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This chapter presents a review of the experimental investigation dene in Flo-
rence on dynamical instabilities and deterministic chaos in Quantum Optics. In
a dissipative system such as a Jaser we distinguish between a transient regime,
strongly dependent on the initial conditions, and an asymptotic one, where
the motion is confined on an attractor independent of the initial conditions.
First, laser transients carry relevant information on the birth or death of a
coherent state. Thus, a set of experiments is reported on the characterization
of nonlinear transients and of their statistical features. Second, the onset of
deterministic chaos is studied by referring to the invariant properties of low-
dimensional attractors, in order to isolate the characteristics of chaos from the
random fluctuations due to the coupling with a thermal reservoir. For this
purpose, attention is focused on single-mode homogeneous-line lasers, whose
dynarmics is ruled by a low number of coupled variables. In the examined cases,
experiments and theoretical model are in close agreement. In particular, when
many attractors co-exist for the same parameter values (generalized multista-
bility) the presence of random noise induces long lived transients with 1/ f like
low frequency spectra.

2.1 Background

Quantum optics from its beginning in 1960 with the first laser was considered as
the physics of coherent and intrinsically stable radiation sources. Lamb's semi-
classical theory [2.1] showed the role of the EM field in the cavity in ordering
the phases of the induced atomic dipoles, thus giving rise to a macroscopic
polarization and making possible a description in terms of very few collective
variables. In the case of a single-mode laser and a homogeneous-gain line this
meant just five coupled degrees of freedom, namely, a complex field amplitude
E, a complex polarization P, and a population inversion AN. A correspond-
ing quantum theory, even for the simplest model laser (the so called Dicke
model, that is, a discrete collection of modes interacting with a finite number
of two-level atoms) does not lead to a closed sel of equations. However the
interaction with other degrees of freedom acting as a thermal bath {atomic
collisions, thermal radiation) provides truncation of high-order terms in the
atom-field interation [2.2-4]. The problem may be reduced to five coupled
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equations (the so-called Maxwell-Bloch equations} but now they are affected
by noise sources Lo account for the coupling with the thermal bath [2.5). Being
stochastic, or Langevin equations, the corresponding solution in closed form
refers to a suitable weight function or phase-space density. Anyway Lhe aver-
age motion matches the semiclassical one, and fuctuations play a negligible
role if one excludes the bifurcation points where there are changes of stabil-
ity in the stationary branches. Leaving out the peculiar statistical phenomena
which characterize the threshold points and which suggest a formal analogy
with thermodynamic phase transitions [2:6] the main point of interest is that
a single-mode laser provides a highly stable or coherent radiation field.

From the point of view of the associated information, the standard inter-
ferometric or spectroscopic measurements of classical optics, relying on average
field values or on their first-order correlation functions, are insufficient. In order
to characterize the statistical features of Quantum Optics it was hecessary to
make extensive use of photon statistics [2.7,8).

As discussed in detail in Sect. 2.3, coherence is equivalent to having a sta-
ble fixed point attractor and this does not depend on details of the nonlinear
coupling, but on the number of relevant degrees of freedom. Since such a num-
ber depends on the time scales on which the output field is observed, coherence
becomes a question of time scales. This is the reason why for some lasers coher-
ence is a robust quality, persistent even in the pbresence of strong perturbations,
whereas in other cases coherence is easily destroyed by the manipulations com-
mon in the laboratory use of lasers, such as modulation, feedback or injection
from another laser.

This chapter is a review of the simplest variety of instabilities and chaos
on active Quantum Optics. Precisely, Sect. 2.2 explores transient instabilities,
related to the decay of an initia] unstable state, Sect.2.3 is a general presen-
tation of low-dimensional chaos in lasers, including the description of the reje-
vant measurements upon which any assessment on chaos has to rely. Sections
2.4-7 describe the investigations developed at Istituto Nazionale di Ottica,
Firenze, and are respectively devoted 1o lasers with modulated losses, lasers
with injected signals, lasers with feedback and bidirectional ring lasers. For
convenience, mathematical derivations are collected in an appendix.

2.2 Transient Decay Toward a Stable State

As will be discussed in the next section, the notion of chaotic dynamics is based
on the geometric properties of the attractor. This is defined heuristically as the
locus of the phase space of a dissipative system where any initial condition
asymptotically merges. For a more formal definition, see [2.9]. The simplest
dynamical systems are the stable ones, where the attractor is just one point
(as in a coherent laser) or two points (as in a bistable device) or a finite number
of points (as in a multistable system}. In such a case it is interesting to study the

transient instability as the system precipitates from a generic initial condition
toward the attracting fixed point.
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A nonequilibrium system, under the action of extern.al para.meters., may
undergo a transition in the sense that one (or a set) of its macroscopic ob-
servables have a sizeable change. Usually these changes are stud_ned by a slow
variation of the external parameter, in order to measure the st.a..tlona.ry fluctu-
ations and their asscciated spectra around each equilibrium point. .

More dramatic evidence on the decay of an unstable state can be obtamfed
by applying sudden jumps to the driving parameter' and obsefvmg the statis-
tical transients. The decay is initiated by microscopic ﬂuctt{atlons. In the ﬁ.rst
linear part of the decay process the Ructuations are amplified, heflce during
the transient, and until nonlinear saturation near the new stable pm_nt redtlscfs
them, fluctuations do not scale with the reciprocal of the syatems size, as it is
* eq:::I:;:lt::iment on the photon statistics of the laser ﬁeld_ during its switf:h
initiated this investigation [2.10]. Figures 2.1-3 give the transient photon statis-
tics during a laser build-up and the associated average photon number and
vaﬂa;icr;.ila: experiments were afterward done on ga.?—!iquid or magnetic tran-
sitions, and received the name of spinodal decomposition [2.11].

Limiting to the case of one stochastic amplitude z, tl}e mot(st natural ap-
proach was to measure the probability density P(z,t) at a given t:lmtf t after t.ht;
sudden jump of the driving parameter. A time-dependent solution m‘t.ernllse:
an eigenfunction expansion is unsuitable for the large number of terms invo vbe,
with the exception of small jumps near threshold [2.12] or the asymptotic be-
haw;ro{tirni:nfﬁrtltmh:s;noments {z5()) leads to an open hierarc_hy of coupled
equations. A two-piece approximation [2.13] conflsts in first letting the systetrn
decay from the unstable point under the linearized pa.rt of the det:erm'n]\: ic
force, diffusing simultaneously because of the stochastic forces. This yields a

4000

2 3000

LY

-

[ =

c

g

rs

v 2000

g‘ .

2 Fig.2.1. Experimental sl.atut_ll.a.l

g distributions with different Lime

3 1000 delays obtained on a laser transient.

° All distributions are normalized to
the same area {a} 2.6 us, b} 3.7 us,
{c) 4.3us, (d) Sps, () 5.6ps, (f}

0 h 8.8 s
0 50 100 150

Chonnel number

"



tm P2l [':i
x10-4 x10
L]
4 }
8 f
3
&
2 t
4
2 1
+ 0
0 50 100 50 100
DELAY {p3) DELAY {ps)
Fig. 1.2. EVQIu_tion of Lhe_ average phot_.on Fig. 2.3. Evolution of the variance (Anz)
number {n) inside the cavity as a function of the statistical distribution of photons
of the time delay inside the cavily, as a function of the time
delay

short-time probability distribution of easy evaluation. Then we solve for the
nonlinéar deterministic path and spread it over the ensemble of initial condi-
Lions previously evaluated in the linear regime.

A diflerent approach leads instead to closed moment equations of easy
solution [2.14,15]. We consider the time ¢, at which a given threshold zp is
crossed, as the stochastic parameter, whose distribution Q(t,z,2x) in terms
of the interval between the initial position z and zp must be assigned. Here
the time is no longer an ordering parameter but an interval limited by a start-
stop operation. Let the position z get unstable under a force F({z) and a noise
delta-correlated with a correlation D(z). Then the evaluation of the moment
Tm = {t™) is given by a simple recurrence formula as f2.14]

F(z)Ty + D(2)T) = —mTp_, (2.1)

(the apex denoting differentiation with respect to z).
When we apply this formalism to the decay of unstable states, since D
scales with the inverse system size, we can expand the results in D series and

display the first relevant correction to the deterministic solution. We find for
the mean time T

Flv) dy F3 (22)

iy p
d
Ti(z) = v +jddeD
z

where t.he first term on the right-hand side is the deterministic part. For a
spread in the initial position z, Ti(z) should still be averaged over the set of z.
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Fig. 2.4. Transient statistical evolution of an electron oscillator driven from below to _above
threshold by a sudden jump. No external noise added. Average amplitude V' and variance.
Dots denote experiment and sobd hne denotes theory

Similarly, performing the same approximation for T2 we obtain for the variance
AT =T, — le the following relation

¥ D)
AT =2 { Wiy (2.3)

In order to show the power of this approach, we have measured the crossing
time probability distributions for an electronic oscillator driven from below to
above threshold |2.15].

