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We review techniques for the analysis of spatial and temporal instabilities in laser devices. The spatial problem
and the temporal problem are first considered in isolation. We then proceed to study their interaction, which re-

quires the development of a novel approach based on the Ho
ber of controllable instabilities effects that can be exploited

1. INTRODUCTION

A discussion of spatial and temporal instabilities in semi-
conductor lasers may be initiated by two contrasting objec-
tives. On the one hand, optical communications systems have
a requirement of stable optical sources. In the case of high-
bit-rate optical communications, this implies a need for
mode-stabilized semiconductor lasers. Hence every effort
is made to eliminate the causes of spatial, temporal, and
spectral instability in lasers designed for such applications.
However, in seeking to apply the semiconductor laser in the
role of a high-speed optical switch or as an optical logic ele-
ment, means are sought to utilize controllable instabilities in
the device. To date, the emphasis in research has been on
achieving stable lasers, but greater attention is now being
given to the development of lasers for switching and logic
functions. The design of such devices requires a description
of the stability properties of the laser in which both spatial and
temporal aspects need to be considered. Techniques of
analysis that address this problem are the subject of this
paper.

We attempt to review the development of our work, which
was initially directed at characterizing spatial stability in
conventional single-stripe semiconductor lasers but which led
to & framework for stability analysis in which the detailed
behavior of the device was taken into account. Insights
geined in the theoretical treatment of these problems showed
that multistripe devices were prominent candidates for de-
vices exhibiting controllable instabilities. Attention has thus
been directed at examining the utilization of these multistripe
lasers in which both electronic and optical means of stability
control are available. The full potential of these devices, it
is believed, is yet to be realized. In discussing these aspects,
we include the essentials of the analysis at each stage and
summarize the main results obtained in respect of spatial and
temporal stability. The exploitation of these results for
switching and logic purpoees is noted where appropriate.

The organization of the paper follows the logic of the the-
oretical developments. Thus Section 2 considers the char-
acterization of spatial instability by means of a definition of
an instability index. Section 3 shows how controlled spatial
instability may be effected. In Section 4, an analysis of
high-speed transverse mode switching in the laser is given.
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pf bifurcation theory. This analysis highlights a num-
in optical switching and logic applications.

The problem of temporal instability is introduced in Sections
5 and 6 on the basis of the classical small-signal analysis. The
above approach is restrictive in the case of interplay between
temporal and spatial instabilities. This problem is addressed
in Section 7, in which a new formalism better suited to this
situation is introduced on the basis of the Hopf bifurcation
theory.,

2. SPATIAL INSTABILITIES

A. Nonlinearities and Near-Field Shifts

Gain-guided stripe-geometry injection lasers commonly ex-
hibit nonlinearities in their above-threshold light-current
characteristics. It is found that the optical near field moves
laterally acroas the output mirror facet as the nonlinear por-
tion of the device’s light-current characteristic is encountered.
In this process, the near field is displaced from an initially
symmetric configuration, with displacements of up to 1 pm

being typical. Over a range of injection currents, the asym-.**

metry of the near field increases with current, but, for vet
higher injection currents, a sudden snapback to a symmetric
field occurs.!

Instabilities of the near field of this kind would result in
significant changes in coupling efficiency in a laser-fiber op-
tical communications system, Itis thus essential, for such an
application, to stabilize the near field. This may be achieved
by ensuring that real index guiding is provided in the device
structure, thus preventing near-field shifts. However, as is
discussed below, it is also possible to consider a number of
applications that exploit the observed nonlinearities and field
instabilities. In this context, the requirement is for means
of enhancing the nonlinearities. From either viewpoint, it is
of importance to be able to quantify the stability/instability
of the device’s optical near field. This may be accomplished
by means of an instability index, the derivation of which is
discussed in the Subsection 2.B.

Before the discussion of the instability index, we wish to
recall briefly the basic physical processes that underlie the
analysis. It should be appreciated that two mechanisms are
responsible for guiding the optical field in an active device
such as the injection laser. The mechanisms may be repre-
sented in the real and imaginary parts of a complex dielectric
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constant and are commenly referred to as gain guiding and
refractive-index antiguiding. 'To see the relationship be-
tween these mechanisms, we note that the change Ae of the
dielectric constant that is due to variation in carrier concen-
tration is given by

Ae=(—p +J) a)

2koV
Here, g is the local gain, which is conventionally assumed to
be linearly related to the carrier concentration; kg is the
free-space wave vector; v = ¢/ng is the velocity of light in
the laser material; and ny is the background refractive
index.

The parameter of greatest interest in the present discussion
is the antiguiding parameter p, which measures the relative
strengths of changes in the real and imaginary parts of the
dielectric constant. The parameter p is a positive quantity
whose value has been assumed to lie variously between about
0.5and 6.0. It is clear from Eq. (1) that an increase in g by an
increase in the carrier concentration will imply a decrease in
the real part of the dielectric constant. This will thus have
a refractive-index antiguiding effect since the refractive index
is reduced. Conversely, the imaginary part of the dielectric
constant is increased with carrier concentration; this then is
the gain-guiding mechanism. It is the competition between
the two guiding mechanisms that is the cause of the near-field
instability under consideration.

In seeking to define an instability index appropriate to the
injection laser, an argument is developed on the basis that the
optical field in the device seeks a spatially stable position
consistent with the gain-guiding and antiguiding mechanisms
acting on it. Because of the nonlinearity of the interaction
between the optical field and the carrier concentration oc-
curring in the device, the spatially stable position need not
correspond to a symmetric optical field. The interaction
between the optical field and the carrier concentration is
modeled using appropriate carrier concentration and wave
equations, and the definition of the instability index proceeds
by characterizing spatially stable solutions of these device
equations. The actual analysis follows a small perturbation
of the system through the device equations and seeks a con-
dition for the convergence of the series solution that arises
because of the cumulative effect of the iterative procedure
inherent in a self-consistent solution of the device equa-
tions.

B. Perturbation Analysis and Instability Index

The cross-sectional geometry of a typical stripe-geometry laser
is shown in Fig. 1, in which the coordinate axes are also de-
fined. The mechanisms available for guiding the optical field
in the transverse x direction are those discussed in Subsection
2.A. We assume that, because of material changes in the y
direction, the optical field is confined by a real index guide.
In the device, the active region has a thickness d and a width
defined by the finite stripe-contact width a to which current

_ injection into the active region is arranged.

