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Abstract

We discusa the basic physics of heterostructure quantum wells and superlattices. The
energy dispersion relations are presented as derived from a simple envelope functicn

approximation based on a Kane-type energy band structure analysis,

1. Introduction

Developments in the field of crystal growth have led to advances in the field of pho-
tonics: the combined area of electro-optics, laser physics and non-linear optica. The
impact of these advances on modemn communication and computing technology cannot
be understated. It has therefore become essential for workers in this field to have a
basic understanding and an appreciation for some of the physics associated with the mj-
crostructures prepared by the new techniques for applicationa in photonics. In this paper,
we aim at discussing the basic physica of practical quantum wells at a level accessible to
the non-specialist. The specialized and detailed treatment of this subject can be found

in some of the literature cited and in the references therein.

2. Fundamentals of Heterostructure Quantum Wells

The theoretical concept of a quantum well has been around since the early days of
Quantum Mechanics. It has only been in receat years that experimental fabrication of
quantum wells has been demostrated.

In the textbook case, an electronic carrier is confined within a well when it is in a
region of space with low potential energy surrounded by walls of infinitely high potential
energy. In thia section, we will concern ourselves with practical quantum wells. The
demonstration and achievement of this type of well is intimately linked with the science
and technology of crystal growth. In recent years, crystal growth techniques [1] and
processing methods have advanced to such a state that it is now routinely possible to
obtain ultra-thin and structurally perfect solid fitms that exhibit quantum size effects
(QSE). Quantum size effects become operative in solid layers when the film or surface

depth dimension is comparable 1o the de Broglie wavelength (A = A/p ~ L) of the



electronic particle or to its mean free path in the layer. These effects also lead to changes
in some very basic physical quantities of the semiconductor. Such quantitiea as the Bohr
radius and the Rydberg conatant associated with impurity states acquire modified values
in structurea containing quantum wells, In the [I[-V semiconductor compounds, the Bohr
radius then ranges from 10 to 500 A with the corresponding effective Rydberg constants
ranging from 100 meV to 1 meV.

When quantum aize effects occur, they produce changes in the macroacopic electronic
properties of the layer, film or surface. And it is these changes, particularly in the
optical and electrical properties of the solid, that are exploited in the design of new
semiconductor devices.

We begin by discussing carrier confinement in terms of the “particle-in-the-box”
model. The implicit assumption in this model, however, is that the host heterostruc-
tures have parabolic conduction and valence bands in reciprocal space. This model has
intuitive clarity and physical appeal, and for special cases of the type I semiconductor
heterostructure, it gives reasonable quantitative results. It should, however, be viewed
only as a first order computational tool.

The formation of a heterostructure quantum well involves the epitaxial growth of two
semiconductor crystals with approximately the same lattice parameter but different band
Eap energies. In Fig. 1, we show the (Al,Ga)As and GaAs semiconductor heterostructure
system. The GaAs material, which has a smaller band gap than the (ALLGa)As, is
sandwiched between two layers of the (Al,Ga)As material to form the quantum well,

The distribution of electronic cattiers in a semiconductor with a quantum well is
markedly different from that in the bulk crystal. The physical nature of the quantum
well imposes & quasi two-dimensional behavior on the carriers. The energies, for example,

that each carrier may have are quantized in a prescribed manner. The prescription of the

allowed energy levels is g:l)vemed by quantum mechanics. In a quantum well, such aa the
one formed in the (Al,Ga)As/GaAs cryatal system, one may determine the particular
energies that are permitted for occupation by the carriers by solving the Schradinger
wave equation. The Hamiltonian (in the single particle approximation) that is used in
this calculation is assumed to be separable in the cartesian coordinate system. Therefore,
for the quantum wells shown in Fig. 2, the relevant component of the Hamiltonian would
be the z-component which is normal to the epitaxial layer. The latera! component would
Eive rise to the usual, unconfined Bloch carrier states.

We write down the Schridinger equation to be solved for the problem in Fig. 2 as
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o [a—z,— + AE,(:)] Pon(z) = En®..(2) (1)
where m, is the electron effective mass and AE,(z) is the conduction band discontinuity
with a zero of energy at the conduction band edge. The E,, are the eigen-energies and
the ®..(z) are the associated eigen-functions. The carrier effective mass, m,, is to be
distinguished in the GaAs and the {(Al,Ga)As regions as m,, and My, respectively. This
equation is written for the conduction band quantum well. An analogous equation can
be written down for the valence band quantum well. In the valence band, however, the
wsual degeneracy of the banda for moet I11-V semiconductors at the Brillouin zone center,
is lifted for quantum well structures. It is therefore necessary to take into account both
the light- and heavy-holes. This will be explained in detail in a later section. In a later
section we will also discuas another mechaniam by which the valence band degeneracy is
lifted.

