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ERRATA CORRIGE

pg. 5: L=PF in eq.(9)
pg. 9: below eq.(15) : %p(p+1)=# %(p+1)(p+2)

pg- 19: please replace with new pg-19 (see back side)
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Introduction

The Finite Tilement Method (FEM) was invented to solve the complicated equations of elasticity and
structural mechanics, two arcas in which it has rapidly gained the role of leading computational technique.
The merits of the method become particularly evident whenever the geometry plays an important role and
the power of the computer is necded not only to solve a given problem but also to formulate and assemble
it in a systematic and well organized way. This motivates the popularity of this method among engineers,
However, the Finite Slement Method is a powerful tool in general and conscquenily we believe that a
knowledge of its main lcatures deserves some attention also among the physicists community. In these
lecture notes we present the basic features of the Finite Element Method with specific regard to the solution
of ordinary and partial differential equations.

‘These notes arc meant lo serve as an introductory survey for those who wish to get acquainted with the
subject without having any prior knowledge of it. The reader intcresied in a deeper and complete treatment
is referred to the huge literature available on the subject. In particular, the following referenices are
recommended.

1. Al Davies, The Finite Element Method, Oxford University Press, London, 1980.

2. G. Strang and 1. Fix, An analysis of the Finite Element Method, Prentice-11all, Englewood Cliffs, 1973
1. O.C. Zienkiewicz, The Finite Element Method, 3rd ed., Mc Graw 1lill, New-York 1977.
These notes are subdivided in two main sections: the first one is essentially dealt with the exposition of
the basic ideas behind the theory of the Finite Flement Method. In the sccond part, we discuss in some
detail the application of the method to three equations of particular interest in Physics and Engineering,

notably a one-dimensional Sturm-[iouvilie problem, a two-dimensional (lincar) Tokker-Manck equation
and a two-dimensional (nenlinear) Navier-Stokes equation.
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Part: I- Theory

Let us consider the problem of finding a function (¥) obeying the following partial dilferential equation:

n
Dusm ) dAylE, wiu=f 2 m
=1

where £3 i 2 D-dimensional domain in R (D = 1,2,3), M its frontier on which the boundary condition
Au+ ua,,u_= g (2

is imposed. In the above cquation dy is the outward normal derivative along A} and A, p and g functions
defined in 90).

The ultimate goal of any numecrical icchnique aiming to solve the egs.(1-2} is 10 transform the differential

problem into an algebraic one and then demand its solution to the computer. To this end, several
approaches may be conceived; let us roview the most important ones.

Global Projection Method

If the domain €3 is particularly regular (a square, a sphere ..) and the function Ay (%, u) arc simple enough
(for cxample constants), the equations (1,2) can be attacked by a scrics-expansion of the form:

N
W@ = Y vy B® )
a=l

where B,(%) is & suitable sel of complete, orthogonal and orthonormal basis functions.
By plugging the expression (3) inlo cquation (1), and projecting sysiernatically again onto the scl of

functions B, m = 1,..N we obtain a corrcsponding sct of algebraic cquations

N
Y Dot =1 *

where Doy = (80,0 Bw) and fo = (/i Bm). (.. ) denoting the scalar product in the subspace iy
spanned by the “vectors™ B, 3.0y

Part 1- ‘Theory 3



The eq.{4) can be salved numerically to yield the sequence of values u¥(moments) and consequently the
sought approximnate solution 1u™(x) via eq.(3). Of course one cxpecls that by rising the number of moments
the approximate solulion will get closer and closer to the exact onc. Unfortunaicly, this is not always true
in practice because of numerical problems which inhibit the progressive refinement of the solution predicted
by the theory. The numerical “illness” of the method traces back 10 the giobal nature of the basis functions.
"Y'o see this let us remind that global basis functions such as Hermite, Laguerre, Legendre polynomials are
orthogonal, i.c. their Graham matrix is diagonal:

(Bn+ Bm) = Bpm &)

This is a very important property because, were it not like that, the matrix Dy would be full and very
expensive to be solved. On the other hand, in order to cnsure orthogonality, since these function are
global, they must change sign in their sct of definition 3o that their scalar product includes many contri-
butions of opposite sign. Analytically these contributions sum exactly to 2ero, but in practice they never
do it exactly because of the cancellation errors, This may quench the effective refinement of the solution
one would expect by rising N.

We now see both faces of the medal: globality is good because it may allow it 10 capturc the easential
physics with only a few degrees of freedom. I lowever, globality is also "bad"” becausc in order 1o keep
orthogonality it may force the equations to be numerically ill conditioned.