The appropriate device-modeling equations for variations
in the x direction are (1) the carrier-diffusion equation

pley L pNemarn @

and (2) the appropriate form of the wave equation
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Fig. 1. Schematic cross section for a stripe-geometry laser.
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The terms appearing in the equations are as follows: I is the
diffusion coefficient, Ng{x) is the carrier (electron) concen-
tration, J is the injection current, B is the bimolecular re-
combination coefficient appropriate to low-doped devices, g,
= aNo — B is the local gain, and Po(z) = Ao do(x)|2 is the
optical field intensity. Ay is the field amplitude, and ¢ is the
modal field; ¢ is the complex dielectric constant, and 8, is the
longitudinal propagation constant.

The subscript zero appearing on the above quantities de-
notes the fact that these quantities represent the solutions to
the device equations whose stability is to be analyzed. The
interaction between the equations is apparent since ¢y from

~ Eq. (3) appears explicitly in Eq. (2), and also Ng from Eq. (2)

appears in ¢ in Eq. (3) by the relationship given in Eq. (1).
The field normalization is written as

TedaMr=1. @
The photon density is defined as

So= Ag? J'_:wzdxsf_:;«bdzdx. (5)

where ® is the total unperturbed field and ¢y is the modal
field.

To examine the stability of the above system, a gmall per-
turbation is assumed in the injection current, and the conse-
quences for the optical field and carrier density are found.

In response to the small perturbation &; in the current, &
perturbation ¢ arises in the optical field, the dielectric con-
stant is perturbed by an amount 7, the longitudinal propa-
gation constant is changed by an amount b, and the carrier
concentration changes by an amount n. The interrelation
among these quantities must now be defined.

The field perturbation is written to first order as

¢ = apdo + a1y, (6)
where ¢, is zero outside the stripe and orthogonal to ¢¢:

.

) = (2 12 gin 222
a
+a/2 {2172 ain 2
[f (a) "wdx]m Il <3
+=
¢h2dx =1,




T.E. Rozziand K. A. Shore

The wave equation (3) becomes to first order
2
220 + (coke?~ B = (260b — mkNAate (1)

By utilizing Eq. (6), it is then possible to calculate
Q) = ko?Aono;

TXRyTy @
where
oy = J:: done dx )
and
9 pal2 2xx 2x\2
T b 22 in2 27 4. — [£%)°,
B2 = ky 2 J‘_am ®1€60 8in . dx a) (10)

Then, from Eq. (1), we may relate 1 to n, the perturbation in
the carrier concentration, and hence rewrite Eq. (8) in the
form

= Aol=p + jlawng
Bo* - BHV?
where no, is the matrix element of n with doand ¢;.

We now consider the perturbed form of Eq. (2) again, re-
taining only first-order terms. We obtain

a, ’ (11)

Zn + anPy = 4 _ &ap(z). (12)
T ed
The recombination term of the first-order equation is written
in terms of an electron lifetime
T, = 1/BN,. (13)

The additional diffusion term associated with the perturba-
tion 7 is neglected in Eq. (12),

The perturbation field intensity p(x) has been introduced
into Eq. (12). By definition,

D(x) = ¢Pp* + ¢*d,, (14)
and, to first order, we have
Px) = Ag[2ad¢d? + 2 Re(a;¢160%)). (15)

An iterative procedure is now followed between Eqs. (11)
and (12) and utilizing Eq. (15). For the first cycle of the it-
eration, we take p(x) = 0, 20 that, from Eq. (12),

1,0f
2+ ar Py
Equation (16) may be used in Eq. (11) to find
Ag L WT, " dobidy
Vg — =Y __ —_— —
“ (Be% - 512)( e+ y2 f--2+ ar, Py ds.
(17)

The second cycle of the iteration takes p{x) into account, so
that

n=plls (16)

£07s
_ 24 ar,Py
In writing a; = a, 4 4,(2) from Eqgs. (18), (15), and (11), we
find an expression for a;(2. "This process may be continued
through further iterations. The repetition of the procedure
thus provides series expansions for the perturbations a; and

n = + n(2) = u(l) -— p(x). (18)
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n as infinite sums. It is possible to show that the convergence
of these sums is determined, in cases of physical interest, by
the ratio

a,®
a,

. (19)

For R <1, the series for a, is convergent. This then implies
that the optical field develops a finite perturbation a,¢; and
is thus stable. When R > 1, the perturbation to ¥, is no
longer finite, and so it is the case that the initial state is un-
stable. So R may be used to define the stability of the optical
field and is thus called the instability index of the mode.
Under certain approximations, it is found that the insta-

bility index may be written as
J:. %o Re[a;]¢,dx
R= 2Ao N * (20)
- f = ¢oTadig; dx
-2+ arnPy
where
- EoTs
rz) 2+ ar,Py bado®. @1

It is pointed out that Eqs, (17) and (20) imply that R is, in fact,
independent of the perturbation 8],

Application of the foregoing definition of the instability
index to calculations of the properties of a typical stripe-
geometry laser demonstrated that the index correctly de-
scribed the nonlinear behavior of the device.?2 The calcula-
tions followed the instability index along the light-current
characteristics of the device. It was found that -

1. For relatively low injection currents, the light-current
characteristics were linear, the near field was symmetric, and
the instability index was small, i.e., less than about 0.5,

2. As the injection current was increased to a nonlinear
portion of the light-current characteristic, the instability index
rapidly increased (in fact, assuming values greater than unity),

'but the near field remained symmetric.

3 Fmtherincreaseinthectmntrestﬂtedinashiftofthe
near field to an asymmetric off-center position and also a
decrease in the instability index to s value of about 0.5.

4. Yet further increases in the current saw an increase in
the stability index for an asymmetric near field and then a
snapback to a symmetric near field, at which point the sta-
bility index again fell to values of Q.5 or leas.