For the two regions of Fig. 2, Eq. (1} can be aplit into two auxilliary parts; for region
2,
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with the relevant solutions being
Qen(2) = Ac™* z2< ~L,, (3)
Son(2) = De =" 2> L, (4}

where
X = V2m..(AE, - Em)‘ (5,
A
A and D are arbitrary constants of integration. In region 1, the Schrédinger equation is

dd,,(z)

Lt Eo.(z}=0 (6)

and the solutions take the form

¥n(z) = Beoskz + Cainkz |2| € L, _ (1)
where
v 2 ‘WI n
k= mh . (8)

The quantities B and C are the arbitrary constants of this integration . By requiring
that the eigen-functions of Eqgs. (3), (4) and (7) and their first derivatives be continuous

at the hetero-interfaces, r.c., at 2z = * Ly, we obtain the system of equations

—e 4 coekl, —sinkL, 0 A
—xe*tv  ksinf kcoskl 0 B
L J » = 0. (g)
0 coskL, sinkL, —g b C
0 —ksinkL, kcosL, we b D
From this system of equations, we derive the eigen-value conditions:
ktankL, =« A+D#0, B#0 (10)
and
kcotkL, = —x A-D#£0, C#0. (11)

These conditions cannot be satisfied simultanecusly. Therefore, if at one time Eq. (10)
is true, it can be shown that the corresponding eigen-state is

®in(z) = (B coskL,)el*tLe) 2< ~Ly, (12
$.(2) = Beoakz |#] € L, (13)
®.(2) = (B coskL,)e*l1-Lx) v> L. (14)

This state in said to have even parsty. On the other hand, when Eq. (11) is valid and

Eq. (10) is not, the correct eigen-state is given by

Ponl2) = (-CainkL,)esotie! 2 < ~Ly, (15)



®.n(2) = Csinka |2| < Lo, (16)

®u(2) = (CuinkL,)e *l2-Ls) 2> Ly, (1n
This state has odd parity.
Since the eigen-states of Eqa. (12-14) and Eqgs. (15-17) represent bound electron

states in the well, the arbitrary constants B and C can be determined by imposing a

normalization condition

/ : [ .n(z)|2dz = 1. (18)

The eigen-energies, E.., for the bound states in the quantum well are determined
from Eq. (10) for n even and from Eq. (11) for n odd. From the definition of  in Eq.
(5) and k in Eq. (8) and the eigen-value conditions of Eq. {10) and Eq. (11), we can

wrile a single eigen-value equation implicitly for the system as

[ma [V.—E.] _ | tany/(m, L1E.}/{2h%)
M b E, ]_‘—cut\/(m..Lz,E,.)/(zn') t9)

where V(= AFE,) is the well depth, L, is the well width. E, is the n-th eigen-energy,
M, and m,; are the electron effective masses in the well and in the barrier, respectively.

Eq. (19) can be transformed into dimensioniess form by writing

ot = (muLlV,)/2a,
e (m.L2E,) /203,

With this transformation, Eq. (19) becomes

(20)

p’—ﬂ'lc'={ fant (21)
Mew ~£cot €.

Eq. (21) is now in a form that can be solved graphically. If we plot the left hand side of
Eq. (21) as a function of ¢ and the right hand side also as a function of ¢, the intersections
specify values of £ which are solutions to Eq. (21). By use of Eq. (20), we can then
determine the eigen-energies E,.

For a typical quantum well width of La=125 A, we have plotted the solutions of Eq.
{21) for the even eigen-states of a confined electron in a conduction band quantum welt,
These solutions are shown in Fig. 3. The electronic band parameters used are listed
in Table 1. The complete set of eigen-energies for the AloaGagsAn/GaAsfAly;GagyAs
single well structure with a width of 125 A in shown in Fig. 2.