Finite Difference Method (FD)

A quite different approach is adopted in the Tinite Difference Method, Here, onc gives up with the idea
of selecting & few “good” degrees of freedom at the outset and looks instead for a collection of a high
number of Jocal degrees of frecdom. These are the values of the unknown on a discrete set of points
(%1s .......Xx). Consistently with this discretization, the differential operators are replaced by the corresponding
discrete version. As an example, in a one-dimensional lattice we have

- 2 - 2u
%—o A’u=_'——---——("‘“|’I ) ﬂx—’;—uﬂaus—-————-—'——(%ﬁ ’::‘ 4-1) 6
Consequently, the eq.{1) will transform to & difference equation of the form

N
'z_lll’u"; =k Q)

where 1 = u(x)) and Dy is a matrix of the same type as A' and Al Note that these matrices are very

sparsc (only a few non-zero elements per row); for example, for N = § the matrix gencrated by df dx
reads as:

Part 1- Theory 4

1
0
{1/k) 0
0

Again, one expects the solution of eq.(7) to reproduce the exact one in the Himit A — 0 since the emor
done in replacing —— with A* is of order O(h). In fact, this eror is proportional to the departure of the
function w(x) I'mnﬁlx . linear behaviour in the interval (x,x + A). Higher accuracy can be achicved by
adopting cenlered differencing; for example the replacement

( - th_
%_’ "ul”'”l 1) ®

is readily verified to give second order accuracy if the mesh is uniform. In any case, it is clear that in order
for the FD method to work successfully the mesh discretization must be fine enough to prevent the
solution from suffering too rapid changes within a mesh cell size.

FD is a powesful technique but it suffers of some drawbacks.

& Mesh clustering, requiring uncentered differencing, implies loss of accuracy

+ Boundary Conditions are not easily handled if the boundary of the domain docs not fall on a coordinate
line

‘These problems can indeed be aatisfactorily circumvented by the so called “Finite Volume” technique
which is however already a way to go to the Finite Element Mecthed philosophy.

The Finite Element Method (FEM)

The Finite Flement method may looscly be viewed as an intermediate technique between the two oncs
previously mentioned. In fact, in FEM the two notions of globality and locality are both retained, albeit
in a peculiar sense, as we arc going lo discuss. 1ct us start with glohality. As is known, many problems
in Physics and Fingincering can be formulated in terms of variational principles.

Mathcmatically onc defines s functional of the unknown ficld 1(x, y) as
i) = In L(u, ug, u, .. )dxdy ©)

and shows that in order for 7 to atlain an extremum, the ficld must obey the Fulcr-Lagrange differcntial
equalion: B

Fo— (B~ (F), =0 (0

Part I- Theory 5



where subcripts denote partial derivatives. As an example, by taking L = (1 IR0+ u}) we oblain the
Poisson’s equation iy + 1y, = 0. This comrespondence suggests thal there is a way o look for approximate
solutions of the problem (9) by working directly on the functional (10), that is on a quantity which
sensitive 1o the global behaviour of the function u(x, »n.

An immediaie advantage of this stralegy is that while the solution of the Fuler-lagrange equation must
be continuous up to the sccond derivative  the minimization of the functional I can be achieved by
requiring only the squarc-integrability of first order derivatives. Thus, the salution we are looking for is
somehow "weaker” in the scnse that the convergence is defined in the sense of distributions, je. ina
broader functional space.

Ritz Method.

When the functional [ is positive definite its minimization constitutes a well-posed problem which can be
solved by expanding the unknown function onto a set of basis functions, the cocflicients of the expansion
being the parameters 1o be adjusted for the minimization. 1Towever, even when the differential operator
is not positive definite and sclf-adjoint, one can resorl o a similar strategy which is known as

Weak Formulation (WF).

This reads as follows; "
Let ¥ be an clement of a certain funclional space 7f; (v is usually referred 10 as test function) the WF of
the problem (1} is:

Find u in H such that for any v in Ji;
BuwsmPu-f=0 an

llere the notation bu, ¥) stresses the idea that the scalar product ia a bilinear functional, {which needs not
be positive definite ). [t should be noted that the above cquation is “weaker’ than its classical counterpart
eq.(1) in the scnse that any solution of (1) is also a solution of (11) but not viceversa. In fact eq.(11)
replaces a requirement of equality between Du and f with a statement of orthogorality between the teat
function v and the residual r = Pu— f. In a geometrical sense, ¢ is forced to fie in the functional space
1T 5. 1he orthogonal complement to Hy = span{vy, ... va) (i + Ty = 1). Thus, by rising N, r is forced
10 }ie in a narrower and narrower functional sprace which, in the limit N -+ © becomes empty. Obviously,
the residual r, belonging 10 an empty set, is forcod to vanish!

Part 1- Theory 6

A.]'3

A

Fig.1; Geometrical representation of convergence

The weak formulation has a general significance and is not tied to any specific choice concerning the
functional space H to be adopted for the minimization of the functional 5. ‘The FEM represents indeed
one possible way to make such a choice.