The interpretation of these findings is that, in case 2, the
near field occupied an unstable symmetric configuration and,
with a suitable perturbation of the injection current, then
moved into the stable asymmetric configuration of case 3.
The existence of this stable off-center configuration will form
the basis of a theory of transverse mode switching that is de-
veloped below. The results in case 4 indicate that the asym-
metric configuration itself becomes unstable, and the field
once again seeks a stable configuration that is a symmetric
configuration associated with hole burning in the local gain.
The effect of the hole burning, which occurs for comparatively
high optical output powers, is to produce an index-guiding
effect in the device that favors a symmetric near field.
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Inasmuch as the conclusions of the stability analysis using
the instability index R are both internally consistent with
calculated optical field profiles and also agree qualitatively
with experimental results, it is claimed that this approach is
& valid method of assessing nonlinearities in the device char-
acteristics. With this basis for analyzing the stability of
transverse modes, our attention now turns to seeking ways of
exploiting the nonlinearities in the laser. As noted above, one
particularly interesting consequence of the stability analysis
is the possibility of transverse mode switching between stabje
asymmetric states. The description of these effects requires
a consideration of time-dependent diffusions and wave
equations and is discussed further in Section 4. In Section
3, we consider methods of exploiting controlled instabilities
under static conditions. :

3. CONTROLLED INSTABILITY AND ITS
APPLICATIONS

A. Electronically Controljed Instability

The foregoing analysis of spatial instability that may arise in
conventional stripe-geometry lasers showed how the optical
pear field could undergo a spatial translation under appro-
priate conditions. In single-stripe devices, this behavior is
determined, by the complex dielectric constant, by the form
of the local gain function. 'Gain guiding, which confines the
optical field over a range of the light-current characteristics,
may give way to real-index guiding for higher optical powers
when the injection current is significantly increased. The
fundamental difficulty, however, is that little control can be
effected over the form of the gain function in single-stripe
devices. This is unfortunate, since the near-field shifts and
nonlinearities that appear in stripe-geometry lasers are po-

tentially usefy). Theposit.ionmayberecoveredbythemther‘

simple expedient of constructing multistripe-geometry lasers
and, in particular, twin-stripe lasers. In such devices, it is
found that control can be exercised over the optical near field
by means of independently controllable injection currents.
The extra degree of freedom introduced by applying a second
stripe contact to the device is sufficient to transform the laser
into a useful component in a number of applications. Such
electronic means of controlling near-field instability in the
laser are discussed below. In Subsection 3.B, it is shown how
optical injection may be used further to enhance the useful-
ness of the twin-stripe laser and hence of multistripe lasers.

A schematic cross section of the twin-stripe laser is given
in Fig. 2. The active region of the laser is now pumped by two
injection currents. It is assumed that electrical isolation
between the stripe contacts can be ensured so that the currents
J1 and J2 may be varied independently. An analysis of this
device has been performed using a general mode! for semi-
conductor lasers.® The essentia] requrement for carrying out
the computer modeling of this device is the ability to include
& current profile J(x) that takes account of the currents J; and
J2. Inall other respects, the solution of Eqs. (2) and (3) for
twin-stripe devices is similar to the procedure followed for
i An glternative procedure for analyzing

. these devices has been suggested by Katz 5

Computer analysis of a number of aspects of the behavior
of twin-stripe devices has been performed. Here, we highlight

“
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Fig. 2. Twin-stripe laser geometry.,

the main conclusions drawn from those computations.
Confirmation was obtained of the basic contention that con-
trolled movement of the optical near field could be demon-
strated through variation of the injection currents. It is fur-
ther shown that nonlinear light-current characteristics were
8 consequence of the movement of the near field? The
physical explanation of the latter effect is quite straightfor-
ward, Itisapparent that the movement of the near field into
the unpumped interstripe region of the active layer will cause
the field to experience a reduced gain. The intensity in the
near field will thus tend to decrease even though the con-
trolling injection current may be increased in order to bring
about near-field movement. It follows from these observa-
tions that interstripe coupling processes play an important
role in determining the extent to which near-field shifts can
be accomplished. The coupling between the stripes is af-
fected by interstripe separstion, carrier diffusion, and cur-
rent-spreading effects.® The first of these is most easily ad-
justed at the device design stage. The degree of electrical
isolation between the stripes must be carefully considered to
account for current-leakage effects.’ Finally, reference is

. made to calculations of the optical output power of the device

and a function of the injection currents Jy and /2.8 When the
results of these calculations are displayed in the form of con-
stant-power contours in the J1~/; plane, they provide con-
firmation of measured results that have been developed to

. show the occurrence of bistability in twin-stripe lasers 9

Practical applications of the effects outlined above have
been discussed in two main areas. The earliest suggestions™~
for using the twin-stripe laser were with respect to a scanning
function, in which controlled movement of the device far-field
radiation pattern was of interest, 10 The rotation of the far-
field pattern as injection currents are altered may be seen to
be a consequence of the bear-field shifts already discussed in
Refs. 3 and 6. Further remarks on this application will be
made in the discussjon of optically controlled instability in
Subsection 8.B. The second area of interest in which ex-
ploitation of twin-stripe laser properties is under active in.
vestigation has already been referred to and concerns the use
of the device as an optical logic element. Bistability in these
devices is well known by now, but there remains work to be
done to optimize switching times and other operating pa-
rameters to realize useful ultrafast logic devices. It should
be remarked for completeness that multistripe devices have
received considerable attention recently because of their ca-
pability for providing large optical output powers. This as-
pect will not be pursyed here, since the phase-locking prop-
erties responsible for this feature of multistripe-device char-
acteristics do not belong to a discussion of optical insta-
bility.
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B. Optically Controlled Instability

The previous subsection considered the scope offered by the
twin-stripe laser in particular and multistripe lasers in general
for controlling near- and far-field patterns. The basis for
electronic control of the optical field was the change in the gain
profile in the device that could be effected by independent
adjustment of the stripe currents. 1t is natural to inquire how
the static properties of the device may be influenced by means
of the injection of light into the active region of the laser. The
superposition of the injected light upon the lasing optical field
causes a change in the lateral gain profile, and hence the
wave-guiding characteristics of the structure are altered. So
that optical injection may have significant effects, it is nec-
essary to be able to adjust the sensitivity of the device, ie.,to
¢hoose a gain profile that implies a potentially unstable optical
lasing field. Since control of the near-field position is offered
by multistripe devices, it is in that context that optical injec-
tion effects are assessed.

In Fig. 3, we show a schematic diagram of the twin-stripe
laser subject to optical injection into the active region below
either or both of the stripe contacts. By taking an incoherent
superposition of injected and lasing optical fields and by
further assuming that the injected light is at the lasing fre-
quency, a simple modification of the carrier diffusion equation
is all that is required to model optical injection effects. We
now have

2
%’-;— + % = g, {P(z) + P;n(x)] + Bn2. (22)
Comparison with Eq. (2) revesls that an additional term
£tP(x) is now included, where Ppy(x) represents the injected
optical intensity,

A series of calculations was performed to provide estimates
of likely effects of optical injection on near-field movement
and consequent changes in output characteristics of the de-
vice. It wasshown how the sensitivity of the device to optical
injection could be tuned by the variation in currents J, and
J2. Significant changes in the lasing-field intensity were
demonstrated for relatively small optical injection powers, 1112
The latter observation was developed to show optically in-
duced bistable action in the twin-stripe laser.? It is believed
that the latter effect will be of particular interest in the context
of opticallogic. Asan all-optical approach to implementing
bistability, it avoids recourse to electronic means of switching
and t.husispotentiallyfastinthisresponse and also lends itself
to integration in an all-optical circuit.