Table 1: Electronic Band Parameters

m,(z) = (0.067 + 0.085x)my mup(z) = (0.08T + 0.063x)mq
Man(z) = {0.450 + 0.140z)m, my = 9.100 x 10~ kg
E,(z) = 1.424 + 1.247z eV AE, = E,(z) - E,(0) eV
AE, = 0.62AE, AE, = 0.38AE,
Vo= AE,(AE,) Le=125 4

z =02

One of the most immediate consequences for optical transitions in a direct £AD semi-
conductor containing quantum wells is that the energy of the transitions is shifted to
higher energies as is shown in Fig. 4. This illustration shows the photoluminescence
emiasion spectrum of a bulk GaAs layer contrasted against the emjssion spectrum em-

anating from a layer with (Al,Ga)As/GaAs quantum wells in it. One major optical



transition is from the first confined electron state in the conduction band to the first
confined heavy-hole state in the valence band (1e — LAh). Another is the electron to
light-hole transition (1e — 1/A}. The calculated transitions, using the simple particle-
in-the-box model, agree with the experimentally-observed cnes. The character of these
transitions is shown schematically on an energy band diagram in Fig. 5. Notice the

contrast with the transitions that occur in a bulk semiconductor.

3. Density of States for Quantum Well Structures

In bulk III-V compound semiconductors where the energy dispersion relations can be
approximated as parabolic near the Brillouin zone center, the joint density of occupiable

electronic states can be shown to be given by [2}

1 ( 2m.m. 1

31
—_—, - E,.
my+m, i’) £ ’ (22)

2uB) = i | [ i

In quantum wells, the carriers are constrained to move in the plane paraliel to the

B,~E,=E KD

layers. If z ia the direction of confinement, then motion is possible only in the z - ¢

plane. The joint density of states in this case is given by

Dw(E) = (23)

i j‘ dl
4t ) Yy (E. - E,) E,-E,=E.
The operator V4, is the directional second derivative of the energy difference-function
paraliel to the epi-layers. This joint density of states as given here is per unit range of
energy per unit area. For a quantum well of width Ly, the joint density of states per

unit range of energy per unit volume can be expressed as

where u_,(E — AE,) is the unit step function and AE, = E. - E,, is the energy
difference between two allowed conduction and valence band states.

We note that the confinement of carriers in the quantum well structure produces a
different density of states function from that which is usual in & bulk crystal. The major
differences stem from the energy independence of the two-dimensional density of states
for a given energy range. Also, the two-dimensional density of states has a step-like
functional dependence. The differences lead to markedly contrasting observable optical
propertiea,

4. Multiple Quantum Wells and Superlattices

The major difference between a multiple quantum well system and a superlattice is the
relative magnitude of the barrier layer thickness L,, and its relationship to the wave
function penetration depth Ly, in the barrier. In multiple quantum wells, the barrier
thickness, L;, is much larger than the wave function penetration depth L, (v.e., Ly >>
L,). Therefore, the wave functions of adjacent wells do not overlap, and the physical
properties of the multiple quantum well system are those of an independent set of weils.
Most of the physica of these syitems can therefore be studied in a single quantum well
and is not restricted to the multipie quantum well aystems. As a practical matter though,
the signal-to-noise ratio is much betier in multiple quantum well systema for any given
experiment on these structures. This is one of the main reasons for working with multiple
quantum well structures rather than a single quantum well structure, and results from

the N-fold increase in the density of states for multiple quanturn wells,
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In superlattices which, in principle, are any set of infinite, periodic layers, the barrier
thickness, Ly, is much less than the wave function penetration depth L,; thia means that
the wave functions of adjacent wells interact and the confined particles are delocalized.
The physical properties of these structures therefore depend on the super periodicity
superimposed on top of the lattice periodicity. The energy distribution of the delocal-
ized carriers in the superlattice takes on & new form. The discrete energy distribution
characteristic of isolated quantum well structures changes into mini-bande separated by

mini-gaps.

5. The Envelope Function Approximation

In a preceding section we discussed carrier confinement in a single quantum well within
the plane-wave matching framework. This one-band approximation technique works
rather well for the (AlL,Ga)As/GaAs hetercatructure system, but it fails to fully account
for the InAs-GaSb system {3] because it does not take into account the symmetry prop-
erties of the constituent semiconductors in the heteroatructure. Effects such as band
nonparabolicity and the infuence of remote bands cn the overll energy structure sre
neglected a priori. Heterostructures whose energy structure cannot be understood on
the basis of this simple parabolic model have catled for more sophisticated techniques.
Such methods have included the linear combination of atomic orbitals (LCAO) [4] and
the envelope function approximation [5]. The envelope function approximation is based
on a Kane-type analysis [6] where the symmetries of the relevant band edges are correctly
taken into account. In a recent publication, Smith and Mailhiot [7] have given a gener-
alized and rigorous treatment of the Kane-type analysis for all heterostructure quantom

wells and superlattices. From their analysis, the piane wave matching technique can be
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extracted as a special case.

