’ in developing and
maintaining a large subroutine library.

The ideas and methods should be of
interest to anyone who is involved -
either as an individual or as a member
of a group - in developing scientific
software of high quality which is
intended to be used by many people on
different types of computers.

Recommended reading:

Problems and Methodologies in
Mathematical Software Production,

ed. P.C.Messina and A.Muirli,

Lecture Notes in Computer Science 142,
Springer Verlag, 1982,




The Size of the Task

Mark 12 of the NAG Fortran Library contains:

688 documented user-callable routines
1420 routines altogether, including auxiliaries
(200,000 lines of source-text)

544 example programs (50,000 lines)
468 certification programs (100,000 lines)

Development of this software has involved the
collaboration of mare than 100 contributors, interacting
with the full-time staff of NAG.

This implies a need for central co-ordination, and
agreed standards to work to.

Preparation, revision and maintenance of such a large
body of software requires extensive use of Software Tools.
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The Nature of the Task

* To select numerical algorithms which are
useful o
robust )
numerically stable
accurate
efficient

* To design user-friendly Fortran 77 subroutines
* To develop software which can easily be transported
to many different computers without losing the -

desired accuracy and efficiency

* To develop suitable test software for certifying the
subroutines on each computer

* To prepare suitable documentation and means for
disseminating it



Selection of Numerical Algorithms Selection of Numerical Algorithms (continued)

Usefulness Accuracy
Depends on the application. How much accuracy is required?
| | Can you state how much accuracy will be achieved?
Robustness Many algorithms can achieve an accuracy which is as
good as one can reasonably expect, given the precision
The algorithm must either return acceptable results of the computer and the conditioning of the problem.
(for the intended class of problems), or must fail Some algorithms can return quite cheaply
gracefuily with a clear indication of the cause of
failure. Beware of: an error-bound,

an error-estimate, or
singular or ill-conditioned probiems a measure of the conditioning.
problems with no solution

overflow or underflow Occasionally special action must be taken to achieve
greater accuracy (e.g. iterative refinement, working in
For some types of problems (e.g. numerical quadrature higher precision).
which relies on function values only), no algorithm can
be 100% reliable: warn the users! Often only modest accuracy is required, and a cheaper
algorithm may be acceptable, provided that the actual
Numerical Stability accuracy can be stated (e.g. approximations of special
functions).

The algorithm must not be excessively sensitive to
small changes or uncertainties in the data, or to
rounding errors caused by computing in finite precision.
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Selection of Numerical Algorithms (continued) External Design of Subroutines

Efficiency An art!
How important is efficiency? Argument Lists
Beware of achieving efficiency at the expense of accuracy,
numerical stability or robustness! Choose a consistent scheme for ordering argument lists.
Don't fuss about details of the algorithm: look at the Much good numericai software uses the following:
overall cost (e.g. number of floating-point operations,
number of iterations, number of function evaluations). 1. Input arguments
2. Input-output arguments
If you measure the speed of an algorithm, or compare the 3. Output arguments
speeds of competing algorithms, remember that the results 4. Workspace arguments
may be heavily influenced by the computer, the compiler, 9. Diagnostic argument (e.g. INFO or IERR)

the compilation options.

Vector-processors have forced us to pay closer

attention to efficiency: details of the code can have a
dramatic impact. Even so, concentrate on the most heavily
used parts of the algorithm.

Y



External Design of Subroutines (continued)

NAG prefers a more refined scheme:

1. Option arguments (to define which task or
tasks are to be performed)
2. Arguments which define the primary data for the
problem (some may be overwritten by results)
3. Output arguments which return the rest of the principal
results
4. Arguments which control the computation (e.g. required
accuracy, maximum number of iterations)
.S. Output arguments which return information about the
cdmputation (e.g. actual number of iterations)
6. Workspace arguments
7. Diagnostic argument

Example: for computing eigenvalues and optionally
eigenvectors of a matrix A:

(WANTV, N, A, LDA, RLAMDA, V., LDV, NIT, WORK, IFAIL)

External Design of Subroutines (continued)

How to shorten argument lists

Users - reasonably - complain about long argument lists,
We would like to be able to use:

optional arguments
default values
dynamic allocation of work arrays (inside the routines)

but Fortran 77 does not provide these features
(Fortran 8x will, we hope!)