Figure 2.4 gives the mean oscitlator amplitude and its variance versus time
as in the usual stochastic treatment of transients, Fig. 2.5 gives the variance of
crossing times for increasing threshold as defined here.

The following comments convey some of the relevant physics: (i) the first
term of (2.2) yields an average decay time which scales as Ty = In(N), that is,
a logarithmic divergence with the system size N; (ii) a constant variance for
increasing threshold means that the various trajectories are shifted versions of
the same deterministic curve, and the noise scaling as 1/N plays a role only
in spreading the initial condition; (iii) introduction of an external noise adds a
fluctuation peculiar for each path, giving a AT dependent on zp.

In conclusion, this new experimental characterization of a statistical tran-
sient shows a clear separation between the role of the initial spread and the
noise along each path. In the case of superfluorescence, a delay time statistics
in the pulse onset with respect to the preparation time has offered the most
detailed tools for a comparison between measurements [2.16] and the corre-
sponding theory [2.17].

Similar considerations apply also to bistable or multistable situations {2.15]
and have been recently re-considered with specific reference to optical bistabil-
ity [2.18].
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2.3 Deterministic Chaos

2.3.1 Historical Aspects

Until recently the current point of view as that of few-body dynamics was
fully predictable, and that only addition of noise sources, due to coupling with
a thermal reservoir, could provide statistical fluctuations. Lack of long-time
predictability or turbulence, was considered as resulting from the interaction
of a large number of degrees of freedom, as in a fluid above the critical Reynolds
number (Landau-Hopf model of turbulence}.

On the contrary, it is now known that even in systems with few degrees
of freedom nonlinearities may give rise to expanding directions in phase space
and this, together with the lack of precision in assigning initial conditions. is
sufficient to induce a loss of predictability over long times, '

_ This level of dynarical description was born with the three-body problem
in celestial mechanics {(Poincare). Already a three-body dynamic system is very
different from the two-body problem since, in general, there are asymptotic

14

instabilities. This means a divergence, exponential in time, of two phase space
trajeclories stemming from nearby initial points. The uniqueness theorem for
solutions of differential systerns seems 1o offer an escape way: be more and more
precise in localizing the coordinates of the initial point. However a fundamental
difficulty arises. Only rational numbers can be assigned by a finite number of
digits. A “precise” assignment of a real number requires an infinite acquisition
time and an infinite memory capacity to store it, and neither of these two
infinities is available to the physicist. Hence any initial condition implies a
truncation. A whole range of initial conditions, even if small, is usually given
and from within it trajectories may arise whose difference becomes sizeable after
a given time, if there is an exponental divergence. This means that predictions
are in general limited in time and that motions are complex, starting already
from the three-body case. In fact, we know nowadays from very elementary
topological considerations that a three-dimensional phase space corresponding
to three coupled degrees of freedom is already sufficient to yield a positive
Lyapunov exponent, and accordingly an expanding phase-space direction. This
complexity is not due to coupling with a noise source as a thermal reservoir, but
to sensitive dependence on initial conditions. It is called determinstic chaos.

The birth of this new dynamics was motivated by practical problems, such
as fixing the orbit of a satellite or forecasting meteorology [2.19], and it was
strongly helped by the introduction of powerful computers. The mathematics of
multiple bifurcations leading from a simple behavior to a complex one is under
current investigation. Some regularities, such as the “scenarios” {2.10] or routes
to delerministic chaos, have already been explored. We are hopefully on the
verge of a new formalism, which will describe in 2 unified way the passage from
order to complicated behaviors such as developed turbuience in a fuid.

2.3.2 Dynamical Aspects

A dissipative system (i.e., with damping terms) does not conserve the phase-
space volume. If we start with initial conditions confined in a hypersphere of
radius £, that is, with an initial phase volume

VO:EN

as time goes on, the sphere transforms into an ellipsoid with each axis modified
by a time dependent factor. Its volume is

Ve = eNexp (£,0,)
(Ai: Lyapunov exponents). Since the volume has to contract, V;<Vj, then
LiA;<0 . (2.4)

We denote the sequence of A exponents, starting from the smallest up to the
highest as the Lyapunov spectrum. Let us consider for simplicity just the signs
of nonzero X, keeping the zero for A; = 0. We then describe a sequence of,
negative, zero and positive ; as, e.g., (— — 0+). For N = 1, we have (—} and a
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segment Vg = ¢! of initial conditions shrinks to a single point for T—oo, that
is, the attractor is a fixed point. For N = 2 the system goes either to a fixed
point (——), or to a limit cycle (-0). Chaotic motion [(—+) with A, <]A_|] s
forbidden in two dimensions by the Poincaré-Bendixon theorem. For N = 3,
besides fixed point {(— — —), and limit cycle {— — 0}, we can have motion on a
torus with two incommensurate frequencies {00}, but we can also have {—0+),
that is, a positive A which gives an expanding direction along which we rapidly
get uncertainty.

An example of chaotic motion is offered by the Lorenz model of hydrody-
namic instabilities [2.19] which corresponds to the following equations where
the parameter values have been chosen in order to yield one positive Lyapunov
exponent:

z=-10z + 10y ,
y=-y+ 28z —zz ,
2=—-(8/3)z+zy . (2.5)

The above considerations suggest the system will exhibit low-dimensional
chaos, with the simplest phase-space topology allowing for the appearence of a
positive Lyapunov exponent.

Focusing on these situations in quantum optics permits close comparison
between experiments and theory. By purpose, I do not tackle the vast class of
inhomogeneously broadened lasers, where it is extremely difficult Lo drive close
correspondences between experiments [2.21] and theory {2.22] because of the
large number of coupled degrees of freedom (Sect.2.2.2).

iIf we couple Maxwell equations with Schrédinger equations for N atoms
confined in a cavity, and expand the field in cavity modes, keeping only the
first mode E which goes unstable, this is coupled with the collective variables P

and A describing the atomic polarization and population inversion as follows,
see {2.A.5)

E=-kE+gP ,
P=-~,P+gEA,
A= 71“(Ar40)~4gl’E. (2.6)

For simplicity, we consider the cavity frequency at resonance with the atomic
resonance, so that we can take E and P as real variables and we have three
coupled equations. Here, k, v, 7|, are the loss rates for field, polarization
and population, respeclively, ¢ is a coupling constant and Ag is the popu-
lation inversion which would be established by the pump mechanism in the
atomic medium, in the absence of coupling. While the first equation comes
from Maxwell equations, the two others imply the reduction of each atom to
a two-leve] atom resonantly coupled with the field, that is, a description of
each atom in a isospin space of spin 1/2. The last two equations are like Bloch
equations which describe the spin precession in presence of a magnetic field.
For such a reason (2.6) are called Maxwell-Bloch equations.

The presence of loss rates means that the three relevant degrees of freedomn
are in contact with a “sea” of other degrees of freedom. In principle, (2.6} could
be deduced from microscopic equations by statistical reduction techniques [2.5]-
A simple derivation is shown in the Appendix 2.A.

The similarity of Maxwell-Bloch equations (2.6) with Lorenz equatjons
{2.5) would suggest the easy appearence of chaotic instabilities in single-mode,
homogeneous-line lasers. However, time-scale considerations rule out the full
dynamics of (2.6) for most of the available lasers. Equations {2.5) have damping
rates which lie within one order of magnitude of each other. On the contrary,
in most lasers the three damping rates are wildly different from one another.

The following classification has been introduced {2.23]

Class A (e.g., He-Ne, Ar, Kr, dye): "u::'w;”»k. The two last equations of
(2.6) can be solved at equilibrium (adiabatic elimination procedure) and one
single nonlinear field equation describes the laser. N = 1 means fixed point
attractor, hence coherent emission.

Class B (e.g., ruby, Nd, CO}): ']'L))»kg"y“. Only polarization is adiabatically
eliminated {middle equation of {2.6)) and the dynamics is ruled by two rate
equations for field and population. N = 2 allows also for period oscillations.

Class C (e.g., FIR lasers) NEILE k. The complete set of (2.6) has to be
used, hence Lorenz like chaos is feasible {Chap. 5).