The method consists basically of two sicps

* Geometrical approximation

* Polynomial approximation

Geomeirical Approximation

The first step consists of repl:cini the domain §2 with a comesponding computational domain £l obtained
by partitioning £ into a set of N, disjoint subdomains (eferments) £ such that

N,
ny=0, 'l_JIﬂl ={1.

Note that £2 and ), need not coincide: they certainly don’t if £2 is unbgunded or if its boundaries are not
conformal to the geometrical shape of the subdomains £

£1g.2; FEM Triangulation of the computational domain

Part |- Theory 7



On each vertex (node) %; we place a function W(¥) which is equal to one at ¥ = X; and zero outside the
simplex 5; defined by the union of all the elements €2, that share %; as a common vertex (See Fig. below)

e L A —— -4
L 3 -n‘l'
e R 4
Mo
a4 N
pmm- e 4

F#9.3; A rectangular support and 1ts surrounding elements

In the current terminology, S; is cafled the support of the finite efement 41
In general

c
S=Uq,

c=t

where C is the coordination number of the lattice (i.e. the number of links out of a nodal point). For
example, in the case of figure above, we have C = 4.

Piccewise Polynomial Approximation

Inside its support the function 'y is taken in the form of a picce-wise polynomiat of degree p
WF) = My(x), XeSs (12
Y(F)=0 elsewhere | (3

with the constraint that I'I,(xj) = 3y . that is T1; is onc on the centroid of ity support and zero on its
vertices. Consequently, IT; can be cxpressed as a superposition of C polynomials of degroe p each of which
- is non-zero only outside ). € §;. These palynomials are oficn calfed "spline™ functions. Thus each finite
clement ¥ is the sum of the spline functions associated with the cnsemble of the clements which form its
support.

Wc‘are alrcady able to appreciate the flexibility of this approach with respect 1o the geometry: a proper
choice of the shape of the subdomains €3y, for cxample triangles, allows it to accurately approximate very

complicated geometrical shapes. This is the main motivation for the success of FEM in engincering
applicationa.

Fach finite clement can be’ regarded as a “unit vector” in the functional spacc /fy = Spar(¥|, .. ¥\

gencraled by_ paving the computational domzin with the {)s. Note that, contrary to the elements £, the
supporis S, in general do overtap. This means that in general the st of approximating functions is only

Part I- Theory 8

“nearly” orthogonal in the sense that the scalar product {¥1,¥)) is diffcrent from 7ero only for those values
of } associaled with the neighorhood of /. Obviously this neighborhood includes S finite clements, § being
the number of vertices of the support ;.

As a result, the notion of locality is again restored and the matrices generated by IEM arc sparse as in
the FD method.

Having defined the approximating subspace, it is now natural 10 look for a solution u{x, ) in the form
., :
wx,) = Y u¥x.p) (14)

Given the fact that 'Pi(¥)) = &y we recognize that the cocflicients w are the values of the function w(x, »)
at the nodal points. Un the other hand, it is intuitively clear that as the degree of the interpolating
polynomials ix raised, the FEM representation should give more information than simply the nodal values
of w. To fix this point concretely, let us consider the case of triangles 7; = ;. The restriction of wx, p)
to each triangle, say w(x,y) reads as follows:

L4
wlxp) = 3 hyxy’ ' (19

We see that in each triangle we have p(p + 1) /2 cocfTicients Wgri, i.e. DF = p{p + 1) /2 degrees of freedom.
These can be exploited 1o apecily

¢ The values of the function cn nodal and internodat points {Lagrange interpolation)

* The values of the function and its derivatives at the nodal points (1fermite Interpelation)

With p= | we have DF =13 which means we can only compute the vahie of the function at the three
nodal points. With p = 2, DI'=6 so that we can additionally computc the valucs of the function al the
miid-points of the sides. With p = 3, DF = 10 and can cither compute the tri-section nodal values (1.agrange)

plus the value at the cenier or the function together with its gradicnt on the nodal points plus the central
value (llermite interpolation).

prd p=2 p=3
Fig.4; Lagrangfan interpolation with triangular elements

We see that rising the valuc of p is tantamount to refining the original grid and should therefore increase
the accuracy of the method.

Part |- Theory 9



Convergence

These heuristic considerations have a mathematical counterpart in a scries of thcorems stating the depen-
dence of the FEM crror as a function of the upper size Ay (the diameter) of the clements £y,

To this purpose, onc introduces the Sobolev space Hy defined as the space of the functions which are
square-integrable up to the k — th derivalive,

Hy = J@? + w? + u®ydx < o) (16)

Note that the scquence [y is mutually inclusive, i. ¢. dg = I = M. > Hy
Typically, the cror measured in Hy scales hke

Eh ~ g0 (n

which shows that in the “largest” subspace Ifg ( the familiar Hilbert spacc ) the method has p + 1-th
order accuracy.