Various devices have been used in large libraries to
provide crudely equivalent features in Fortran 77: e.g.

use COMMON for 'optional arguments’ with default values
defined by BLOCK DATA within the library (Harwell)
(risk of user error, portability problems with BLOCK DATA)

use COMMON for workspace (PORT, IMSL) (requires elaborate
machinery within the infrastructure of the library; not
standard Fortran 77, though it nearly always works)



External Design of Subroutines (continued) NAG Option Setting Routines

combine 'less-interesting’ arguments into arrays (IMSL, others) Example: EO4DGF
option-setting routines (NAG) (again require elaborate finds an unconstrained minimum of a function of
machinery) N variables.
more than one level of interface, i.e. an *easy-to-use’ Calling sequence:
routine with a short argument list (for ‘naive’ users),
calling a ‘comprehensive’ routine with a long argument list CALL EO4DGF (N, OBJFUN, X, ITER, OBJF, OBJGRD,
(for ‘expert’ users) (never satisfies everybody!) IWORK, WORK, IUSER, USER, IFAIL )
Array Arguments Options:
For 2-dimensional (and higher-dimensional) arrays, the Estimated Optimal Function Value
leading dimension(s), as declared in the calling (sub)program, Function Precision
should be passed as separate arguments, e.g. Iteration Limit
Linesearch Tolerance
SUBROUTINE XXXX (N, A, LDA, . .. ) Maximum Step Length
REAL A(LDA,N) Optimality Tolerance
Print Level

Start Objective Check at Variable
Stop Objective Check at Variable
Verify Level
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NAG Option Setting Routines (continued)

To set options:

either

CALL EO4DKF (’Verify Gradients’)
CALL EO04DKF (’Print Level = 1)

or

CALL EO4DJF (7, INFORM)

with an options file on unit 7:

Begin * Example options file
Verify Level
Print Level = 1

End

L0

Transportable Numerical Software

We would call software 'portable’ if it could be moved
from one computer to another and continue to perform
correctly to the desired standards of accuracy and
efficiency. Usually this cannot be achieved.

We call software 'transportable’ if the changes required
to satisfy these goals are predictable and:

either few in number and localised
(e.g. a routine which returns the machine-precision)

or systematic and capable of being made automatically by
software tools (e.g. conversion from single to double
precision)

To achieve transportability we have to consider:

the programming language

the numerical computing environment
(arithmetic, elementary functions)

performance



Transportable Numerical Software (continued)

Programming Language
Use standard Fortran 77 with no extensions!

Except perhaps COMPLEX+*16 and associated intrinsic
tunctions (but it doesn’t work on all machines
where it is needed).

Even standard Fortran 77 does not guarantee portability:
notorious 'dodgy’ features are:

input/output

length of character variables

ordering of variables in COMMON blocks

How can you check for non-standard Fortran 777

Many compilers have an option to do this, but they may not
be totally reliable.

Use a reliable independent ool (e.g. PFORT 77 in Toolpack:
this also checks for dodgy standard features (as above)).
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Transportable Numerical Software (continued

Numerical Computing Environment

Use adaptable algorithms, i.e. algorithms which adapt to
the numerical characteristics of the computer on which
they are being executed. Relevant characteristics are:

the machine precision
the underflow threshold **
the overflow threshold *x*

++ Beware of a lack of symmetry between these thresholds,
and of unexpected failures in the elementary functions.
If U is the underflow threshold, then we would like to
be able to compute:

-U

1/u

SQRT (U)

LOG (U)

EXP (LOG(U))
and soon

but this may cause underflow, overflow or failure in the
elementary functions.



Transportable Numerical Software (continued)

Transportable Numerical Software (continued)

NAG uses a 'safe range’ value slightly larger than the
underflow threshold, which avoids these difficulties.
However determining the correct value is not easy.