We have carried a series of experiments on the birth of deterministic chaos
in CO, lasers (class B). In order to increase, by at least 1, the number of de-
grees of freedom, we have tested the following configurations:

i} Introduction of a time dependent parameter to make the system non
autonomous {2.24]. Precisely, an electro-optical modulator modulates the cav-
ity losses at a frequency near the proper osciliation frequency 1 provided by a
linear stability analysis, which for a COg laser happens to lie in the 50-100 KHz
range, providing easy and accurate sets of measurements.

ii} Injection of a signal from an external laser detuned with respect to
main one, choosing the frequency difference near the above mentioned 1. With
respect to the external reference the laser field has two quadrature components
which represent two dynamical variables. Hence we reach N = 3 and observe
chaos [2.23].

iii) Use a bidirectional ring, rather than a Fabry-Perot cavity [2.25]. In
the latter case the boundary conditions constrain the forward and backward
waves, by phase relations on the mirror, to act as a single standing wave. In
the former case forward and backward waves have just to fill the total ring
length with an integer number of wavelengths but there are no mutual phase
constrains, hence they act as two separate variables. Furthermore, when the
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field frequency is detuned with respect to the center of the gain line, a complex
population grating arises from interference of the two counter-going waves, and
as a result the dynamics becomes rather complex, requiring N >3 dimensions.

iv) Add an overail feedback, besides that provided by the cavity mirrors,
by modulating the losses with a signal provided by the output intensity |2.26].
If the feedback has a time constant comparable with the population decay time,
it provides a third equation sufficient to yield chaos.

Notice that while methods (i}, (ii) and (iv) require an external device, (iii)
provides intrinsic chaos. In any case, since feedback, injection or modulation
are currently used in laser applications, the evidence of chaotic regions puts a
caution on the optimistic trust in the laser coherence.

Of course, the requirement of three coupled nonlinear equations does not
necessarily restrict attention to just the Lorenz equations. In fact, none of the
explored case (i to iv) corresponds to Lorenz chaos.

2.3.3 Information Aspects

Here, we discuss what we measure to assess chaos. We plot two of the three (or
more) variables on a plane phase-space projection. This way, we build projec-
tions of phase space trajectories on an r — y oscilloscope. Simultaneously we
can measure the power spectrum. In Sect. 2.4 a sequence of subharmonic bifur-
cations are shown, which eventually leads to an intricated trajectory (strange
attractor) and to a continuous power spectrum. But how can we discriminate
between deterministic chaos and noise? After all, noise also would give a con-
tinuous spectrum, and the phase space point would fill ergodically part of the
plane, thus covering a two-dimensional set.

In order to discriminate deterministic chaos from order as well as from
random noise, we introduce two invariants of the motion, one static the other
dynamic.

We partition the phase space into smal! boxes of linear size € and give
ith box a probability p, = M,/M equal to fractional number of times it has
been visited by the trajectory. This way, we build a Shannon information I{e),
and with it an “information dimension” Dy(e} [2.27] which is, in general, a
fractional number, or a “fractal”;

I{e) = -3 p;log p: | (2.7)
Dile) = —gll_l;l’:] l‘l;(i—l . (2.8)

To understand the meaning of a fractal, look up an operational definition of
dimension [2.28]. Let us compare three sets: (i} a segment of unit length; {ii)
the Cantor set, built by taking out the middle one-third of the unit segment

1R

and repeating the operation on each fragment; (iii) the Koch curve, built by
replacing the middle third with the other two sides of an equilateral triangle
and repeating the operation add infinitum. At each stage of the partition, we
cover each set with beads of suitable size not to lose in resolution (e.g., diameter
1/3 at the first partition) and count the number N for each sel (at the first
partition, we need 2 for the Cantor set, 3 for the segment, 4 for the Koch curve).
We define the fractal dimension as the ratio

(2.9)

This definition is independent of the partition. Indeed, for the Cantor set and
the Koch curve we have N = 2, ¢ = 1/3 and N = 4, £ = 1/3, respectively, at
the first partition, yielding

og2~

1
Dy{Cantor) = i 0.63 and

og3 o3

log 4
DQ(KOCh) = i.g—3’-‘-’l.2618.. .
At the second partition the number of necessary beads goes as N7 and the
diameter of each as €2, hence Dy remains invariant.

Going back to the information dimension Dj(c) we see that we have
replaced log N with [{e) which is an average [for p; all equal, we recover
I(e) = log N]. Hence D, generalizes Dy whenever the density of points is not
uniform along the trajectory.

As Dg was independent of the partition stage, similarly D) is an invariant,
but static (Lime does not enter). It can be shown that Do> Dy, however for non
pathological sets the difference is irrelevant. Let us refer for simplicity to an
N = 3-dimensional phase space. If D = 0 (fixed point} or 1 (limit cycle) or 2
(torus) we have an ordered, or coherent, motion. In the other limit of random
noise, fluctuations fill ergodically an N dimensional region of the space, hence
D = 3. Deterministic chaos has to be in between, that is

2<D<3 .

Hence, a fractal dimension is an indicator of chaos. As we show later, this
indicator is expressed in term of correlation functions thus, it requires the
same measuring techniques introduced in photon statistics.

These features related to the topology of the attractor have a temporal
counterpart in another invariant, which measures how information is dissipated
in a motion to maintain knowledge on the system. To build this dynamic in-
variant, we partition both space and time in boxes of sizes ¢ and r that we
name 31,13, ..64 at each of the discrete times r,27,...dr, and introduce the
joint probability over the d time intervals,

piiz. dg={z(t =7) C oy szt =dr) C iy} .
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Correspondingly, we define a joint information

Iale) = = 3 pya,logp, o, - (2.10)
{i;...ld}
Then, by a limit operation, define the Kolmogorov entropy as the rate of in-
formation loss per unit time

S Q.
K = lim lim llmEZ(I,,H—I,,):lim

T—0e~+0d—aoo
n=1

1

dr I . (2.11)

Now we have two indicators to gauge the difference among order, random nosse
(Brownian motion) and deterministic chaos. Referring to K, it is easily seen
that

K =0 for order (no information loss) ;

K =00 for random noise (total information loss) ;
0<K<oo for deterministic chaos .

The box counting method desribed above is impractical. 1t may require
10% points for a convergent numerical result. On the contrary, the following
method introduced by Grassberger and Procaccia [2.29] is applicable 1o only
10°-10* independent data points. We generalize Shannon information defining
the order-f information as

Ii(e) = lif In Zp{ . {2.12)

For f —1 we recover the usual definition. Associated with Iy, there is an order-f
dimension of the attractor

15{e)
Dy = him 21
! eh—'Tcl) Inl/e (2.13)

For f = 0 and 1 we recover D and Dy. Consider f = 2. The sum }:pf is just
the probability that a pair of random points on the attractor fall into the same
box, that is, that two arbitrary points will have a distance less than &. Calling
this probability C(¢), we expect thus

i
= lim — g — g )P
Cle) = A!E"nm Nz lzjﬂ(e |2y — x;{)=e™2 (2.14)
where C(¢) is measured as the number of pairs (1, 5} with a distance |z, - z,|<e.
In (2.14), 6 is the Heaviside step function.

Experimentally, we do not measure at each time the vector z(t) of phase
space, but just one component z,{t) (for instance, just the light out of a iaser}.
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However, in a nonlinear system, any component z,(t) will influence z; at a later
time {no normal mode transformation !). Hence, we can build an m-dimensional
phase space £(t) by just measuring one single component z, al successive times
and considering the m-fold as a single point in m space:

£(t) = [zi(t), mo(t + 7),...zift + (m - 1)1)] . (2.15)

As we evaluate the slope log C vs log € from our data, we can stop from in-
creasing m when the slope shows saturation. The saturated slope is D5,

2.3.4 Role of Transients: The Hyperchaos

Nonlinear dissipalive systems can have many simultanecusly coexisting basins
of attraction (generalized multistability — GM}. This situation can be destabi-
lized by changes of the control parameters, merging two independent attractors
into a single one via an intermediate region which is only sporadically visited
near the transition. The associated dynamics implies a low frequency tail (de-
terministic diffusion) [2.30]. Vice versa, when the above coexistence is stable,
application of external noise may induce jumps between two otherwise disjoint
regions of phase space.

The simultaneous presence of deterministic chaos and noise should not in-
troduce new features within one attractor, since trajectories are already irreg-
ular. When however many attractors coexist for the same parameters, addition
of noise makes it possible Lo leave a basin and go to another (which would be
otherwise forbidden by the uniqueness theorem). This “hyperchaos™ gives rise
to low frequency spectra of 1/ f type.