Two other applications-oriented sets of calculations were
made. In the first, it was shown how the effects of pear-field
instability could be carefully tuned to produce optical limiter

D

Fig.3. Optical injection into a twin-stripe laser,
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‘action in the device. In this case, the total light output from

the device remained constant over a range of injected optical
power.14 Second, the optically driven analog to the beam
scanner discussed above was assessed. It was shown that
rotation of the far field could indeed be achieved by optical

-means, and, further, that the required optical injection power

was not unreasonable. The calculations indicated that a
far-field rotation of between 1° and 3° per milliwatt of injected
optical power may be achievable 15 Although such field
rotations are leas than what would be expected with elec-
tronically steered beam scanners, the ability to perform the
scanning by optical means alone may still have attractions.

In this section, attention has been paid to the manner in
which spatia! instability may be exploited to develop the static
properties of the semiconductor laser. In Section 4, we turn
to the effects of spatial instabilities on the dynamica! prop-
erties of the laser.

4. TRANSVERSE MODE SWITCHING

As was discussed in Section 2, nonlinearities in light-current
characteristics of single-stripe-geometry lasers may be asso-
ciated with the appearance of off-center optical fields even in
an apparently symmetric device. In an ideal laser, such
asymmetric near fields are degenerate; two asymmetric off-
center positions for the field are possible, one being the mirror
image of the other, In practice, there may be nonuniformities
in the device that serve to break the degeneracy and hence
determine that only one of the positions is tenable. Never-
theless, it is of interest to consider the ideal case in which two
asymmetric situations are allowed. In this case, there is no
a priori reason to choose between a field that is off-center to
the right and a field that is off center to the left. Since either
position may occur, it may then be possible to establish os-
cillations between the two off-center states. The point of
interest is the frequency of such oscillations, and we will not
be concerned at this point about the conditions that must

obtain in order to establish such osciilatory behavior. This .*

aspect will be addressed in the discussion of the Hopf algo-
rithm given in Section 7. We give here a derivation of the
oecillation frequency for a particular class of oscillations that
may be established between the degenerate states under
consideration. The class of oscillations is characterized by
the constraint that the power in the oscillating field be a
constant. The formalism includes the possibility of flucty.
ations in the optical power, but that aspect is not devel-
oped.

To proceed with the analysis, it is assumed that solutions
to the steady-state diffusion and wave equations [Egs. (2) and
(3)] are found such that an asymmetric modal field ¢,(x} is
obtained with a corresponding carrier distribution N, (x).
Under the postulate of degeneracy of the solution, a second
steady solution is pousible, for which

$5(x) = ¢(~x) (23)
and
Ny(x) = No(-x). {24)
A time-varying optical field is then taken to be
é(x,t) = a(t)g, (x) + b(t)es(x). (25)
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In general, ¢ would satisfy the time-dependent wave equa-
tion

2 __‘.ﬂ__z._a_ﬂﬁ 1 & -
Ve ar ctara T2 26)

‘We separate the time variation into two components, one of
which is related to the optical-carrier frequency wy, the other
being due to the slow variations of the field amplitudes:

a d
ot Juot ar @
Then the wave equntlon becomes
21«:0 dp 1 3¢
2 — —_ = — ]
v¢+ ¢ &T+‘ar¢) (28)
By definition,
V¢ + ny2kold, = 0, 29
V2¢y + nplko2ey = 0. (30)
Hence the wave equation reduces to
eko?*(n?—n, 2, + bk02(n2 - nbs)'#b
-M 2 a_¢+Lin_ » (31)

c’n dr n?or

where (1) = n2{z).
The stationary carrier distributions satisfy the equations

3N  Jx) Nalx)
D o2 T ed 7o = 8eSd¢a(x)[2=0, (32}
33Ny  Jix) _Nb(x) _ .s
b éx2  ed - EwSdea(x)2=0. (33)

S¢ appears in both equations because of the degeneracy as- + -
sumption. Note that electron lifetimes 7, and 7, havebeen - --

used insteac of the bimolecular term involving B that appears
in Eq. (2).

The time-dependent diffusion equation satisfied by the

carrier density is
dN(x, t) - aN - J(x,t} N(x, 1)
ot or ed Te

2
Dﬂ—g;P(x t)

(34)
We introduce variations from the stationary states as

Na(xp t) = N(xl t) - Nﬂ(:)l
Nb(xl t) - N(I, t) -Nb(x)l
and it is found that these quantities uﬁsfy the equations

(35)
(36)

ai +N + aiNoPo = —g:a(P — P,), (37
__el +_.Ni!’.+ o: Ny Py = =g (P — Py), (38)
or T

where P, = Sqi¢o(x)[2, Py = Sol ¢5(x)|% and g; = a;N — 8,.
Making use of Eq. (1) once again, we may deduce that
2= ngt= (p+ ) 0 R, (39)

2?2 m (—p 4 i3 FLO
n?—ny?= (—p+j) Vkoﬁ”' (40)
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Equations (31), (37), and (38) must now be solved for the
optical field ¢. To identify the frequency of oscillation, we
assume that

aft) = (S¢)%(ao + @) cos wt), (41)
b{t) = (S¢)1/2jb, sin wt. (42)
Then
St} =]alth? + |b(e)?
2 2 2 p2
'(ao+%é-l-+2aoa;ooswt+al b, cos 2wt |+
(43)

To meet the constraint that S(¢t) = constant = S, it follows
that eitherag=landa; = b, =Qorgg=Canda; = b; = 1,
The second choice represents the required oscillstion between
states a and b.

Thus we have

de/dr = jwb, (44)
db/dr = jwa. (45)

These postulates lead to a definition of the oscillation fre-
quency «.)8 The detailed derivation utilizes a Fourier ex-
pansion of the type

Ny(x,t) = ng®(x) + n1o(x)cos wt + ny,®sin wt +. .

We can deduce that

not = gtnS g¢n|2-|¢bi

(1/7. + a;P,) (46)
and
N1 =n,%=0. 47
Finally, it is shown that
..‘..l.’.. = r e " *pn a0
o (=p+)) ZnghaV J:_ Ps*ne® dodx 48)

(an equivalent expression involving ngt is also found).