The simplest way to make the values of machine
characteristics available is via function subprograms,
containing a simple assignment statement which can easily
be changed (NAG, PORT, IMSL).

Beware of anomalous behaviour of floating-point arithmetic
{e.g. on CDC machines) and of loss of accuracy in the
elemantary functions. You can test the arithmetic using

the NAG package FPV or the public domain program Paranoia
(by Kahan); you can test the elementary functions using

the public domain package ELEFUNT (by Cody and Waite).

Performance

To achieve high performance across a range of
different vector-processors as well as on scalar
machines, NAG's strategy is to make as much use as
possible of a small set of kernel routines for
matrix-vector operations, for which well-tuned
implementations can be developed for different
machines.

NAG has collaborated in specifying a 'standard’ set
of such kernel routines:

the Level 2 BLAS

(Basic Linear Algebra Subprograms).



Transportable Numerical Software (continued) Speed in mepaflops.:

FO3AEF (Cholesky Decomposition)
CRAY-1 (University of London Computer Centre)

NAG Library routines call Level 2 BLAS routines by their

BLAS names: N AXP | AXP2 | AXP3 | AXP4 | MXVA
(M12)
_ 50| 747 1 911 | 966 | 1022 | 1137
DO 60 K = 1, IR 100 | 1555 | 20.10 | 2270 | 2449 | 33.46
c Solution of LY = B 150 | 21.08 | 2781 | 3234 | 3532 | 53.04
s evar e 200 | 2494 | 3207 | 3001 | 4287 | 69.53
CALL STRSV('L’,’'N’,'N’,N,A,IA,B(1,K},] 250 | 27.67 | 3654 | 4371 | 4825 | 8079
c Solution of UX = Y 300 | 29.85 | 39.16 | 47.11 | 5220 | 88.63
350 | 3146 | 41.15 | 4968 | 5515 | 9478
CAL ‘Y, N’ U IA,B(1,K),1 :
L STRSV("U’,'N",’U",N,A, IA,B(1,K), - 400 | 3276 | 4274 | 5171 | 5753 | 9937
60 CONTINUE 450 33.81 44.10 53.38 59.42 102.71

500 | 34.66 | 4501 | 54.65 | 60.87 105.37

Hence NAG routines can be linked to optimized
machine-specific implementations of the BLAS, if

available.

23



Uo|susK (] weigodd
o9 0% oz

08

00l

(9
quary

[*%)

Library Infrastructure

Most large libraries include a certain amount of
infrastructure to implement basic design features e.g.

access to machine characteristics
provision of workspace
option-setting

optimised basic modules
communication with external files
error-handling

Most of these have been described in previous sections,
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Library Infrastructure (continued)

Error-handling

The simplest design is for routines to indicate their

success or failure by the value of an integer argument

(e.g. INFO). Usually
INFO = 0 indicates successful termination

INFO = 0 indicates failure (different values of
INFO indicate different reasons)

Some libraries have a more elaborate mechanism

to give users control over the action to be taken
in the event of failure

to give users more information about the failure

25

Library Infrastructure (continued)

The NAG error-handling mechanism: each routine has

an input-output argument IFAIL. Its value on entry
specifies the action to be taken:

IFAIL = 1

soft failure, no error messages
IFAIL =0

hard failure, with error messages
IFAIL = -1

soft failure, with error messages

On exit, IFAIL = 0 indicates succesful termination;,
other values indicate an error.



Library Infrastructure (continued)

Examples of error messages

»*k

* ¥k

*%

* %K

ok

*k

On entry, M.1t.1: M = -255
ABNORMAL EXIT from NAG Library routine CO6FPF: IFAIL =

NAG hard failure - execution terminated

Bad integrand behaviour occurs around the subinterval
{ 7.3193359E-01 , 7,3242188E-01 }
ABNORMAL EXIT from NAG Library routine DO1AKF: IFAIL =

NAG soft failure - control returned

Most users seem to prefer a fairly simple, but informative
error-handling mechanism.