A question arises on which value should one choose for p. The trade-off is clear: by rising p one enhances
the convergence rates but obviously it also increases the computational work. The choice is by no means
universal and must be selected case by case. In principle, a “profcssional” code should contemplate scveral
options for differcnt types of elements, especially when the problem is so complicaled that no underlying
convergence theory exists,

In any case, it is worth stressing thal the error scaling with & is independent of the uniformity of the
mesh. This means that one can accumulate and rarefy nodes in different regions of the computational
domain without loosing the overall accuracy of the method. The mesh-densification strategies, usually
suggested by the physical phenomenology, may be very effective in saving computing time and storage.
in engineering applications this is so important that the task of generating the mesh is entircly demanded
to a scparate program (pre-processor) to be run interactively scveral times before the submission of the
“physical” job.

Boundary Conditions
Boundary conditions are usually divided into Iwo basic classes
® Natural

® [issential ’ .

Ry natural one rcfers to the fact that they can be automatically buili-in in the variational formulation
without introducing -any constraint on the approximating functional subspacc. Typical cxamplcs are
Neumann boundary conditions in which the surface contribution anising from the intcgration by parts is
discarded at the outset and consequently does not appear at all in the functional b, v). Lssential boundary
conditions are those for which such a simplification does not occurr. Typically, Dirichlet boundary
conditions arc essential. ’

We are now in a position to summarize Lhe main merits of the method

Part 1- Theory 10

1. The notion of globality is retained through the weak-formulation

2. The loeality, i. ¢., the sparsity of the matrices is ensured by the very definition of the finite elements
that are non-zero only inside their support.

3. By a suitable choice of the elements complicated geometrical domains can be approximated accurately.
4. Boundary conditions are handled in a systematic way

Point 1. is important because it guarantecs that the method s optimal in the serse of the weak formulation,
i.e. from a global point of view. Point 2. ensurcs the sparsity of the malrices without paying the price of

i1}-conditioning” that affects the projection methods based on global functions. Point 3. and partly point
4. are the keys of the success of FEM in all those applications where the geometry plays a dominant role.

Part 1- Theory il



Part 1I- Applications

In this sccond part we offer some examples of the application of FEM to three equations of Physics:
* A one-dimensional Sturm-Liouville problem
® A two-dimensional Fokker-Planck equation

* A two-dimensional Navier-Stokes equation

Application N.I: Sturm-Liouville in one dimension.

Let us consider the following one-dimensional Sturm-Liouville problem:

=(Px)yY +qlx)y =0, (px), qlx) > 0) (18
(prime stands for 4/ dx) with Dirichlet boundary conditions:

w0) = a,u()= b {9
Fquations (18-19) constitute the strong formulation of the problem; for any regular function flx) one

Inoka for a solution u(x) at least differentiable twice. The differential cquation (18), however, is the Euler
equation for the following extremum principle:

I = I: (' + qytydx 20

Since only the function and its derivative are involved, the functional space over which the minimization
is 10 be carried on, can be made up with piccewise lincar clements (“hat” functions ):

X — X
alx}= x—x m-1<x<xn : @n
al ko B
elx) = =5 % <X <Xy (22) .
g(x)=0 elsewhere ) : T
L]
Part 11- Applications 12

Thus, we look for an approximate sofution in the form:
»-1

Hx) = aelx) + 3 pelx) + bey(x) {24)
=1

where the boundary conditions have manifestly been foreed in by imposing jp = @ and py = b. Clearly,
this solution is continuous but not diffcrentiable.

Fig.5; FEM representation with hat functions

By inscrting the expression (24) in (20), the functional / becomes a quadratic function of the amay u..uy
whose minirmum is determined by the condition :

al '
=10 (25)
o

It easy to verify that the above condition translates into the following set of algebraic equations:
[l }
z."’" + Oy =4; (26)
” .

where
Py= _[.I ef{x)p(x)e;(x)dx @n
0y = § emiatorgardx (28)
fi= §) Axsetards — abyy Py + Gp) ~Bowy- 1Py + @) )

A number of important propertics of the matrices P and ( can be established mdcpcndcnlly of the apecific
values of their clements; these arc:

® symmelry

Part Ii- Applications 13



® positive definitiness
® sparsity
Symmetry, which is readily verified by exchanging { and j in the above expresstons is a direct consequence
of the sclf-adjointness of the Sturm-Liouville operator. Positive definitcness stems from the inequality
LA | 2
f o’ + @hax >0 (30)

and sparsity is due to the fact that the basis functions arc localized. More precisely, since each basis
function ovetlaps only with its nearest neighbouts, only the elements (i,i — 1}, (. 0) and (4, ¢+ 1) are
non-zero. Thetefore PP and @ are tri-banded matrices, as depicted below.