The calculated oscillation frequency @ will be a complex
quantity, and, hence, real oscillations can arise only at isclated
points at most, and then the real part of w can be taken as the
oscillation frequency. Numerical calculation of Eq. (48),
using typical parameters for the device, indicated oscillation
frequencies varying between 10 and 150 GHz,)? thus implying
optical switching times in the range of a few nanoseconds
down to a few picoseconds.’® Hence the generation of such
oscillations would be of considerable interest in the context
of high-speed optical switches. It is emphasized that the
oscillations are of a particular kind, in which the total optical
power is a constant. As was found in the discussion following
Eq. (43), two possibilities exist within the formalism to meet
the constraint of fixed optical power. The first possibility was
defined by ap = 1 and a; = b, = (, i.e., a steady-state sclution.
The derivation outlined above concerned the oscillating be-

havior defined by ap = Q0 and a; = b; = 1. The question arises

whether a transition can occur between these two kinds of
golution. This problem has been approached within the
context of Hopf bifurcation theory and is discussed in Section
7. As a final reference to Eq. (43), we point out that it allows
also for a fluctuation in the total photon density at frequency

L)
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@, 2w, or a combination of such fluctuations with a constant-
background photon intensity. We will now turn to the
Question of describing the general dynamic behavior of the
laser on the basis of a basic spatial model.

5. TEMPORAL INSTABILITY

We consider the following system of rate equations describing
the time evolution of a laser mode feeding on the inversion of
two reservoirs. These reservoirs can be two transverse or
longitudinal regions, two spatial Fourier components of the
carrier density distribution, two different types of recombi-
nation mechanism, ete. We include the effect of saturable
absorption as well as of diffusion coupling at first without
spontaneous emission: i

ds 1
. (o -2]s. (49a)
e M- Csaiy + MmN o
dt Ta(1)
. ~N
v, -2 +j2 — CaSg2(N,) + Ny 2, (49¢)
dt Ts(2) T

where S is the photon density. N; and N, are the carrier
densities in reservoirs 1 and 2, respectively, with lifetimes
Ta(1,2)- Tp is the photon lifetime, and 7 is the diffusion time
constant. g;(N;) is the gain function in reservoir 1. Thegain
functions in the two reservoirs are taken as different in gen-
eral, allowing for the poesibility of inhomogeneities, The
optical gain G is given by

G = Ci81(N1) + Caga(N), (50a)

where the coefficients C, and C2 describe the distribution of
optical power between the two reservoirs and are such that
Ci+Cy=1. (50b)

Ji are the nomina) current densities in units of the electron
charge.

A stationary solution of the above equations is obtained
when the time derivatives are zero:

€121(N1) + Caga(Ny) = ,i (51a)
P

1 1 N. .
N; l_-‘ -y CiSsi(N)) = j1,  (51b)
Ta(1} T T
-N. 1 1 .
_l'l'Nz ""—+"] +C!S82(N2) = o {51c)
T Ta2y T

Eliminating N, and N, from these equations, we obtain a
curve

S= SUl’jz)- (51d)

It is obvious from the rate equations that the solution S =
is stable below threshold. Instability can arise only for § >
0, however amall S may be.

In order to investigate the stability conditions of the above
system, we linearize the above rate equations around the
stationary points S, N, and N so that

S{t) = S +s(2),

N;(t) = N; + n;(2). (52)
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Fig. 4 Instability region in the J1~J; plane.
This yields -
do (98 . . 6
a (C] an, nr+ Cz&nz nslS, (53a)
D e Py B V), (53b)
dt T, T
Dt BN, (53¢)
d 71 7,
where
Tal  liosi 54)
Ti Teti) T on;

and the derivatives are taken at the equilibrium point. Ac-
cording to the Hurwitz criterion,!® the linearized equations
above yield stabie solutions under the following conditions:

1 1)1 _1 %11 . dg1
(1_1 +1’7,) 2 + S C;gﬁNﬂ(C; an, )

TiTg T Ty zdnz T
+ szz(Nz)(Cz %:-:—2 -o 20 ;‘-)] >0, (568) **
a;uvl)(cl :—f&}; c:jf})
+ Zz(Nz)(Cx :—g—ff -c :%:}J] >0. (55b)

Additional to these conditions is the criterion discussed under
Eq. (51d), namely,

S(uLi»>o0. {55¢)

If we neglect diffusion coupling in the above conditions, i.e.,
(1/1) — 0, these conditions reduce to Basov's stability cri-
teria:

( 1.1} 1

-+ —| —

T1 T 7172

8z 1 dgs 1
+ 8[01=g,<N1)c, 211 _ 0Ny ﬁ—L] >0, (66a)
anl T _6?12 T
%181, - g
C, 3, g +C, dny 1, >0, (56b)

where now

P
=]
w
Ll
£
o
[~
ot
Pt &
=+
-t w
1
w
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1.1 ,cs% 67)
T Ts; an,-
By comparing Eqgs. (55a) and (56a), taking into account that
the definition of 7; is different in the two cases, it appears that
the effect of diffusion is to reduce the region of potential in-
stability in J,—~J; plane. A typical such region in absence of
diffusion is shown in Fig. 4.
In the following section, we consider one example of a more
refined spatial model, including the effect of spontanecus
emission.

8. VARIABLE-SLAB-WAVEGUIDE MODEL

The basic layer cross section is that in Fig. 1. Figure 5 rep-
resents an equivalent three-layer slab parallel to the junction.
n; is the effective refractive index of region i, related to the
carrier concentration N; by the relationship

- —+ 08
n; =no+ (—p +j) e 2k (58)
&= B(‘% - 1)(8"‘). (59)

where ng is the background's effective refractive index, ¢ is
the speed of light in vacuo, kg is the free-space wave number,
u is the ratio of real and imaginary refractive-index variations
with N, g; is the gain in region i, f is the gain slope, and Ny is
the carrier concentration for transparency. The diffusion
equation is modeled by the differential equations

&N i _Ni, Na- Ny

+ S,
dt ed 7, T2 ci81 _ (60a)
dN: mj; N; N —~N; Ni—N;
===y + —~ ca2S,
de ed Toy T12 T23 cag2
{60b)
%'__Na-‘__Nz_Na' (60c)
dr Tay Tog
where m = j,/j, is a function of the total injection current, as
discussed in Ref. 19, and 7,; is the carrier lifetime in region{,
which, in the bimolecular model, is given by
74 = 1/BN;. (61)