Clear evidence of generalized multistabililty was first shown in an electronic
oscillator [2.31] and then in the modulated laser [2.24]. In both cases, besides
the qualitative appearance of different attractors in phase space, there was a
low-frequency spectral component due to noise-induced jumps among different
attractors. Both measurements, however, might be considered as experimental
artifacts. In fact, there is evidence of single attractors made of two sub-regions
with infrequent passages from one to the other (see, e.g., the Lorenz attractor).
In such a case, the low-frequency tail corresponds to the sporadic passages,
and does not require added noise, (deterministic diffusion). As a matter of
fact, power spectra do not permit discrimination between the two phenomena.

An analysis of the role of noise in GM was given for a cubic iteration map,
allowing for two simultaneous attractors [2.32a], and in the numerical studies
of a forced Duffing oscillator with a double potential well, in a parameter region
allowing for the simultaneous existence of more than one attractor [2.32b).

A recent solution of the 1/f spectral problem {2.33] is based on the double
randomness due to both the irregular deterministic motion with long lived
transients, where the trajectory wanders near a fractal basin boundary, and
the presence of stochastic noise. In this case, 1/f behavior can be accurately
traced over more than three decades in frequency.
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2.4 The Modulated Laser

For a single-mode (class B) laser tuned at the center line, the phase space be-
comes two-dimensional, see (2.A.17). However introduction of a time-dependent
parameter makes the system non autonomous adding a third equation, see
{2.A.16), thus making possible the appearence of a positive Lyapunov expo-
nent. It is then a pratical matter to localize the values of the control parameters
(pump, modulaticn frequency and amplitude) for which this will occur.

When we apply a time-dependent loss the evolution follows (2.A.16,17)
given as

I=2kIz-1),
z=y(z0 -2~ 2I) ,
k = mk)2sin 1t . (2.16)

For m—0, we have small deviations from the eguilibrium values

1

20 — 1 H
1. (2.17)

el
I

These deviations are linear in m and synchronous with the external frequency
f1. Destabilization of this limit ¢ycle has to be dealt with by the Floquet theory
[2.34]. It may be shown that even for m—0 a nonlinear resonance yields a
positive Lyapunov exponent for 12 around the characteristic frequency given
by the imaginary part of (2.A.21), that is

ﬂz‘ﬂkn”(zg - ]} . (2.18)

For a CO; laboratory laser near threshold k~3 x 107s !, Y~10%s7!, and 20—
1~0.1 {10 % above threshold), the corresponding frequency f = f2/2x is in the
50kHz range, easily accessible.

Thus we have made two series of experimental observations, the first [2.24]
devoted to an experimental assessment of chaotic instabilities by phase-space
portraits and power spectra, the second [2.35] to fractal dimensions and Kol-
mogorov entropy.

The driving frequency f was chosen to vary in the region from 12/2x 1o its
third harmonic, that is from 60 to 190kHz. We have explored modulation values
between 1% and 5%. A complete state diagram would yield the dynamical
features for all possible values of the modulation parameters m and (2. However,
the strip m = 1%-5% does not display m dependence; therefore we limit
ourselves to giving experimental results at m = 1 % for various 12 values.

The experimental setup consists of a CO3 laser carefully stabilized against
thermal and acoustic disturbances, with the discharge current stabilized to bet-
ter than 1/10*. No long-term stabilization was necessary. The electro-optical
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modulator was a CdTe, antireflex-coated, 6-cm-long crystal, with an absorp-
tion less than 0.2%. The laser cavity includes also a A/4 plate and a beam
expander, both coated to limit the total losses per pass to 20%. The laser out-
put is detected on a fast {2.5-ns rise time) pyroelectric detector whose current,
proportional to the photon number n(t), is sent together with its time deriva-
live i(t) to an x — y scope, in order to have the phase-space portrait {n,n). The
detector is also sent to a Rockland spectrum analyzer to measure the power
spectra. The limited range {up to 100kHz) of the spectrum analyzer limited
the frequency range explored in this first run. We show later that interesting
bifurcations are also expected in 180-kHz domain.
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Fig. 3.8. Experimental phase-space portraits {n — n’) fright nde) and the corresponding fre-
quency spectra (left side] for different modulation frequencies . fa} f = 62.75 kHs. Period-two
limit cycle and corresponding f/2 subharmonic. (b} F = 63.80 kHz. Period-four limit cycle
and f/4 subharmonic. {c} f = 64.00 kHz. The phase-space portrait shows a strange attractor
(the oscilloscope spot could not resolve single windings). The power spectrum is a quasicon-
tinuous one with a small peak at the modulation frequency [see the scale change with respect
to previous figures). {d} f = 64.13 kHz. Period-three limit cycia and f/3 subharmonic
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Fig.2.7. f = 6385kHe. Experimental evidence of generalized multistability (coextistence
of Lwo independent atiractors). The power spectrum shows thal those attractors correspond
ta J/3 and f/4 subharmonic bifurcations, respectively; in phase space, the multiple windings
merged within the thickness of the phase portrait contour

In Fig. 2.6 we show experimental data in a narrow region between 62.7 and
64.25 kHz where various bilurcations occur. This region is limited above andbe-
low by wide intervals with stable single-period limit cycles. Figure 2.6a shows
the f/2 bifurcation at f = 62.7kHz, Fig.2.6b the f/4 case for f = 63.8kHz;
Fig.2.6¢c exhibits the strange attractor and a broad-band spectrum for f =
64.0kHz; and Fig.2.6d displays the f/3 case for f = 64.2kHz. Furthermore,
at f = 63.85kHz a new feature appears, namely the coexistence of two inde-
pendent stable attractors, one of period 4(f/4) and the other of period 3(f/3)
(Fig.2.7). This bistable situation has nothing to do with the common optical
bistability where two dc output amplitude values appear for a single dc driving
amplitude. We call this coexistence of two attractors “generalized bistability”
(Sect. 2.3.4).

In Figs. 2.8 and 9 we report the theoretical equivalents of Figs.2.6 and 7,
respectively, obtained by computer solution of (2.16) with parameter values in
the range of the experiment.

As stated in Secl.2.3, 1/ type low-frequency divergences, with power
spectraas f 7 (& = 0.6-1.2), appear when the following conditions are fulfilled:
(i) There are at least two basins of attraction; (ii) the attractors have become
strange and any random noise (always present in a macroscopic system) acts as
a bridge, triggering jumps between them. These jurmnps have the f = feature. In
the region of bistability (Fig.2.7) we have increased the modulator amplitude
m up to the point where the two attractors have become strange. Figure 2.10
shows the sudden increase in the low-frequency spectrum. The divergent part
has a power-law behavior f~ with a = 0.6.

The above described first run is still affected by the experimental uncer-
tainties which characterize a phase space projection or a power spectrum. Does
the first one show a self-similar structure beyond the chaotic threshold, as
theoretically expected for a strange attractor, or does it Just fill ergodically a
two-dimensional region of {r,n) plane, thus being trivial random noise? After
all the latter test (continuous frequency spectrum) is also a common property
of random noise and it is not a sufficient characterization of deterministic chaos.
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Fig.1.8. Computer plots for the parameter values m=10%"1k=7x107s1 m=

20X 10°% Ay = 2.0 X 10!, (o) § = 64.33kHz. Subharmonic bifurcation f/4, a8 in the ex-
periment of Fig. 2.6b. (8) f = 78.8kHs, m = 3 X 10~ 3. Strange attractor and broad spectrum
correspanding to a chaotic solution

In order to set a more reliable distinction between chaos and random noise,
and also to specify the route to chaos {Fig.2.6 is only a preliminary evidence
of a Feigenbaum, n subharmonic, route), we have improved the stability of our
system. This time, a stable f/8 subharmonic frequency and even an f/10 peri-
odic window inside the chaotic region have been observed. To give an idea of the
reliability of the apparatus we report here a series of behaviors observed at 2%
modulation depth for slight changes of the modulation frequency, controlled
via a programmable synthesizer driven by a microprocessor. In the following

A [
au
3

n n t

Fig.3.9. Theoretical generalized bistability; f = 119.0 kHz, m = 2.0 X 10-3. The phase-
space portrait shows Lhe existence of two independent attractors, corresponding to the sub-
harmonic frequencies f/2 (---) and f/3 {—-); relative specira are superimposed. It must be
noled that one attractor remains inside the other as in the experiment of Fig. 2.7. If initial
conditions are properly changed, a third attractor is found with a subharmonic frequency
1710 (not plotted for the sake of simplicity). Initial conditions: ng = 4 X 108, fig = 0 (---),
no = 2 X 10%, Ag = -2 X 108 (~--)
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Fig.2.10. Experimental power spectra in
the case of two attractors, stable {---), and
strange (—-)

log S
(dB)

25 50 100  (Hz) tog f

sequence the number is the set frequency (in kHz), and then the relevant sub-
harmonics are indicated: 191 290, f/5and f/4; 191313, f/3 and f/4: 191 320,
J/2 and f; 191324, f; 191327, /2 and f/3; 191331, f/3; 191337, f/4. This
is just a sample from a much larger data collection.