DR
LDR
LOR
LDR L €= D --->R
LOR
LDR
LDR L: Left
LDR 154 Diagona]
LD R: Right

Fig. 6; Tridiagonal matrices generated by the Sturm-Liouviile
problem

This properties make the system (26) particularly well-behaved and cheap 1o solve on a computer. In
terms of storage we only need three arrays, thal is 3N computer ‘words (in fact just 2N because of
symmetry). The best solution algotithim is the LU decomposition which in this particular case reduces to
a double recurrence known as the Thomas alghoritm, requiring roughly 6N floating point operations.
Computing the matrix clement

According to the definition of the hat functions ¢, the matrix elements become:
Py = j"‘l' ei(xplx)ej(x)de , Q)= j."“' o(x)qtx)eix)dx [&1)]
- -1

These integrals may rarely evaluated exacily on analytical grounds. Tiven when this is the case, it is
preferable lo compute them by a numerical quadrature technigue which has the advantage of being more

flexible and general. The most commonly method adopted is the Gauss quadrature in which the integrals
are replaced by weigthed sums

Part 11- Applications 14

a
[ Axdx = 'E_‘.Ittx,)w. (32)

where xy, wy arc the Gauss nodes and weights respectively. The G-point formula is exact for polynomials
up to degree {(2GG — 1). In practice it makes no sense (o push G to higher values than those required to
ensure the same accuracy of the averall discretization procedure. So, for lincar finite elements which yield
second order accuracy (7 = 2 is perfectly in order.

From the practical point of view, the matrix cocfficicnls are best evaluated on 2 clement-by-clement
ground. For each interval I; % (x;, x;4+1) we count {our contributions

. ‘“A) = Ay

® rlA) = A

* haald) ® Areyy

® diyq{A) = Ay 1y

where /, d,r stand for “left,diagonal,right” respectively and 4 is a generic matrix. The matrices P and
can thus be assembled once forever with a single pass through the mesh, ( a single DO-LOOP ) in a faidy

sound and systematic way. It is now instructive to examine the case in which p{x} and g(x) arc both
constant, say py and qy. The maitrix elements take the simple form:

Pu“mﬁ(—l 0 1) = pylKis g, K Kig ) *
1
Q.,-g,%u 4 )= @My My My ) o

The matrices M and X are usvally referred to as the “mass” and “siffness” matrices respectively, These
denominations become clear if one considers that the finite clement discretization (always with “hat’
functions) of the wave equation ( think of u as to the vertical displacement of a onc-dimensional string )

Uy = Ugy = 0 (3%
reads precisely:
N . N
LMyl = 3 Ky (36)
i=1 =

It is also worth comparing ¢q.(36) with the corresponding finite difference version:

d=h Mgy — 24ty (37
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We sce that, apart from a common [factor A, the stiffncss matrix is exactly the same, while the mass matrix
is not. In patticular we have:

h
My EE(BUH + 45, + 8y y) (38)
1o be compared ( afler the division by a common factor A ) with
M§P =5y (39
The latter expression shows that in FEM each node i “gives” part of its mass=inertia to its ncarest

neighbours, in such a way that cven tocal operators (i.c. operators with no differential structure) give rise
to non-diagonal matrices. Note however that the IFD) and the FE matrices are equal in average;

) 3
FD FE
YMEP =Y M) (40)
=1 i=1
This way of averaging is associated with the non-orthogonality of the basis functions. In fact the mass
mateix MGF = (¥;,'¥;) is diagonal only if the basis funclions are piecewise constants.

Diflerently restated, the eq.(36) is the Finite Difference version of the following integro-differential equation
ath
j._.u“dx —u, =0 41

where the integral is evaluated with the Sympson mule. The FD discretization of uy, is second order
accurate: we then realize that the averaging is somehow a "trick" to cnsure the same accuracy aiso for
the u, term.

As a general remark, we can say that any FT discretization has a F'I) counterpart on a corresponding
“averaged” equation. The point is that with ¥D a certain experience is needed to find out the appropriate
scheme ensuring the desired level of accuracy, whereas with FEM this comes along in a much more
systematic and sound fashion through the initial choice of the approximating subspace.
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Application N.2: Fokker-Planck Equation

In this section we consider a much more difficult problem with respect 1o one examined in the previous
case.
The problem is to solve the following advection-diffusion equation in two dimensions:

af+ dv=0, J= —(Rf+Dgradp) ,inR (42)

with boundary conditions

Jeh =0 along OR 43
R being & two dimensional rectangular domain, A the outward normal along the boundary. Such an
equation is often encountered in physics; in particular it is very popular in Plasma Physics to describe the
kinetic evolution of the electron (ion) distribution function.
This problem shows the following difficultics with reapect 1o the Sturm-Lioville problem:
& Time dependence
* Two dimensionality
* Non sclf-adjointness
In particular, non self-adjoininess siems from the presence of the advective term Ef, which prevents the
possibility of finding a functional associated with £q.(42) endowed with the property of positive definitencss.
“This forces us to abandon the Ritz minimum principle in favour of the more general weak-formulation

outlined in the first part of this lectures.