Test Programs

Different stages of testing:

* Testing an algorithm for correctness and evaluating
its performance

* Testing the correctness of the software as a realization
of the algorithm ('certification’)

We concentrate here on the latter.
Certification programs should be designed to detect:

corruption of source-text

errors in transformations performed by software tools

errors in compilation

errors in manual amendments to the code

faiture of the algorithm to adapt satisfactorily to
different machine-characteristics
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Test Programs (continued)

Design guidelines:

exercise all the code (use a dynamic analysis tool to
check for this)

test for 'edge-effects’ (i.e. when some elements in the
data take extreme values or satisfy some exceptional
condition); in particular, test all error-exits, and
special cases liken=0o0rn =1, or f(x) = 0 for all x.

make the program check the results automatically

choose test problems which are no larger nor more complex
than necessary

Note: there are extra difficulties in trying to achieve these
aims on several different computers. E.g. a problem that is
too ill-conditioned to be solved on one computer may be
soluble on another: therefore use a sequence of problems of
increasing ill-condition.

Test Programs (continued)

Try to take advantage of compilers which provide run-time
checks for: '

array-subscripts out of bounds
use of unassigned variables

To write suitable certification programs is fairly easy in
some areas of numerical computing (e.g. linear algebra,
FFT's); it is much, much harder in others (e.g. O.D.E.’s,
non-linear optimization).



Documentation

For small software projects, the simplest approach
is to keep all documentation in machine-readable
form, in ordinary text-files (either embedded in the
source-text or in separate files).

Text-processing utilities such as troff allow more
elaborate documentation to be printed off as users
require, but they are by no means universally
available.

Printed documentation is likely to be worthwhile only
for commerecial libraries or for the most heavily used
software (e.g. Linpack).

NAG'’s printed documentation is prepared using a
typesetting program TSSD (developed at Harwell).

Other tools are used to derive, from the same textual
data base, an abbreviated form in ordinary text-files
for use in the On-line Information System.
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TOOLPACK /1
A SUITE OF FORTARAN

oUPPORT TOOLS

Contents -

1. FORTAAN ANALYSIS
e.g. Portability Verifier

e. FORTRAN MOOIF|ERS
e.g. Palisher
Name Changers

J. ODCUMENTATION SUPPORT
e.g. Text Formatter



TOOLPACK /1

EVOLUT ION

Project Started in 1979

Funded by -
USA - National Science Foundation
Oepartment of Energy
UK - SEAC

Organisations Invalved
University of Calorado
(Prof. Osterweil and col leagues)

Others

Argonne National Laboratary
Bell Communications Aesearch
Jet Propulsion Laboratory
University of Arizona

Purdue University

NAG Ltd.

TOOLPACK PROJECT AIMS

1. To provide a suite of tools to assist the
production, testing, maintenance and
transportation of medium sized mathematical
software praojects written in standard
conforming FORTAAN 77.

2. Ta investigate the development of extensible
pragramming support environments built around
integrated toal suites.

Notes:

25

A Standard conforming FORTAAN 77.
B Interactive Use (but with batch capability)
C Facilities for documentation etc.

0 Portable across a wide spectrum of host systems



TOOLPACK/1 - Public Releases

NAG Ltd. took over responsibility for the public
distribution of the results of the Toolpack project.

Some considerable effort was required to integrate
the various parts of the research project into a form
suitable for general use.

Early in 1985 the first release of Tooipack became
avalilable. By the end of last year about 400 copies
had been distributed wor!dwide.

In the meantime further research funded by the SERC
led to new tools. Some improvements were also made to
the existing too!s. This resulted in Release 2 of
loolpack/1 in January 1987.

There are now over B0 tools in the tool suite.