712 is a diffusion-time constant proportional to the product
of half-widths of the regions 1 and 2 over the diffusion con-
stant 723 * 79, § is the photon density, and ¢; is the confine-

ment factor in region i, which is a function of the difference

N;—Njonly:
J;alzf¢(z)]2dx
01‘C1(N1-N2)'._'""—- (62)
. 1oz
crtea=l. (63)

Within an arbitrary constant, the optical field is given by

d(x) = cos(u;‘-;z dx| af2

= C08 U exp[—w(-f- - l)l x| Z af2. (64)
a/2
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The normalized wave numbers u and w are the solutions of
the dispersion relations u tan « = w:

2
uZ+ w2 = (n2— n,z)(kog)

a’ N8N, — N,
~2noko( o+ ) c N

Here we have neglected a slight difference between the TE and
TM modes parallel to the junction. Given a difference of
carrier densities, infinite solutions are possible in the complex
u plane. We operate in the region where the gain of the fun-
damental mode only approaches the inverse photon lifetime.
Together with Eq. (60), we must consider the optical gain
equation

(63)

ds 1
s. (g - -T,,)S + (BN + ¢N,2)

~ (0151 + caff2 — %)S + {B(eiN12 + eoNo?),  (66)
P

where G = 287 (c/n;) is the modal gain, 7, is the photon life-
time corrected for field confinement in the y direction and

4
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hdudingmvitylomes,{isthespontanews—mjssionmmnt,
and $” is the imaginary part of the propagation constant;

8= [(nlko)z - (ﬁﬂm - [(n2k0)2 + (;'}iz)’]"z.

and the approximation in Eq. (66) holds for not-too-narrow
stripe widths. The stationary characteristics are obtained
by setting the time derivatives equal to zero in Egs. (60) and
(66) and solving for S = S(J;, J3) by elimination of N N3,
and N. 8

The stability of the system of first-order differential
equations [Eqs, (60)] is investigated by means of the Hurwitz
criterion, as outlined in Refs. 19 and 20. This procedure gives
the necessary conditions for instabilities, The presence of
actual instabilities is checked by checking the formation of
limit cycles in the phase space N and N,

In deriving the numerical results, we have used in Eqs. (60)
the exact expression for the modal gain rather than its ap-
proximation, Moreover, the following parameters were kept
constant throughout:

ko= 7.48 X 10f cm™?,

¢ = 3.0 X 101° e gec™,
no=3.52,

#=3.5,

Tiz=Tn=71,

B = 1.747 X 1012 goc=1,
$=10-4,
Tp = 2 X 1012 gee,
T, = 10~? gec,
Np= 1.5 X 1018 ¢y-3,

Consider first the total injection current I; as independent
variables: Figure 6 illustrates a typical region of instability
intheplanel, - Sfora narrow-stripe laser. Also indicated
in the figure is the limit value at m within which oacillation
takes place.

7. HOPF BIFURCATION METHOD

With a view to exploiting the dynamic behavior of the device,
it is necessary to provide means of assessing the stability
characteristics in both time and space. The approach to this
problem described in the previous sections is to replace the
active region by a number of piecewise-uniform subregions,
each described by a nonlinear rate equation for the carrier
density, perform a smali-signal analysis, and apply the Hur-
witz criterion to the Laplace transform of the linearized
eguations.19

Inasmuch as the optical field can also be approximately
described by the modes of a multilayer slab with stepped re-
fractive-index profile, the above approach also lends itself to
an approximate description of the spatial as well as the tem-
poral evolution.?® One may require, however, to obtain a
detailed spatial description by this method or even to describe
instabilities in multistripe or split-stripe lasers or more-
complicated types of instability in which pulsations are as-
sociated with mode changes. Under these more-geheral
conditions, the approach described above becomes rapidly
intractable becauae of the increasing number of coupled rate
equations, one per region plus one for the photon density of
each mode.
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The approach presented in thie section goes back to the
coupled partial differential equation describing the temporal
evolutions and spatial distributions of the carrier and photon
densities. The self-consistent steady-state solutions of the
two coupled equations are used to define local normal modes,
which are time dependent, The temporal and spatial per-
turbations can then be described as linear combinations of the
local normal modes with time-dependent amplitudes. The
geometrical interpretation of this process is that of introducing
a local system of coordinates along the tangent and the normal
at a point of a curve in order to describe small deviations from
that point. In this new system of coordinates, the original
problem is then reduced to that of analyzing the stability of
the rate equations for five scalar amplitudes: the real am-
plitude of the fundamental oplical mode, the amplitude and

‘relative phase of an orthogonal deviation, the real amplitude

of the function describing the steady-state electron density,
and that of an orthogonal deviation. The classical Hopf bi-
furcation theory is now applied to the reduced problem in
Subsection 7.F. The basic elements of the theory are briefly

recalled in Subsection 7.E for ease of reference. Whereas the

Hurwitz criterion determines just the regions of potential
small-signal instability, the Hopf algorithm provides a means
for determining the critical points at which steady-state be-
havior breaks into two oscillatory solutions (Hopf bifurcation).
The existence of a Hopf bifurcation in the characteristics
therefore implies the poesibility of both bistable operation and
self-sustained oscillations. Also, the onset of spatial insta-
bility associated with near-field shift and nonlinear light-
current characteristics in broad-stripe lasers are eastly iden-
tified as discontinuities in the eigenvalues of the matrix of the
equations of motion.

A. Time-Dependent Wave Equation
From Maxwell’s equations, we write the time-dependent wave
equations
2¢ ¢ de 92
Vo s = 2oyt Y _

The effective-dielectric-constant method is used to reduce
the three-dimensional wave equation to two dimensions £ and
2 in the plane of the junction. Propagation is assumed along
the 2 axis, and the origin of the transverse x axis is taken at
the midpoint of the device active region. In the case of
stripe-geometry lasers, which will be considered in the nu-
merical work below, the origin of x is taken at the stripe
midpoint.

It is convenient to separate the time differentials appearing
in Eq. (67) into two parts; one corresponding to the optical
frequency variation and the other representing variations elow
compared with the variation of the optical carrier. Thus we
write

a . a
Pl () + v (68)
Then, in Eq. (67), we can set
829 .
iz o + 2)“0;'
d¢ 3 9%

5?"*; a?-o. (69)

(67) .
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=
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With the above simplifications, Eq. (67) reduces to

. a¢ de [d9 |
24 = 2 = - -_— |
Vi = wolpoed = 2wopge o +2noa [ar”‘"”]

¢ 1 de ]

~ 2jwope |— + ~— (70)

ar €07

Our approach is to develop from Eq. (70) a set of equations
to describe the time evolution of the electromagnetic field,
We proceed on the basis that a solution ¢y of the stationary
wave Eq. (71) is known:

2
% - ﬂoz)% + eoko?bo = 0. (71)
Here B is the z-direction propagation constant, ¢ is the ef-
fective dielectric constant for the stationary case, and ko is the
free-space wave number.