As we keep the modulation frequency constant at 191 000 kHz and increase
the modulation depth from 1% to 20%, the system passes through a period-
doubling cascade up to the accumulation point and enters a fully chaotic region.
The chosen frequency is close 1o the third harmonic of the nonlinear laser reso-
nance /2. As we scanned the frequency we found a narrow tongue of maximum
sensitivity around 3/2, where the laser destabilizes with the least amount of
modulation.

The signal was digitized by a LeCroy transient recorder with 32000 sam-
ples in memory. Setting the internal clock at 320 ns, we oblained approximately
16 points for each period of the fundamental frequency with light-bit resclution.
By synchronizing the sampling time to the external drive period we obtained
a projection of the Poincaré section. The projection is onto a one-dimensional
space (we measure only the intensity) independent of the other variables. In
Fig.2.11 we present the sections and the corresponding time series, respec-
tively. The advantage of this signal processing is that we are able to analyze
a high number of perods (32000 maximum) with a single acquisition. Further-
more, it allows a much larger-bandwidth processing of narrow pulse sequences,
which otherwise requires a high sampling rate with the related problems in
data storing and processing. In Fig.2.11, on the left-hand side, the band width
is 300 kHz, and on the right it is 100 MHz; indeed we can notice already in the
//8 plot a loss of resolution in the smaller peaks on the lefi-hand side.

We analyze digitized time sequences of the laser output intensity and re-
construct the attractors with an embedding technique. For the determination
of the fratal dimension we follow the method of Grassberger-Procaccia.

If we define N,,(€}) as the number of vectors whose distance is smaller than
€, andif the embedding dimension n is large enough, then Np(e)~&¥, where
v is the D, dimension of the attractor. In Figs.2.12a to f we plot log Nule)
as a function of log ¢ for a sequence of bifurcations f/4, f/8, and chaos. We
timit our analysis to the regions where the slope remains constant over a wide
region of log £ and where it is independent of n, as it must be from theoretical
predictions.
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From inspection of Figs.2.12a and b it is clear that the slope obtained
for the f/4 subharmonic saturates at r~1 in the time series and v~0 in the
Poincaré section. For the /8 subharmonic v is slightly above 1.5 (Figs.2.12¢c
and d). This result, even though not readily understandable because the time
signal still appears periodic, nevertheless agrees with the theoretical predic-
tion for the dimension at the accumulation point (infinite periodicity) of the
logistic map (1.5376<1<1.53385). Indeed this dimension has been proven to
be universial for those mappings for which the Feigenbaum scaling law holds
[2.36]). We present here a heuristic interpretation based on our data. In our
expermental system, the unavoidable noise yields a trajectory wandering over
a nonzero range of parameter values, thus “testing” near by periodic attrac-
tors of the subharmonic sequence. For infinite resolution, we would see for the
stroboscopic data a staircase of horizontal plateaus each with zero slope, as
it appears at higher embedding dimensions in Figs. 2.12b and d. However, the
finite resolution of the correlation measurements averages over adjacent steps,
and thus provides the 0.58 slope, as it appears in Fig.2.12d. This is the first
time that the dimension at the accumulation point of a Feigenbaum cascade
has been measured in an experimental system.

When the system enters the chaotic region, the fractal dimension suddenly
Jumps to a higher value (v = 2.4).

The time behavior of the intensity obtained by numerical integration of
{2.16) was processed in the same manner as the experimental signal. Figure
2.13 shows the results obtained for an f/8 solution and a strange attractor.
Again near the accurmulation point w~1.5. Direct comparison of Fig. 2.13 with
Figs.2.12c and d shows a good agreement between experiment and model.

It is important to stress that this agreement between theory and experi-
ment is obtained with no floating parameters, but just by feeding (2.16) with the
values, for our CO7 laser and the frequency and amplitude of loss modulation
as in the experiment, that is, the frequency set at 191 000kHz and m = 2.0%
and 2.85%, respectively, for the left and right-hand sides of Fig.2.13.

8 8
w6 - 6
2 RITIIION B e
ii' :.ii
G"‘ 4" I'l
8 .,!i“
-4 =16 - i
21 v 2{ »22.1
10

T v 0 ¥ T . T M
30 40 10 20 30 40

Fig.2.13. Plots of log N{¢} vs log ¢ for different dimensions n obtained from the numerical
integration of themodel equations far two different cases, f/8 subharmonic {left- hand nde) and
chaos (nght-hand sde). 6000 points were used
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The high regularity of the stroboscopic N(e) plots for increasing the em-
bedding dimension suggests evaluation of an approximation to the Kolmogorov
entropy. In Fig.2.14 we report the correlation entropy K; versus the embed-
ding dimension for the f/4 and for the chaotic attractor, versus the embedding
dimension, from the data of Fig.2.12. We see that while K2 = 0 for f/4,
K32=>35kHz for the chaotic attractor. As we have a single positive Lyapunov
exponent and as the embedding time is 5.2 us, we estimate that the hali-loss
of information corresponds to 3.8 periods of the modulation frequency.

2.5 The Laser with Injected Signal (LIS)

Injecting an external signal into a single-mode laser provides an extra degree
of freedom. Indeed, in general, the field amplitude z has to be decomposed into
two dynamical variables, that is, the two quadrature components x) +izg = =
with respect 1o the external phase reference. In class C lasers this provides
a fourth equation [2.37,38} which is more than the necessary requirement for
deterministic chaos. A simpler situation is that of a class B LIS, which is ruled
by (2.A.24) that we repeat here for convenience

ij2k = T12(d +6%)"" — I + VIzgcos o ,
Glk = -0 - 62{1 + 6%)7! ~ zgsin go/\ﬁ s
iy =z20-z-2I(1+6%)71 . (2.19)

The frequency relations among gain line, cavity, external feld and internal
lasers are given in Fig.2.15.

Eqguation (2.A.25) yields a steady state relation between output and input
intensity that shows bistability (Fig.2.16). For each T value in Fig.2.16, the
other two steady-state variables are given by

1+ 62

-, 2.20
SRV (2.20)

z=2z



Fig. 2.15. Qualitative plot of the fre-
quenty relations among atomic resonance
{homogeneous width i) centered at wy,
cavity resonance (width kj centered at w,,
and injected field at w,

Vi zp
e = | - . '2
P = arccos po» (1 T2 e ] l) (2.21)

The hysteresis amount depends on both detunings (Fig.2.16). The lower
part of the bistable curve is always unstable. The upper part is wholly stable
for zero detuning (06 = 0). For nonzero detuning, it has a stable locked region
and an unstable one where the laser oscillates either regularly or irregularly.
We have observed two different ways to reach the locked regime, either by
decreasing the oscillation frequency (tangent bifurcation), or by decreasing the
amplitude of oscillation (Hopf bifurcation}, and two djfferent routes to chaos,
either by intermittency or by period doubling.

An extensive linear stability analysis was reported in [2.39], together with
numerical solutions of (2.19) for different values of the injected amplitude 4 =
zg and mutual detuning @ — §. Some results are summarized below.

In Fig. 2.17 we show regular oscillations in the output intensity; the higher
frequency is that predicted by the linear stability analysis, while the lower one
is related to a spiking — with amplitudes which can also be ten or more times
higher than the steady state — due to field injection. As a matter of fact we
have found that in this region, when the injecting amplitude is too low to lock
the system steadily, the laser operates for most part of the time at wy (external
frequency) but it regularly unlocks going to wy, (internal frequency). During

Fig. 2.16. Steady-state solution for LIS equa-
tiens, Output intensity versus intensity of the
injected field for constant value of the pump pa-
rameter {2z} and different values of Lhe detuning
(wy ~uy). The dashed hne shows the unstable re-
gion and the sohd hne shows Lhe region where the
steady-state solutions are stable. For each curve,
the critical value of the intensity of the injected
field is marked with Af. For A? larger than Af,
there is no instability
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Fig. 2.17. LIS: Spiking and regular
] oscillations in the output intensity
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the oscillation at wy, the energy of the injecting field enhances the population
inversion so that it gives rise, with a delay related to the injecting intensity, to
a giant pulse. Increasing the injecting amplitude, the frequency of these pulses
goes to zero, because the system remains locked for longer times.