In the following, we discusa a particular application of the k.p Kane theory to a
simple superlattice such as {(AL,Ga)As/GaAs. In the heterostructure to be discussed, the
direction of the epitaxial growth is taken to be the f-axis which is also the superlattice
axis, Furthermore, each constituent semiconductor of the superlattice is assumed to
be describable by a band model such as that shown in Fig. 8. This is a reasonable
requirement because for most II1-V heterostructures, the band edges that are important
in optical and transport studies have the Te, I's and Ty symmetries at the center of the
Brillowin zone.

Under fat band conditions, i.e., with no applied external fields, the wavefunctions

which describe the electronic carrier states in the superlattice can be written as

¥ =3 Filz)uly(r) (1=12 {25)

)
where the F,‘{z) are the slowly varying envelope functicns (slowly varying on the scale of
the lattice constant) and u;n(r} describes the periodic Bloch functions at the zone center
{k=0). The superscript { denctes the two semiconductors (I=1,2) which make up the
alternating layers of the superlattice. Following Kane, the basis functions, ulo's, which
correspond to the I'y, I'y and Ty edges are

By = !;',%> = IS?>

un = (5> = RUX+Y) 1> -2 15] 0
ua = 1> = HIX +4¥) 1>

wo = th> = KX +i¥) 1> +2 15]

plus the other set of four functions formed from the ones above by inversion, complex

conjugation, and reversal of the spin. And as usual, the functions |§ >, |X >, Y > and
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|Z > transform like the atomic 3, Px, Py and p, functions. The bulk Hamiitonian which

the cell-periodic part of the Bloch states must satisfy in semiconductor { (=1,2) is

H'E) = s{p+ M + AVEp(s) + V(1) + ;-"-?’Fo X VV(r)lp+ Ak (21)
where AV p(2) is the periodic potential which accounts for the <onduction (valence) band
discontinuity when going from semiconductor 1 to 2 in the direction of the superiattice,
This Hamiltonian can be rewritten in a form which explicitly displays the k.p interaction.
Taking the origin of energy to be at the bottom of the conduction band edge and E, 1o
be the fundamental band gap, the k.p interaction matrix formed by the 8 basis states of
the T'q, I'y and the Iy subspace in semiconductor ! of the superlattice, is given by:

B3> B> B> B> Wb Bed> i hods )
]
0 Zefke Pky  JPr, 0 Jek- 0 3’:“-
Pk, —-E, 0 0 FPk- o o 0
Pk 0 -E, 90 -0 0 0 0
APk 0 0 —E,~ Al FPk- o 0 0
0 APk 0 TPk, 0 5Pk, Pk_ Pk,
Pk, 0 0 0 &Pk, ~E, ] 0
0 0 0 0 Pk, 0 —E, o
tV’IPk,, 0 0 0 g,,k, 0 0 -E,-4A')
(28)
where A' is Lthe spin-orbit coupling [6]. The variable k, is defined aa
k. +ik
ky = 2%

and
P= (——‘E) < SlpelX > (30)
m

In this interaction matrix, we have neglected the kinetic energy term of (A*k?/2m)
which should be added to the diagonal elements. Also not accounted for are the inter-
actions from remote bands which would normally be handled through the Lowdin per-
turbation theory in typical band structure calculations { see, for example, E. O. Kane,
Energy Band Theory, in Handbook on Semiconductors, Volume 1, ed., T. S. Moss p 193,
North-Holland Publishing Co., 1982).