The stationary solution will, in fact, have been obtained
within & self-consistency scheme such that it satisfies both Eqg.
(71) and the stationary diffusion Eq. (72), which is written in
a form appropriate to low-doped devices:

2
pS TN L m 4 BNE, 2)
where Nj(x) is the electron density.

Here D is the diffusion coefficient, J(x) is the injected
current profile, d is the active region thickness, g,(x) = aN,
= B is the local gain, Py(x) is the stationary lasing-field in-
tensity, and B is the coefficient of the bimolecular spontane-
ous emission rate.

The self-consistency criteria will fix the amplitude Ag of the
lasing field ¢o under stationary conditions. We introduce the
notation ®p = Agdy and seek a representation of the time-
dependent modal field ®. The time-dependent field is
written as a perturbation of $;: .

=&+ 9. C(79)

The perturbation ¢ is expressed as a linear combination of
orthogonal functions. It is natural to choose ¢ as one basis
function and to construct another basis function ¢; orthogonal
to ¢y in a sense defined below in Eq. (75). Using these two
functions, we define

& (x, t) = aplt)dolx) + a;(t)e:(x), (74)
where ¢, is defined such that
S et @tz =o. (15)

We point out that in Eq. (74) the coefficients g, and a; in-
clude the time dependence of the perturbation. In general,
a, is a complex quantity, but a, may be taken as a real num-
ber. Our attention is now directed at obtaining rate equations
for ap and a;.

Inserting ¢ from Eq. (73) into Eq. (71) and retaining terms
to first order in the perturbation, we obtain

dz. ko 89
T2~ Bolje+ eoko%-z):eo;
= —nhotdo + 220X 4 4 208, r6)
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where 7 = ¢ — ¢, is the perturbation of the dielectric constant
and b is the perturbation of the longitudinal propagation
constant 5.

Further, on introduction of ¢ from Eq. (74) and by using Eq.
(71), the wave equation becomes

d? .k
(@ - 502)(0 181) + €?ko?0r1 — 2 "60' €olaodo + a10y)

k&
= —nko?Aodo + 2 12 eAodo + 2BobAode.  (77)
To extract rate equations for ag and e, from Eq. (77), use
is made of the orthogonality relation of Eq. (75), and we ob-
tain
.k .k
—W:odofm ~9j :o'dlf()l + a,802
=42 ?Ao{@)oo = ko?Aonoo + 260bA0  (78)

and

[

k k
—21?060610 - 21—0‘-’a,m + (812 = BoPay

.k
=+ :0 Ao()1o — ko*Agmo, (79)

where we have Adefined

- 2
Bi3= J:_ & ﬁﬁlﬁ + €11ko? (80)
and
Boi® = J-_. o* o ¢1dx + eorke®. (81)

The remaining coefficienta of Eqs. (78) and (79) are ob-
tained as matrix elements of ¢, ¢, and 7 among various com-
binations of ¢; with subscripts indicating which of the basis
functions is used. In order to evaluate terms such as (8)oo
appearing in Eqs. (78) and (79), a discussion of the time de-
pendence of the charge-carrier concentration is required. In
the next subsection, we turn to this aspect of the problem.

B. Time-Dependent Diffusion Equation
The first-order perturbation of the time-dependent rate
equation can be written in the form

gn + 2n + anPy = —g,P, {82)
o T,

where
P=®gt¢+ ¢*Po Po= Agq¢d? = Sol g2,
Using Eq. (74), we have
P = Aglaydrdo® + ar*¢:1*do + 200 éd?). (83)

To describe the time evolution of the electron distribution,
we introduce orthonormal functions Ky(x) and K,(x). No(x)
is the normalized stationary electron distribution, i.e.,

1
Rolx) = ENO(-:)- (84)

where
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N« [ - Nt )dx] ”, (85)
Thus we have

S RewRotoax =1, (86)
and N {(x) is defined such that

f_ " Rolx)¥y(x)ds = 0. @7

With these definitions, we set
n(x,t) = po(t)No(x) + »1 ()N, (x). (88)

This representation of the perturbation of the carrier con-
centration is introduced into the rate Eq. (82) and leads to rate
equations for ¢o(t) and vy(t). Directly from Eqs. (58) and (80)
we obtain

bolNo+ i N, = _tz (volNo + 1 8)1) — aPo(roNo + 1, N))

~ 80(2A00d 6d® + Aoa1* dod1* + Aga180°9;.  (89)

Then, by taking advantage of the orthogonality properties of
Ro(x) and Ry (x) as defined by Eqs. (86) and (87), we obtain
Exqs. (90) and (91) from Eq. (89)

bo= +Buvs + Biavy + Bisag + Bua'y + Bysn ™y,  (90)
b= +Boyvy + Baovy + Bosag + Bowa'y + Bya”®y, (81)

where a single prime indicates a real part and a double prime
an imaginary part. The coefficients of Eqs. (90) and (91} are
defined in Ref. 21.

We may relate a perturbation n in the electron concentra-
tion to a perturbation 7 in the dielectric constant by means
of the expreasion

awon
V22

Here V = ¢/ng is the velocity of light in the laser material of
refractive index ng; p measures the relative strengths of the
gain-guiding and refractive-index antiguiding mechanisms
that act on the optical field.

Equation (92) may thus be utilized in conjunction with Eqs.
(90) and (91) to obtain expressions for the matrix elements of
7 and ¢ that appear in Eqs. (78) and (79).

n=(—p+)) (92)

C. Photon Balance

In order to complete the specification of the optical field, it
is necessary to discuss the intensity of the field when a per-
turbation from a stationary state occurs. The pertirbed field
distribution has already been defined in Eq. (81), and we can
thus obtain the perturbation in the field intensity as

= J: pix)dx
= 24000, (93)
where use has been made of the orthogonality of ¢ and
m'}“he first-order rate equation for the photon number may
be written as
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ds/dt = 5gSy = 26" VS,, (94)

where b, as discussed previously, is the perturbation in the
longitudinal constant and b” is the imaginary partof b. From
Eqgs. (90) and (91), we deduce that

do= Vb*4y (95)

Taking b from Eq. (78) leads to the rate equation
oo+ S84 L - L ran, 4 Ao
V engl conmg cng cng
1
2nokg

1 ko
Im An’ +-.—-—Re B’ +—A ”
{(Bo1¥a’y P (Bor?a”y - oo

(96)

Equations (79), (90}, and (91) provide a full description of
the dynamical behavior of the semiconductor laser. The time
evolution of the device is specified by rate equations for the
parameters ¢y, ¥, ag, and a;. We note that the real and
imaginary parts of a; bring the total number of variables to
five. Equations (80}, (91}, and (96), together with the real and
imaginary parts of Eq. (79), represent the required number
of rate equations for the variables. .