Il g is a test functlon in the Tlilhert space I/(R), the weak form of the eq.(42) reads as follows: "For each
g belonging to IX(R), find f such that”

(g2 + dvly = 0 (44)

Alter integrating by parts and discarding the boundary contribution in force of the Neumann boundary
condition, this becomes

(8.3~ gradg o J) = 0 (45)

We now took for & time dependent solution in the form
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N
Auv = _Zlﬁm%(u. v (46)

where i is a two dimensional index and w, v are the components of the velocity along x and y. By plugging
tl}e W-(‘!f’) into o.q.(45) a_nd identifying g with ¥, for i = |, N respeclively we obtain a sysiem of N ordinary
dlﬂ‘en:ntm:i equalion, which are the equations of motion of the time dependent amplitudes f(N.

These read as:

N »
where
Ay = (1, ¥) (48)
By = (—grad"¥, .E‘l‘l + £=)gmd‘l’j) (49)
The time variablc is usually treated by a Finite Difference technique:
dridi— "t - Mar! (50)

I 0+ -0y (5D
where 0 is an interpolation parameter in the range (0,1). In particular, the choice 0 = 0 nds

3 1) s = to a
fully explicit {forward Fuler) and 0 = 1 to a fully implicit time integration. The ints ialt case -
known as Crank-Nicolton method is also frequently adopted. & + The intermediate case © = 0.3

Rearranging for /**! in terms of /* we obtain

(4 — BARY" ! = (4 + BA(L - o))" (52
where we have omitied the spatial indices. This formally inverts to

S m P 4 - B0ANT (A + B(L - 0) A" (53
where P is the “time propagator” .

()bviou_aly. at each time-step the praclical construction of the propagatot requires the solution of the
algebraic sysiem, eq.(52). In performing this task, one must ensure the following properties of the propagator:

* Consislency
* Accuracy

® Stability .
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Consistency is the requircment that P reduces to the idcntity in the limit Ar = 0. it is readily cheked that
this is the case for our scheme since P = A~ 14 =1 for A1 = 0. Accuracy is related 10 the discretization
errot introduced when replacing the continuous derivative with a discrete diffcrence.

Finally, stability is the requircment that the discretization error does nol amplify from siep 10 step.
Mathematically, one requires:

1P <1 (54)

where [|P|| is some norm of the matrix P. We can get a qualitative insight into the role of the paramcter
0 by considering the function

1+ x(3—-0
Ax,0) = I—“x_(':g—)l (59)

where x stands for some representative ciement of the matnix 4 “1fAL ‘Fhe two extreme cases of fully
explicit and fully implicil time integration yield respectively:

=m0 F=|1+x| ozlﬂp_m

(56)

Since A is positive defined, if we assume that B is negative defined (as it is casc for a purcly diffusion

process), x is & negalive number. This means that for x sufficiently large one has P(0 = 1y < P(6 = 0}
This highlights the fact that implicit methods allow it 10 maintain larger values of At which is very

helpful in Jong time simulations involving disparate time-scalea.

The structure of the matrices
We have already remarked the FEM gives rise to sparse matrices; the degree of sparseness depending on

the order of the interpolant polynomials. In the present case, the *minimal” sct of basis functions is given
by hilinear “hat” functions of the form:

¥y, ¥) = o (@) % e3(¥) 57
where ¢ are the lincar basis functions introduced in the previous section. With bilincar clements we pul
4 unknowns per element = quadrilateral, which means that again we guarantee anly the continuity of the

approximated solution.

It is casy to verify that the corresponding matrices arc block-tridiagonal, each block having exactly the
one-dimensional structure alrcady encountered in the previous application.
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Fig.7; The block-tridiagonal matrices generated by
bilinear elements

Assuming the coefficient functions R and D constants, the matrices M, R= RX+RY and
D= DXX % DXY + DYY take the simple form (clement-wisc):

1 4 1
"3 fi
RX = h :i g i

12 -1 0 1
Ry = h -%: -?] -5
12 -1 -4 -1
oxx = 1 R
4 1 -2 1

and DXY = DYY = DXX if the mesh is uniform. One recognizes that owing to the reducibifity of the
bilincar basis functions, these matrices can be decomposed into a direct product of two one-dimensional
matrices. The matrices M and D are saymmetric and povitive definite, and conscquently well-behaved, R
is anti-symmetsic and ili-behaved since the diagonal clements arc 7zcro.
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In particular, the cigenvalucs of R are purcly imaginary and give rise to apurious oscillations in the
numerical solution (overshoots) which break the requirement of positivily of the solution.