TOOLPACK /1 ig:
Public domain software

Normaily provided in source form

Also avallable are easy to install versions for:
VAX/VMS  (Executabies)
Unix (Source and makefiie)
Apollo Oomain (Executables)

3

ANS|

TOOLPACK /1 TARGET FDATRAN

STANOARD FOATAAN77

with the following extensions:-

-

Upper, lower and mixed case, # and underscore

in names
* Extra data types:-

INTEGER*2 OOUBLE COMPLEX
LOGICAL*2 LOGICAL*1
REAL*16 Holleriths

HEAL*8 etc. are also recognised

LT .

No limit on symbclic name length
Tab in initial
Non numeric comment indicator

label field

Use of non-standard features is still detected by
the analysers.
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TOOLPACK /1 TOOL SUITE T00LPACK/1 TOOL SUITE

ANALYSERS GENERAL TOOLS
Lexer Command Executor
Parser Oata Comparisan
Semantic Analyser A Fortran Aware Egitor
Portability Verifier ' Merge Inc{ude Files
Fortran Qifferencers (23 Pattern Finder
Macro processar
File Splitter
THANSFOAMERS PFS File and Qirectory Save/Restore
Text Differencer
Name Changers (3) Version Contral ler
Oeclaration Standardiser
Pol isher
Precision Transformer DOCUMENTATION
Structurer
Aea! Number Standardiser Text Formatter
Generic to Intrinsic Canverter Fortran Analyser and Report Generatar

Format statement string standardiser
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TOOLS - BASIC ANALYSERS

* ISTLX - Lexer or Scanner

* ISTYP - Parser

* [STSA - Semantic Analyser

These toals are the first steps in making
available the more compiex functions of the
other tools

The simpier tools require only [STLX

More complex tools require 1STLX and [STYP

The Portahility Verifier reguires ISTLX, ISTYP
and [STSA

3L
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[ STLX
Lexer

Input:  Source

Output: Taoken Stream

Fortran Input Program
00101=1,10

10 READ* X
END

Token Stream

0 W [0 60 0 e
10 | [READ ][]

END| leos

Integer values represent the various token types.
Some tokens have a vajue associated
€.g. TNAME "|"

TDCNST "0



[ P I

|STYP
Parser
Input:  Token Stream
- Output: Parse Tree
Symbol Tabie
PARSE TREE
AOOT--~--- MAIN------ 90 -------- Lbfef=10
E DOéPEC ------ NaTe=I
| ICONST
E ICONST 10
HEéD ———————— La?el=10
i T - ASTERISK
g Na$e=
ENﬁ

14

| STYP

SYMBOL TABLE
1. String Table
Text of the symbaols
2. Symbol Table
Symba! type

Symbol name painter to string tabie
Further attributes depending on symbol type

The parser also creates a Comment Index, this relates
comments to parse tree statements.

The vast majority of toolpack toals work at the
parse tree / symbol table level.
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| STSA
semantic Analyser

Input: Parse Tree
Symboi Table

Jutput: Extended Parse Tree
Extended Symbo! Table

* Does checking for conformance to the Toolpack/1

target Fortran standard

* Adds further information to the parse tree and

symbo! table

e.g. Hecognises
1. Constant sub-expressions
2. Unsubscripted arrays

* Creates an attribute file. Pointers are added to
the parse tree to access attribute information

e.g. Program unit interface information

3¢
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| STPL
Palisher

(nput:  Token Stream
Output: Source

(nput praogram

PROGAAM TEST
0010 1=1, 2

IF C1.EQ.1) THEN

X=2.0
ELSE
X=15.0
ENDIF
10 CONT INUE

END



[ STPL

Output program

PAOGHAM TEST

0010 1 =1,2
IF C1.EQ.1) THEN
X=2.0
ELSE
X = 158.0
END IF
10 CONTINUE
END
JPTIONS
Spacing
Re-labelling

Line breaking

Case
Continuation symbol
etc. etc.

Options can be set by an interactive program.