In Fig.2.18 we show the temporal sequence which leads to chaos, on chang-
ing zp = A, by intermittency. Each dot representing the peak of an oscillation,
we see, from bottom to top, how the laminar period becomes shorter and shorter
and eventually dies in a wholly developed chaos.

The bifurcation sequence is shown in Fig.2.19. The bifurcation occurs in
the higher spikes while between two near-lying higher peaks we find oscillations
at 2.

Preliminary experimental data have been obtained by a three-laser set-
up [2.40], the first laser being a ring laser where the dynamics develops, the
second one the external injecting laser and the third one a master oscillator with
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Fig. 2.18. LIS: Temporal sequence lead-
ing to chaos by intermittency increasing A
(from bottom to top), each dot representing
4 maximum
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05 10 15 Fig.2.19. LIS: Qutput intensity vs tine. A4 is
I ] increased from top Lo bottom and chaos is reached
by frequency doubling in the higher peaks
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reference to which first and second laser are stabilized. The parameter region
explored in this experiment was sufficient 1o yield oscillatory instabilities but
not enough to reach chaos.

2.6 Instabilities in a Laser with Feedback

In laser applications where high stability is required, an overall negative feed-
back is currently used, besides that already provided by the electromagnetic
cavity, for instance by controlling the pump strength with a signal provided by
the detected output intensity [2.41). Such a feedback is not just an added arti-
fact, but it affects, in a fundamental way, the dynamics of photon generation;
indeed, it has been proposed [2.42a] as a mean to provide squeezed states of
the electromagnetic field, and preliminary evidence of such an effect has been
given [2.42b]. However, a lundamental objection to a feedback scheme is that it
provides one extra dimension to phase space and hence the modified dynamics
can be aflected by irregular behavior.

Indeed, self-pulsing and deterministic chaos has been reported [2.26] in a
single-mode laser fed back by its own output, that is, with the cavity losses
modulated by a signal proportional to the outpul intensity. Chaos due to feed-
back had already been observed in connection with nonlinear passive systems
(either a KDP crystal between crossed polarizers {2.43a) or a long optical fiber
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in a ring cavity [2.43b]). In both cases the passive systemn was studied per se,
being outside the laser cavity, and thus the laser dynamics was not affected by
the feedback configuration.

In Sects.2.4 and 5 we have shown the onset of chaos in low-dimensional
optical systems, in controlled conditions displaying a one-to-one correspondence
between experiment results and the predictions of their theoretical model.

Here we show how feeding the laser output back on an intracavity modu-
lator introduces a third degree of freedom leading to chaotic instability. When
the feedback loop is s0 fast that it practically provides an “instantaneously™
adapted loss coefficient, it does not modify the phase space topology, which in
the case of a class B laser remains two-dimensional. If however the time scale of
the feedback loop is of the same order as that of the other relevant variables, the
system becomes three dimensional. Such a system is ruled by three first-order
equations for the intensity x, population difference z and modulation voltage
v. With suitable normalizations (see Appendix 2.4, and notice that here z is
the intensity, not the field) the equations are

2

= ~kgz(l + asinv - 2} ,

z=-vlz-A+zz),
b= —-pv- B+ f1), (2.22)

where k(v) = ko(1 + asinv) is the loss rate modulated by the voltage v,
ko is the nonmodulated cavily loss parameter, o is a coupling constant, ) is
the population decay rate, and 4 the damping constant of the feedback loop.
Furthermore B is the voltage bias applied to the second input of the modulator
amplifier, A is the pump parameter, f is a coupling coefficient between intensity
z detected on D and voltage v. Notice that z is normalized to the saturation
intensity, z and A to the threshold population {without feedback) and ¥ is given
in angular units, that is, if we call V the voltage applied to the modulator and
Vo the A/2 modulator voliage, then v = V/Vo.

The experimental system of [2.26} has kg = 1.17 x 107 (s71), v = 0.98 x
104(s™ 1), B = 3.0 x 10* (s~} and a normalized pump A = 4.2. The stationary
solutions (Z, %, v) of (2.22) imply the condition

Ala 1)\ 12

2.23
1+ a ( J

B = f7 + arcsin (

Depending on the feedback coupling f, for different bias values B we can have
mono or bistability (Fig.2.20). In particular, around f = 0.1 we expect an
ambiguity, since (2.23) provides a quasi-vertical curve. Indeed as we show later,
this is the region where we observe chaos.

By a linear stabiiity analysis around the stationary solution, we evaluate
the points where the system starts self pulsing (Hopf bifurcations). The lines
of Hopf bifurcations are drawn in Fig.2.20 (dashed) for three different g val-
ues. In fact, we have a slight uncertainty in the assignement of the open loop
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Fig.2.20. Laser with feedback: Plots of normalized stationary intensity r vs B {the bias-
vollage B is expressed in angular units} for different values of the feedback coupling constant
I. The curves {a to ¢) refer to J/ = 0, 0.052, 0.102, 0.152 and 0.202, respectively. [---)
correspond to the loci of the first Hopf bifurcations for three different values of the damping
constand (s ') of the feedback loop, namely: 8, = 3.5 x10%, 8; = 3.0 X 104 and Ba =
2.5 X 104,

damping constant. At the intersection points of the stationary solutions (lines
with fixed f} with the lines of onset of Hopf bifurcations (lines with fixed )

the corresponding pulsing frequency in kHz is given in Table 2.1.

Table 2.1. Laser with feedback: Values [kHz] of the first Hopf bifurcation

10-4xg 7 =0.052 f=0102 f=0.152 /= 0202

2.5 31 a9 57
3.0 45 16 39 19
3.5 51 15 29 36

In Fig.2.21 we present the power spectra of the intensity detected in the
experiment. Figure 2.21a shows the first Hopf bifurcation, Fig.2.21b the ap-
Pearence of a subharmonic f/2, and Fig.2.21c corresponds to the appearence
of chaos. Beyond chaos, there are periodic time windows. In order to get full
assurance of the chaotic nature of the time plot of Fig. 2.21c, the correlation
dimension was measured along the lines aiready outlined in Sect. 2.3.

Figure 2.22 shows clear evidence of a fractal exponent D; = 2.640.1.
While Fig.2.22 comes from the experiment, the same [J); value is obtained
by solving numerically (2.22) for 8 = B = 3.0x10* and B = 0.383. The
theoretical plots, shown in Fig.2.22, closely follow the experimental ones with
uncertainties smaller than the dot sizes. Narrow regions with higher-order sub-
harmonics {f/4 and 1/8) plus f/3 windows were observed beyond chaos. In
order to have a better understanding of the chaotic scenario, we have solved nu-
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Fig.2.21a-c. Laser with feedback: Digitiser time plots of the experimental laser intensity
(left) and the corresponding power spectra (right) for increasing values of the control Parame-
ter B. (a) corresponds to the onset of the first Hopf bifurcation, at a frequency » = 57.3 kHa,
B = 0.364; (b) shows the appearence of subharmonic bifuzctation /2 where the fundamental
frequency is » = 52.0kHs, B = 0.378 and (¢) shows the appearence of chaos, B = 0.383

merically (2.22). An accurate localization of the bifurcation points was done by
studying the stability of the phase space orbits in term of their Floquet mul-
tipliers. More specifically, the multipliers were evaluated by determining the
Poincaré sections with the Henon method [2.26)], and finding the zero of the
associated recursive relation by the Newton method. In Table 2.2 we give the
bifurcation diagram, which shows clear evidence of a Feigenbaum scenario with
a Feigenbaum converging ratio in fair agreement with the asymptotic value.
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Table 2.2. Laser with feedback: Bifurcation parameters and Feigenbaum ratio

Bifurcation B [

f 0.394907

£/2 0.395355

f/4 0.305662  ...5.11
ire 0.395722 ...5.00
chaos 0.395734

In conclusion, we have shown theoretically and experimentally that the
introduction of negative feedback provides a third dynamical degree of freedom
sufficient Lo yield self pulsing and chaotic behavior when the damping constant
B of the feedback loop is of the same order as the population decay rate.

2.7 The Bidirectional Ring Laser

Last we consider a longitudinal single mode CO; ring laser in which both di-
rections of propagation are allowed [2.25]. The line width being homogeneously
broadened, the two counterpropagating beams cannot work at the same time,
because they must compete for the same amount of population inversion. More-
over they are slightly detuned between each other — and with respect to line
centre — because, for intrinsic asymmetries, cavity losses are different in the
two propagation directions (k) and k3); this results in a different mode pulling
and then different lasing frequency. Indeed, having a gas flow in the laser tube,
this already induces a small amount of Doppler shift in the interaction with one
or the other of the two counter-running modes. The detuning has been shown
experimentally as well as in the numerical solution to be essential for breaking
the symmetry between the two directions. A forbidden gap around the center of
the molecular line, as well as the interchange of role of forward and backward
fields at right and left of the line center are evidence of such a detuning. If
ky,2 were the “cold” damping rates, they could not differ for reciprocity (in a
passive medium thermodynamics forbids such a symmetry breaking). However
the k; 5 in the active medium differ for the above-mentioned gas flow effect.