If the spin-orbit split-off valence band is taken to be far away from the other bands of
interest at the Brillouin zone center, then its effects can be neglected and the 8x8 jnter-
action matrix reduces to & 6x6 one. A further simplification results if the quantization
of angular momentum is along the superlattice axis, i.c., the i-direction. In this case
then ky(k,, k,) = 0. This condition decouples the |P,Ms = £% > states from the others.
The eflect of this decoupling results in a dispersionless band for the [P, M, = +3 >
states. These heavy-hole states can only be correctly described by inclusion of their kp
interaction with other remote bands of the semiconductor. For our purposes here, the
approximations lead to a 4x 4 interaction matrix which is adequate for the description of
the light particles (electrons and light-holes). This matrix, as extracted from Eq. (28) is

b

T

> B> lhod> B>

0 I Pk, 0 0
ZiPk. -E, o 0 (31)
0 0 0 %Pk,
0 a HPk, -E,

It is block diagenal with two identical sub-blocks describing the |S, 1} > electron and

14



|P,£§ > light-hole states.

6. Dispersion Relation for Superlattices

For a superlattice, the band edge diacontinuities, Vs(z} and Vp(z}, for the conduction and
valence bands, respectively, become periodic with the period of the superlattice, That is
to say

Vs.p(z) =0, 0<z<l (32)
Vglp(z} = V_’.p L <z <h+h=d (33)

where I; and I, are the thicknesses of the layeta 1 and 2 and d is the superlattice period.
It therefore follows that the F{(z) envelope functions must cbey the additional Bloch

relation

Fi(z+d) = exp(t'qd)_F;(z) (34)

where ¢ is the superlattice wavevector and is restricted to the first superlattice Brillouin

zone; i.e.,

<3 (33)

In order to determine the energy levels of the superlattice, one must sclve the system

of equations formed by projecting the 8x8 interaction Hamiltonian onto the 5 (j = a)
envelope functions of the superlattice. With the approximations made in the last section,
the 8 x 8 interaction matrix was reduced to a 4 x 4 block diagonal system. Since the block
diagonal system has 2 identical 2 x 2 matrices, we reduce it further to a 2 x 2 system,

15

The system of equations to be solved becomes a pair of coupled differential equations
in which k, is replaced by (—id/dz). Thus, for the envelope functions Fi(z) and Fi(z)
associated with the conduction and the light-hole valence bands, the 2 x 2 system derived
from Eq. (31) is (¢f. Ref.[5])

a-E e ) (AW ”
—l"—ka; ~E, +Vi(z) - E Fi(2)

where E is the eigen-energy and we have also added the band discontinuity Vi p(2). For
the lighi-hole valence band alone, the equation to be solved is obtained by eliminating
F§(2) above. The result is

2 .d 1 d _ AP
{31’ o [-‘V-}(z_)—_J 2 1+ (Ve(2) Es)} Fp(2) = EF(2). (37)
The function Fj(z) is required to be continuous across the hetero-interface between the
two semiconductors and so is its derivative. The derivative condition is derived from Eq.

(37) by integrating it across the interface to give

[ 1 ]df-‘}.')=[v 1 ]dﬁ'}.” (38)

vil _E| dz & gl e
The Bloch and the boundary conditions yield a 4 x 4 hemogeneous determinant whose

solution is nonzero if the relationship

coskyl) cos kyly — % [n + '-;-] sin ki, sin kyl; = coaqd (39)

holds where

n= ky (M) (40)

B\ E+E,

16



The wavevectora k, and k; are to be determined from the dispersion relationships ob-
tained from the Kane 8 x 8 interaction matrix of Eq, (28). This dispersion relationship
in of the Kronig-Penney type and is in ita most general form. The wavevectors are to be
modified in layer 1 or 2 depending on whether the wavefunction is standing or evanes-
cent in that layer. This change would simply convert some of the trignometric functions
inte hyperbolic sine or cosine. In the limit that the layer with the larger band gap is
many timea thicker than that with the smaller band gaD, the single quantum well result
obtained earlier is recovered.

In order to treat the heavy-hole band correctly, the complete Smith-Mailhiot [7] model
must be used. Qur purpose here, however, has been to illustrate an approximate method
derived from the rigorous k.p theory. For a simple (Al,Ga)As/GaAs superlattice, for
example, the host semiconductors have wide band gaps and the eigen-energies, E <« E,,

and in the two-band Kane model, the derivative continuity condition becomes

_l_ﬂ = _l...d_Féﬂ (41)

m, dz my dz '
which is the condition generally assumed in the lirﬁple particle-in-the-box model. In this
case k; and k; take on the expressions of Eqs. {8) and (5); the parameter n then becomes
= :——::3— (42)
The model we have been discussing is adequate for an understanding of lattice-
matched heterostructures. When the struciures are not lattice-matched then the rel-

evant Hamiltonian must be modified. In the next section we discuss lattice-mismatched

structures and the effect of mismatch-induced strain on the band stuctyre.
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7. Strained-Layer Heterostructures