The default values will be acceptable to most users

Source to Source Monalith:

ISTLP
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Input:

[STST
Structurer

Parse Tree

Output: Source Code

Input program

10
200

210
220

SUBROUT INE XXX
A=1

IF (A.EG.B .OR. C.EG.D) GATO 200
00 10 C=1,10
0=1

IF (E) GOTO 220
CONT INUE

D0 210 F=1,10
G=1 :
CONT INUE

CONT INUE

END



| STST

Output Program

SUBROUTENE XXX

A=1
[F (A.NE.B .AND. C.NE.O) THEN
D0D10C=1,10
0=1
[F CE) BETURAN
10 CONTINUE
END |F
D020 F = 1,10
G =1
20 CONTINU
END

ISTST is a monolithic tool that rebuilds the flow of
control of the program, canverting it internally to
token stream level . Finally the polish routines are

called to output the source level structured and
palished program.

Recommended tool sequence: ISTLY - ISTST
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|STPT
Precision Transformer
[nput: Parse Tree
Output: Token Stream

Transforms single to double precision and vice-versa

- Input Program

REAL X

X=0.5

PRINT 9000,X

Y=AMAX1(X,0.01)
9000 FORMAT(E10.6)

END

Output Program

DOUBLE PRECISION Y

DOUBLE PRECISTON X

X = 0.500

PRINT 5000,X

Y = OMAX1(X,0.0100)
9000 FOHMAT (D10.8)

END

Source to Source Mangolith: FSTAP
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| |STOS
Declaration Standardiser

Input: Parse Tree
Output: Token Stream

1. Rebuilds declarative statements, declaring all
names in a standard form.

or :

2. Declares all undeclared variables.

Input Program
SUBROUTINE SUBCA,B,C,I1)

OIMENSION X(100)
COMMON /T1/N2,R3,X

W=A+B+C
{=11%10
V=X(1)
Y=FUNCCW, I ,V)
PRINT Y
END
Source to Source DECS: ISTAD
Saurce to Source Precision Transformation
and DECS: ISTAT - ISTDT
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Butput Pragram

C

3¢

SUBROUT INE SuBcA,B,C,11M
.. Scalar Arguments ..
AEAL A,B,C
INTEGER (1
.. acalars in Common ..
REAL A3
INTEGER N2
.. Arrays in Common ..
REAL X(100)
.. Local Scalars ..
HEAL V. W)Y
INTEGER |
.. External Functions ..
REAL FUNC
EXTERANAL FUNC
.. Common blocks ..
COMMON /T1/N2,A3,X

W
l

A+B+C
11¥10

V = X(I)

Y = FUNCCW,!,V)
PRINT Y

END

LU | S T T )
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- | STPF
Portability Verifier

Input: Extended Parse Tree
Output: Reports errors

_ISTPF checks that the program conforms to 3 subset of
the ANSI standard that is known to be portable.

Input Program

PROGRAM TEST
00 10 X=1,20
AEAD *+.Y

10 CONTINUE
END

Report
* Error(s) have been detected by PFORT-77 ¢

Error: D0-loop index X not INTEGER in TEST
Warning: Variable set but not referenced - Y in TEST

20

| STPF
Checks made by [STPF

* That the program conforms to the ANS| standard

Pius :

* A COMMON block must nat appear in more than one

BLOCK DATA subprogram

* In a COMMON block COMPLEX and DOUBLE PRECISIDN
should come first

A 00 loop must have an integer contral variable

Saving of COMMON blocks is checked

etc.

L A

Inter Program Unit Communication
Unsafe references

* Constant or expression assaciated with a dummy
argument which can be changed.
* Actual argument associated with 2 dummy arguments.
* Actual argument is in a COMMON block accessed by
the called subprogram, one of which is modified.
* An actual argument is an active 00 loop index and
. the associated dummy argument may be changed.
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TOOLPACK/1 - Conclusions

Toolpack/1 provides a suite of software taols to aid
the Fortran 77 pragrammer in:-

- Fartran Analysis and Standard Checking

- Program standardisation

- Automated transformations

Toolpack/1 is Public Domain Software that can
potentially be instalied on aimost any machine.

Easy to install versions are available on some
machine ranges.

THE FUTURE OF TOOLPACK /1

Nag Ltd is actively working towards software tool
support for Fortran BX.

A new definition for the portability base will ease
the installation task.
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