Through the grating induced in the population inversion by the interfer-
ence of the two waves we have an interchange of energy from one field into the
other by backscattering, so that we may consider the system as a LIS (where
the injection comes from the counterpropagating-mode),

A modelling of this system has been given in Appendix 2.A.5. Here to-
gether with the detuning from the cavity mode we have to take into account
two complex running waves and the induces time-dependent grating in the pop-
ulation inversion (truncated at the first order in the expansion). Being z and y
the two complex fields, z (real) the spatially uniform component of population
inversion, and w the complex amplitude of the grating incuced in the inversion
we have from (2.A.28) when losses and pumping are included
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i ! (22 + w'y)
= —— ez + w -,
T T y
. (zy + wz) - =
Yo e\ Yo
kl . 1 2 2 3 .
— 2= - " + +w x + wx
,7“2 (20 z) + l+62[2(l I Iyl } v y ] ¥
By cw— ety wlal? + )] (2.24)
‘1“ 1+ 46

with é cavity detuning, zgp pump parameter and normalized time 7 = Kt. Nu-
merical solutions of this seven equation system closely matches ali experimental
results.

In our parameter space (Fig.2.23) we can distinguish three main different
regions showing completely different behavior. In the first one we observe a self-
pulsing very similar to that of the laser with an injected signal. One mode is also
running CW while in the other one we observe only spikes, in phase with the
main mode, which occur at a repetition rate (ws) of the order of Y- In fact, as
in the LIS system, the CW working mode injects some energy into the other one
letting population inversion increase up to a level at which a giant pulse takes
place (the height may be 500 times greater than the stationary level). During
the pulse both modes go above threshold and spike in phase. Superimposed to
the decay we see relaxation oscillations typical of CO3 lasers with a frequency
(wo) very near to 2 : they are out of phase because of competition between the
two modes.

For higher excitation currents we observe a deterministic switching due to
competition between the two fields with low frequency {30 Hz}. During inter-
change jumps we observe again the two frequencies of Fig-2.24 but with the
lower one increased becauvse of a larger value of 7y (higher current) while the
higher one can be varied aiso by adjusting the cavity length and alignment by
moving a mirror mounted on a piezoelectric crystal.
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Fig. 2.23a,b. Bidirectional ring laser: (a) Experimental set-up: Gain cell with partial pres-
sures: COy 1, Nz 1.5 Torr, He variable. Cavity length 4.2 m; PZT piesoelectric mirror trans-
lator; Dy and D; detectors for forward and backward intensities. (b) Phue_diagrun for
total pressure (P} and discharge current (mA}. Regions are: (/) mode alternation, (/) self
Q-switch, (HI') irregular pulsation
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The transition between these two regimes is not abrupt and it takes place
through a region which shows chaotic behavior. Here both phenomena related
to population inversion, spiking (lower currents) and oscillation (higher cur-
rents) take place; effective output frequency results also as a combination of
the two others (wy + wg). At the same time if we adjust the cavity mirror po-
sition so that we brinig 2=~ (w, + wp) we obtain a competition of two different
variables (population inversion and field) on the same time scale. The result is
a fully developed chaos (Fig. 2.25).

If now we inject back one field into the laser with an external mirror (a fifth
mirror in the configuration of Fig. 2.23) we obtain: stabilization of sell-spiking,
stable laser action instead of switching between the two modes and chaotic
behavior. At the boundary between the spiking and the chaotic region we ob-
serve a phenomenology typical of a laser with an injected signal (Fig. 2.26).
it means that in this situations we have parameters practically equal to those
responsible of such behavior in the LIS case, although the system here is more
complicated.
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Fig.z_.lﬁ. Bidirectional ring laser - Region (1i1): Qutput intensity vs time for a wholly
chaotic signal (left ). Log-log power spectrum with fow frequency divergence f-9, a~0.6
(nght)
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Fig.2.26. Bidirectional ring with extra mirror to
reinject the forward mode into the backward one:
Output intensity vs time. Bifurcation sequence in
analogy with a laser with injected signal
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2.8 Conclusion

We have seen that the single-mode CO; laser has a rich phenomenology, which
we can reproduce numerically with simple theoretical models.

In experiments involving a parameter modulation or feedback we obtain
much more stable and noise-free output so that we can easily compute {ractal
dimensions and Kolmogorov entropies. At the same time the phenomenology
is here not so rich as in experiments where interaction with another field takes
place (LIS and bidirectional ring). This must be attributed to the higher com-
plexity of such an interaction where not only an amplitude but also a phase
coupling takes place, while in the parameter modulation case interaction is
carried only through amplitude modulation.

Summarizing we have found:

i) in a laser with modulated parameters or feedback, a clear Feigenbaum
route to chaos, with related ép and accumulation point evidence;

i) in a laser with an injected signal, two different routes to chaos, by inter-
mittency and period doubling;

iii)  in a bidirectional ring laser, self-spiking and chaos.

In this last system we find also a surprising coincidence with a laser with an
injected signal when we reflect back one mode into the laser.
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2.A Appendix: A Simple-Minded Approach
to Laser Equations

2.A.1 The Laser Equations

Leaving to textbooks [2.5] a detailed derivation of the laser equations, here
we use a pedagogical approach which may appear oversimplified, but which
contains the relevant physics. We consider the quantum interaction of a sin-
gle mode of frequency w, described by Bose operators a, at, with N non-
interacting two-level atoms, each described by Pauli operators ali, o3, {ry :
position of i-th atom) and with a transition frequency wg. The Hamiltonian is

H W . .
- weata + ?0 Y os tig) [aTexp (~ikr,)o; — aexp (ikry)o ! |
1 1

(2.A1)

where g% = (w.u?)/(2hegV) (V : cavity volume, u : atomic dipole moment).
Using the commutation rules

[a,at] =1
[o%,07] = a5
[03,6%] = +20% (2.A.2)

for the same atom, otherwise zero. It is easily seen that the collective operators
J3= 303 ,
3
Jt = Y ofexp (tikr,) (2.A.3)
H

obey also Pauli commutation rules.
The associated Heisenberg equations of motion can then be written

@=—iwea+gJ |,

e —iwgd ” + galy |,

Jy = —2g(atJd + alJ*) . (2.A.4)
Equations (2.A.4} look formally like the dissipation-less of {2.6). However, their
operator means that the corresponding equations for expectation values imply

an infinite hierarchy. We truncate it by factoring out expectation values (semi-
classical approximation):

(80T )~{a)(7) .
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Thus {2.A.4) can be taken as C-number equations, and decorated with the three
phenomenological damping rates —ka, —y; J ™, = (J3 — Jo), respectively,
where Jy is the inversion imposed by the pump in the absence of field. Recurring
to a more familiar notation (a—E, J~— P, J3—A) and considering also an
external field Ep at frequency wj, the single-mode Maxwell-Bloch equations
are

E = —(iwc + k)E + gP + kEge ™1t |
P=-(iwg+v,)P+gEA ,
A= -y (A- Ag) - 29(E*P+ EP") . (2.A.5)

Equilibrium sclutions at resonance (we = wp)} and in the absence of external
field yield

a- 20 _mk (2.A.6)

1+EYE: ¢
where we have called E? the saturation photon number
2= (2.A.6")
. 192

It then follows

P=2LAE . (2.A.6")
T4

To get the order of magnitude, take an allowed visible transition in a dilute gas
confined in V = 1em?® (as, eg., in He-Ne or AT lasers). Then -u~'7“~lﬂss"
and Ef-lo". Add a cavity 1 m long with 1% losses, then k~3 x 1095~ 1, and
A~3x 10° inverted atoms. It is convenient to scale all variables to these pa-
rameters, as follows

z=FE/E, ,
z=AlA (20 = Ao/A) ,
y=P/(AEg[v,) . (2.A.7)

So that the scaled equilibrium values at resonance are

L1}

:§= zo—l'
=1. (2.A.8)

L1
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Let us scale the frequencies as follows

We — W
k

W — Wi,
71

? = (cavity mistuning) ,

&= {atomic detuning) . (2.A.9)

Here wy, is either the frequency w; of the external laser or, in the absence of
an external reference, the frequency of the laser field {which does not coincide
with the cold cavity we and will be determined later). The scaled equations are

k= ~(i0+z+y+zg,
/71 =—(i6+ )y + zz ,
By =-z+2 - %(:cy' +z'y) . (2.A.10)

For 29 = 0, at equilibrium the first and second yield, for T#0 :

Z=(1+i0)(1 +1i6) . (2.A.11)
Since Z is real, this implies the pulling condition

0=-6. (2.A.12)

This assignes the value of wy as we see rewriting it as

We WL WL —wp
k T

(2.A.12)

Setting (2.12) into (2.11) we have the increase in threshold due to detuning
z=1+ 42 (2.A.13")
and replacing it into the last of (2.10)
2% = 20 - (1+6%) . (2.A.13")
Equation (2.13) generalizes (2.8) off resonance.