These spurious oscillations are a manifestation of Numerical Dispersion, i.e., the fact that the discrete mesh
alters the dispersion relation governing the propagation of independent modes. To understand this, let us
refer to the simple hyperbolic problem

wtag=90 (58)
Analytically, we know that at any time the solution has the form (x, 1) = wx = cf), ulx} being the
initial profile. The initial profile does not et distorted because all the independent modes contributing to
1 travel at the same constant speed ¢. In fact, by Fouricr-Laplace transforming the above equalion one
obtains the well-known dispersion relation:

Do k)= =g~ ck=0 (39
The effect of the discrete lattice is 1o distort this dispersion relation which takes approximately the form

B (o, k Ar, Ax) = S230A2 = 1 cm.kxu -

At

L (60)

It is worth noting that the condition D = 0 reflects the invariance of the eq.(58) with respect to the
continwous group of traslations in space and time (Galileian invariance). In the lattice 1 is replaced by D
because the Galilcian invariance holds only if the trastations amplitude is a multiple integer of the mesh
spacing (D = 0 for @ = 2nn, k = 2mm). The numerical dispersion relation is consistent, in the sense that
in the continuum fimit kAx — ( and ©Af -+ 0 the cxact relation is recovered. This indicates that the
breaking of Galileian invariance is cspecially caused by high-frequency short-wavelength modes. These
modes are not well resolved by the lattice and conscquently “sce” and interact with its discrete nature
thereby getting distorted. A widely used remedy against this problem consists of introducing an artificial
diffusion term in the equation of the form Suyy. This new term changes the dispersion relation 1o

Dim, k)= = o — ck + Bk =0 6

where we see the emergence of a damping term which is particualarly effective for short-wavelength modes.
It is casy to show that, in the FE formalism, the artificial diffusion method {called “Up-winding"™) is
equivalent to adopt two distinct scis for the basia and the test functions reapectively. In particular, if W is
the test function, the basis function can be chosen in the form ¥ + AxR e grad ¥,

‘I'he parameter which governs the amplitude of the spurious oscillations is the Mesh Reynolds Number,
defined as

Rh
Re =3 (62)

This parameter, measuring the ratio convection/dissipation, arises naturally by requiring that the physical
information should not travel "too fast” in the grid. This translates to the following inequalities:

Physical Speed = R < Numerical Speed = % . (63)
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1
Physical Diffusion = D < Numerical Diffusion = % (64)

whence the condition Re < .

To follow the evolution of the funclion f one has to solve a lincar algebraic system at each time-step.
Depending on the size of the problem, one can resort to a direct (Gauss elimination) or to an iterative
solver (Gauss-Scidel, Conjugate Gradient). When using the direct Gauss solver, care has to be taken to
number the unknowns in such a way as to minimize the matrix bandwidih: for rectangular domain this
reduces to number the nodes row by row (XY) or column by column (YX) according whether NV > NX
or NX > NY respectively. In principle, the iterative solvers may get troubles because the matnix 1o be
inverted is not symmetric-positive-definite. However, recent wark with modified CG schemes has proven
quite successfull for this type of problem. A typical cost on a present-day high-specd computer (some
tens of Megaflops) is of the order of 0.1 milliseconds per grid-point.

Application N.3: Navier Stokes

The Navier-Stakes equation is of fundamental importance in applied apd theoretical fluid-dynamics.
For an incompressible fluid (divii = 0) it reads

#, + (e gradyii = vAii — gradp (65)

where @ is the fluid velocity, v the kinematic viscosity and p the scalar pressure field.
Peculiar difficultics associated with the treatment of this equation are:

* Non-lincanly
¢ Incompressibility
® The unknown is vector vajued

The non-binear term is dificult to treat because it tends to produce short wavelengths in the flow by
quadratic mode-mode coupling. These short-wavelength modes become particular dangerous whenever
they "hide” themsclves in the grid, which is whenever their wavelength becomes smaller than the grid spacing.
It can be shown that if L denotes the typical macroscopic fength scale of the flow, the shortest scale
which needs to be represented adequatcly in the mesh (dissipative scale), is given by /= LR %3 (in 1wo
dimensions).

This shows that as thc Reynolds number increases, it becomes more and more necessary o increase the
mesh resolution.

The compressibility condition, divii = 0, puls some consiraints on the class of finile elements.
To see this, let us consider the following FE expansion of the unknowns

u = ‘ZI (V¥ (x, ») . (66)
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N

w = 2, ()P (x5} 67)
=]

& 68

p= Y. 0% (x.y) (68)
=1

pzing these expression in the £q.(65) we obtain 2N equations for 2N + M unknowns, in such a
Eiyp:hftmﬂfe mmmf:iebility equaiin:q needs to be imposcd. m the rernain'ing M nodes. In order 'fo: th:;
velocity field not to be completely fixed by the incompressibility we require M < 2N More precisely,
we assume Dirichlel boundary conditions and recall that p is defined up to an nd'dmvc constant, we may
replace the above inequality by M — | < 2N/ where Nl is the number ol"mlc_nor velocity nodes. 'l“lhc
above incquality limits the choice of the functions ¥ and ®. let us scc this with an cxa.mple. Consider
a rectangular domain with triangular clements and suppose to _placc the nod_cs for l!'lc vclocnl:_/ and.prc?sure
ficlds on the comers and on the centers of the triangles respectively. The basis functions are piecewise lincar
for i and piccewise constants for p.