In the next subsection, we wish to collate the rate equations
derived in the foregoing analysis and alao to complete the in-
troduction of the notation that is convenient for discussion
of the Hopf bifurcation algorithm given in Section 3.

D. Matrix Equations of Motion
The preceding analyais has provided linearized rate equations
for the variables v, ¥, ag, 6"), and ¢”y. The first two variables
describe the time evolution of the carrier concentration; the
time dependence of the optical field is specified by the re-
maining parameters. We now wish to introduce a matrix
formulation of the foregoing rate equations. Application of
the Hopf bifurcation algorithm to the semiconductor laser will
then follow in a natural way.

-

By making the jdentifications
Xi=w, Xy=w, Xy=a,
Xq=a', Xsy=a",

we may write the equations of motion obtained from Eqs. (90),
(91), and (96) in the form

dX
CE2 -
at BX, o7

where B and C are § X 5 matrices whose elements are, in
general, complex, and X7 = [X; XXX (X;).
Provided that C is nonsingular, we thus have

dX/dt = C-1BX = AX. (98)

The elements of matrices B and C are defined in Ref, 21.

The specification of the time evolution of the laser con-
tained in Eq. (98) was the principal aim of the analysis of this
section. It is now poasible to proceed to a description of the
Hopf bifurcation algorithm. It will quickly become apparent
that direct application of the algorithm to the semiconductor
laser is facilitated by the foregoing analysis.

sanIIqeysuy
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E. Bifurcation Theory

To apply the technigues of Hopf bifurcation theory, it is re-
quired that the laser be described by an autonomous system
of ordinary differential equations??

dX/dt = f(X, S), (99)

where X is an n-dimensional vector and s a real parameter.
From this system of equations, the Jacobian matrix is
formed:

A = ofi/dx;. (100)

At a stationary point of the system (i.e., under steady-state
conditions where dX/d¢t = 0), the eigenvalues of the matrix
A are found. The eigenvalues are ordered according to the
magnitude of their real parts:

NizMNez...2 N (101)

A critical point of the system is identified by finding & value
8. of the bifurcation parameter for which

Ay(8) = A*5(S) (102)
for values of S in the neighborhood of S,
ax,
ds |s=s. =0,
A*(S.) # 0,
A"J'('Sc) < ol j = 2| n.

It is now required to apply this algorithm to the dynamics of
the semiconductor laser. -

It is appropriate also to note here that the formulation of
the rate Eqs. (78), (79), (90), and (91) given above has utilized
a particular set of basis functions defined in Eqs. (78)-(87).
A natural choice of basis functions has been made to relate to
the physica! problem that undetlies the analysis, namely, the
occurrence of transverse mode switching in the device. The
power of the Hopf bifurcation algorithm becomes apparent
when consideration is given to the implications of the choice
of an alternative set of basis functions for expansion of the
optical field perturbation. With suitable choice of orthogonal
functions, it should be practical to study the poesibility of a
variety of oscillations related to physically occurring optical
field perturbations, including those related to longitudinal
mode effects.

F. Application to Laser Instabilities

We have already made the identification between the pa-
rameters ¥y, ¥, @', a”, and a five-dimensional vector X.
Furthermore, equations of motion have been obtained in the
form required by Eq. (99). In deriving the linearized form of
the equations as given in Eq. (98), we have, in fact, defined the
Jacobian matrix sought by the algorithm. The notation used
ir Subsection 7.D was deliberately chosen to underline this
step. It is clear that the linearization of the laser equations
of motion has led naturally to the definition of the matrix
whose eigenvalues must be found to follow through the Hopf
bifurcation criteria.

At a critical point, the steady-state solution will branch into
two oscillatory solutions of the device equations. The ability
to identify such points is of value in designing switches and
oscillators that make use of the nonlinear properties of
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Table 1. Output Power Dependence of A,

Output power S (mW) Ay |A74|
1.65 35x100°  8.8x101°
2.07 ©3x10P b X 010
28 1.5 X 10% 3 x 1010
29 -9.1 X 10 2.8 x 1010
3.03 =-1.6 X 108 2.6 x 1010

semiconductor lasers. Quite apart from temporal instabili-
ties, we are also able to identify discontinuities in the matrix
eigenvalues with nonlinearities in the light-current charac-
teristics associated with spatial instabilities under steady-state
conditions.

G. Identification of a Critical Point of the System

We consider first a stripe-geometry GaAslaser with an active
region thickness d of 0.3 pm and a stripe widthof 6 um. As-
sumed material parameters are B = 1.0 X 10~10 em3/sec (72);
p = 2.5(92); local gain coefficients o = § X 1076 ecmd/sec; f =
4.5 X 102 gec=1, ‘The photon lifetime in the device is taken
as 3 psec.

Cealculated values of the leading eigenvalue A; as a function
of the Hopf bifurcation parameter—the optical output power
per facet—are shown in Table 1. It is deduced from the re-
sults shown in the table that a zero of A’y occurs for a value of
S of about 2.9 mW. For all the values of S shown above, it is
the case that A, = A*,; the absolute value of | A" is included
to illustrate that the condition A*; < 0, j = 3, 4, 5 holds.
Furthermore, in the vicinity of the S, = 2.9 mW, we also

" have
‘ dw,
ds |s=s. >0
and
A'[(Sp) # 0.

1t is therefore concluded that S, = 2.9 mW is a critical point
of the system and, furthermore, that the criteria for the oc-
currence of a Hopf bifurcation are met at this point. We thus -
have illustrated the successful application of the Hopf bifur-
cation algorithm to the analysis of the semiconductor laser.

8. CONCLUSIONS

We have presented an overview of the development of theo-
retical techniques for the analysis of spatial and temporal
instabilities in laser devices. As the family of these devices
is growing rapidly and more research emphasis is placed on
controlled nonlinearity and instability for optical logic, we
expect that new problems will also arise with a concomitant
requirement for new theoretical insight.
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