2.A.2 Adiabatic Elimination of Polarization - Modulation
and Injection

Solving (2.10) at equilibrium

xrz
1+i6 °

y:
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Replacing this result into the field and population equations we obtain

Iz
sk = (14 i _zz ’
z/k (+|)z+l+i6+:o
L |=|® A
z/1||——z+zo—zl+62. (2.A.14)

First, take zg = 0.

For & = § = 0 (resonance) we recover the equations of Sect. 2.3. If k = k()
we have loss modulation. If k = const, é = §(t) we have frequency modulation.
In the first case, working at resonance, we have a real z, and just 3 equations.
Indeed, because the first two are non-autonomous, a third equation rust be
introduced to account for the explicit time dependence

k(t} = k1(1 + m cos 12) (2.A.15)
The three equations are

T=—k(t)z(1+2) ,

z=-y(z -2+ zjzf?) ,

k= —mk;12 sin It | ‘ (2.A.16)
or equivalently if = [z[* the first two (2.16a,b) can be written as

P=-2k0(1-2),

z=—ylz— 2 +21) . (2.A.17)

In the second case the field has two non-zero components, and can not be
reduced to a single variable, Writing

T=x+izg = Vie¥ (2.A.18)

it is easily seen that in terms of intensity the equations shown in [2.44] are

valid
i 2
E__u(l_ 1+63) '
LA
‘)‘” - l+ 62 i
§=6{1) . (2.A17")

But this is not the full story. In fact, a fourth equation for ©(t) should be added
or, equivalently, the above set must be replaced by

E 2] + 6z

AT

iy x2 — bz)

PR R v ol

. 2., .2

F] zy + z3)

—m —ptogg— g2 220

2] %0 1+ 62

6= blz| . (2.A.19)
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This shows that, at variance with loss modulation, in case of phase modulation
a class B laser seems to be ruled by four equations. However, in the absence of
an external field frequency, thus the decomposition (2.18) should be immaterial,
since p = 0 always. We deal with this probiem later when performing a linear
stability analysis. For z0#0, we must add it to (2.19}, and redefine # and §
with respect to w), rather than wy,. They were written in [2.39] in a slightly
different form, because z was there defined as

z

riye

Thus the factor (1+6%)~? present in (2.19) is missing in [Ref. 2.39, Eq. (2.10)].

Notice that keeping zg in the st of (2.14) makes the equilibrium version
(T = 0} of that equation non homogeneous in Z, hence one can no ionger derive
the full relation (2.12°). For this, [Ref. 2.39, Eq. (2.14)] is wrong.

2.A.3 Linear Stability Analysis of Class B Solutions

At resonance (8 = & = 0) we have two coupled equations, and the deviations
from the steady state yield two eigenvalues A1,2. For zg = 0, the steady-state
solutions are given by

=1, I=|zf=20-1.
Writing I = T + u, z = Z + v, we have from (2.17)

u=2k(zg - 1)v ,
T T Eev (2.A.20)

Il

Thus the eigenvalues A correspond to

I ¥,
A= —Ezg:tl\/‘:.’k'r“(zo -1)- 320

~ - %zaii‘ﬁkq“(zo —1) (2.A.21)

since '7”(*:.

Equation {2.21) shows that a disturbance in a class B laser decays over a
time scale l/'y“ (assume zp and 2zp — 1 of the order of 1, for simplicity) and it
has a ringing with period 1/ k7). We remember that for a COz-laser the two

time scales are, respectively, 10~35s and 10~ 5s.

M now we consider a non-zero detuning, but still zg = 0 the equations are
given by (2.10) or equivalently by the first two of (2.17') plus a third equation for
phase p. Indeed, writing r as in (2.18), we have for the phase = arctan zz/x,

&
1+ 62

el 1 R .
E = ppmde - o) = -0+

z . (2.A.22)
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At equilibrium ¢ = 0, since § = - 4. Notice that having chosen a frame rotating
at the frequency wy, of the laser field, by definition ¢ = O always, hence the
extended stability analysis should pravide a third root A = 0. Indeed, extending
the analysis of {2.20} for §#0 we obtain three linear equations (we use the
matrix form)

u/k 0 2(—“-_1_:63-1) 0 “

v = z v 2A23

«5//;1 - _'_)3;%_2 ° » ( )
0 “1red 0

and the corresponding roots of M — AT = 0 are again the two given by (2.21)
plus A3 = 0, thus showing that the phase is irrelevant.

In presence of modulation, for a small modulation index, the motion is a
periodic orbit at the frequency of the external perturbation, around the sta-
tionary values I, z, and with a radius linear in the perturbation. The stability
of this synchronous orbit has to be tested by Floquet theory [2.34].

2.A .4 Laser with Injected Signal (LIS)

The equations are (2.19a—), with the addition of zg to the first one. These
equations have been discussed in [2.39). Alternatively, writing z = VT exp (ig),
we have two equations for / and ¢, so that the full set of LIS equations can be
written as

. Iz
I/2k = l+62—l+\ﬁxocos<p .
é Ig
k= —f— R
ek —1+622 \/jsmp .
. zI
Z/’]" =2p— 2 - m ’ (2A24)

where, we recall that # and § are defined with reference to the external fre-
quency wj. At equilibrium calling Ip = ::(2,, we have the relation

1—7[(a+ bz )2+( 0 4)2] (2.A.25)
0~ 1+ 62417 1+62+17 o

which, yields the curves of Fig.2.16 showing bistability. In [2.39] one can find
an extended stability analysis yielding the three roots of the linearized (2.24).

2.A.5 The Bidirectional Class B Ring Laser

When two counterpropagating fields aexp [ — i{wt — kr)] + c.c. and bexp
[ — i{wt + kr)] + c.c. coexist as separate dynamical variables, then

ia,b+] =0
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and we have a bidirectional ring. The corresponding Hamiltonian is

}I wo e
I = ? O3y t+ w{a+a + b+b)

—ig E [0, (0™ + be7itm1) — p~(atemikn 4 preibry) | (2.A.26)

1

We now introduce a whole class of k-dependent collective operators, which are

'l.?t:rrier transforms of the position-dependent single-atom operators, defined as
ollows

Ji(k) — Zaiieikr.‘ ,
Jafk) = 3 05,8t .
It is easily verified that
WT(k), I (- k)] = J3(0) ,
[J3(0), J* (k)] = 220 % (&) ,
and furthermore
[ (k) J™ (k)] = J3(2k) |
[J3(2k),J* (k) = 20 (3k) , (2.A.27)
and so on.
One immediately sees that the Heisenberg equations for fields are
= -iwe+gJ (-k) ,
b= —iwb+gJ (k) .
Adiabatic elimination of polarization yields for singie atom
-_ 99 —ikr,
Ay v Lty
where Aw = wy — w.

' Multipiying both sides for exp (-ikr) one builds a relation for J7 (k).
This way we build the following equations

2

N S

a o [aJ3(0) + bJ3(-2k)] ,
. gz

b= W [aJ3(2k) + bJ3(0)] ,

o L 4g° 2 2
J3(0) = m[-’.‘i(o)“d +81%) + J3(2k)abt + J3(-2k)ats] ,

) 2
Ja(2k) = = LK) (al? + ) + Ja(ak)ab* + y(0)a*s]
(2.A.28)
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and similar for J3(—2k). There is a hierarchy built from the third equation,
scaling upward (or downward} the k arguments by 2k at each step. If we in-
troduce a one-dimensional Jattice, with site ¢ corresponding to 2ki, then we
have J3(1) coupled with J3{¢11). The above equations have to be considered
as classical, and completed with phenomenological damping terms. Truncation
problems are discussed in Sect.2.7.-1f we sel J3{4k) = 0, already (2.28) is a
set of 7 real closed equations: two each for a and b, one for J3(0) and two for
Ji(+2k).
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