R e St et S et e

1eofjo . Joj0. |.o0
LIPS I .uo.t.oo.

X=X~ X----K-- X----X

X Velocity Node
0 Pressure Node

Fig. 8; A non-admissible triangulation for the incompressible
Navier-Stokes equation

The count of the nodes is as follows:
¢ Total Number NT = NX*NY + M- 1|
®» Velocity NI = NX*NY - 2( NX + NY- 2)
e Pressure M-1 = 2%(NX - D%NY - 1)
i i ich i i i blem can be overcome
The incquakity reads now NX + NY < 3 which is manifestly never mel. This pro ca
in uvcr:l way{: it also exists a theoretical condition (Brezzi-Pabuska) which fixes the requisites of aliowable

basis functions. In general the admissible functions are classified into two main families

® Taylor-Hood { the pressure is continuous}
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# Crouzeix-Raviart (the pressure is discontinuous)

Taylor-Hood ( u quadratic , p linear )

Velocity Node
Pressure &Vel, Node

N
/

Crouzeix-Raviart (u linear-discontinuous , p constant )

X/'O\X
VAN

It i8 casy to verify that in both cases the count of the nodes Fulfills the condition M — | < 2 NI

V. Node {double)
P. Node

Qe

It is a common practice to decouple the incompressibility from nonlinearity by means of the so called
Operaior Splitting Technique.

To sec qualitatively how this works let us rewrite the NS equation in abstract form as follows
@, = La + N(in)ii — grad p (69)
where L and N denote the linear and non-lincar part of the NS operator (vA —~ gradp and & ® gradu

respectively). The idea is to split the time step in two parts, say lop = (ta, &) and Iy = (&, 4,) and then
discretize L implicitely in o and explicitely in /. and viceversa for N. We obtain

I -
$~;=L%+mw%‘wmh (70)
and
=g oo
Ly Liy + M@ )i, — gradp, ()]
L]
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We see that first equation is fincar in i while the second is non-linear for 4 The incompressibility is
imposed only to w in such a way that the non-incar problem is freed from the incompressibitity constraint.
After the space discretization, the two equations above yield an lincar algebraic problem to march in time
from ¢ to & and a non-linear one from f to 1. The matrices arising from this problem look as follows:;

M = [ W7 dxdy ‘ (1)

L = [WiL¥D dxdy ' (1)

Ny = SN Ve dxdy (74)
L

where [,m,p = 1,3, are the “internal” indices for each scalar field and 4, Jok = 1,N? are the spatial indices.
The block-structure of the problem is depicted here below:

M11 un

Mz2 uz

-—

M33 P

——— o m———

for the mass matrix and

F11 | F12 | F13 u1
F21 | F22 | F23 U2
F31 | F32 | o p

for the force matrix. Obviously, the matrices are AgAin very sparse, in the sensc that on each sub-block
only nearcst neighbors interaction contribute to the matrix clernents.
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The lincar step is usually handled by an iterative solver. ‘The non-linear problem is first linearized via
cither a Newton method or Least Squares method and subsequently solved by a linear scheme.

‘The solution of the NS equation in three-dimensional complicated geometrical conditions is feasible only
on the most advanced present-day supercomputer generation. .

FEM for Quantum Field Theory ?

1t has been recently argued thal the FE discretization of the operalor ficld equations arising in Quantum
Ficld Theory exhibits a number of appealing properties. The most crucial point is to show that FEM is
consistent with the operator nature of the equations, that is to prove that Fqual Time Commutation
Relations (ETCR) are preserved in the course of time. To be specific, one expands an operator field
W(x, 1) as

¥ = 3 we 9" (75)
where now the cocllicients yff are operators instead of numerical cocfficients. The key point is to show
that if the commutator CJ(y) = w}'v} ~ vy} is a c-number at ¢ = 0 it will stay such for any subsequent

time.

For a free-massive fermion in a 2D Minkowsky lattice, Bender and coworkers have proved that a number
of important propertics are preserved in the course of the time-stepping. These are:

¢ ETCR

¢ Unitarity

¢ Chiral Symmetry { No fermion doubling )

It would be interesting to feam whether these propertics siill hold for more complicated theories such as
Quantum Chromodynamics. In any event, there is probably a long way to go before one can really regard

FEM as a realistic alternative to the Montecarle method for the investigation of non-perturbative effects
in Quantum Field Theory.
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