In the past, most heterostructure work has emphasized structures made from semicon-
ductors of almost the same lattice parameter but different band gaps. In this way,
interesting materials properties and new devices have been made. The important ingre-
dient in this kind of work has been the minimization of lattice strain by lattice-matching,
i.¢., the materials involved must have the same size unit cells and usually similar coefi-
cients of thermal expansion so that lattice strains are not introduced into the resuiting
heterostructure upon cooling the sample from the fabrication temperature to room tem-
perature.

The restrictions imposed by the lattice-matching condition, however, have limited the
range of materials and materials properties that can be engineered from semiconductors
with comparable lattice constants. The trend in recent years has therefore been to remove
the arbitrary restriction of lattice-matching by allowing materials of widely differing
lattice constants to be fabricated into a new breed of heterostructures called the strained-
layer superiattices (SLS's). These superlattices are mismatched systems similar in style
to the onea discussed previously. The major difference is that the laitice-mismatch is
accomodated totally by a uniform lattice strain. One of the provisions for this to happen
without the deleterious effects of misfit dislocations is that the hetero-epitaxial layers
comprising the superlattice be of a certain dimension. If this criterion is satisfied, SLS"s
of high quality can be prepared from layers with lattice-mismatches of up to 7% 18.9].
The freedom of choice of the SLS materials and the interesting effects of elastic layer
strains allow SLS stuctures to exhibit a wide range of tailorable properties which are of
scientific and technological interest.

Some of the SLS's that have been fabricated include those with materials from: (1)

18



the group IV elements of Si and Ge [10], {2) some I1I-V compound semiconductors with
other 11I-V materials or with II-VI materials [11].

The choice of suitable material combinations depends on some factors such as: (1)
compatibility of the materials in the epitaxial growth process, {2} mechanical stability
and (3) thermal conductivity match.

Perhaps an important consideration for the SLS's of the group II-V and IV semicon-
ductors is that the interatomic bonding distances (better expressed as the tetrahedral
covalent radius, TCR} are very similar. These distances are within i3 of the - Jrage
value for the atomic numbers 13<Z<51. Thia information is readily available ir any
good Periodic Table. See Table 2.

Table 2: Tetrahedral covalent radii {TCR) for some group II1, IV and V elementa.

Atomic No, Z 13 14 151 31| 32 33 49| s0/ 51

Element | Al Si P Ga| Ge| As In| Sa| Sb
TCR(A) 1.18 {1 1.11 | 1.06 | 1.26 | 1.22 | 1.20 1.44 | 1.41 | 1.40

The close similarity of these elements is one of the factors which makes them epitax.

ially compatible.

8. Tetragonal Distortion

In very simple terms, the idea behind the growth of strained-layer superlattices is that an
alternating sequence of heterostructure layers with differing lattice constants be deposited
one on top of the other such that the lattice-mismatch stress is accommodated clamcclly

without the generation of misfit dislocations. For layer thicknesses within a characteristic

19

dimension, A,, the Ilyer.l with larger lattice parameter than the nubst.ﬁte will be in
compression while those with smaller lattice parameter will be in tension.

The success of the fabrication of most SLS's has depended on the effect of tetragonal
distortion due to the existence of two-dimensional (biaxial) strees on the crystats. This
effect, also called the Poisson effect, canses layers to be expanded or compressed in the
direction perpendicular to the interfacial planes. Such a process is demonstrated in Fig.
7. Notice that the layer on top, the epi-layer, has been stretched in the vertical direction.
The vertical lattice-mismatch is Aa, fa, = (@, — a,)/a,. This is to be contrasted with
the normal lattice-mismatch defined as Aafa, = (ay—a,)/a,. For cubic crystals oriented
in the [001] direction, the two lattice-mismatches are related by the simple result that

Ae _ C" ( Aa_L )
a, Oy +20), »
where the C,; are the well known elastic constants from elernentary elasticity theory (12].

(43)

The field of strained-layer epitaxy was pioneered by Matthews snd Blakesiee who grew
layers composed of the Ga(As,P)/GaAs material system [13,14,15), They demonstrated
that it was poesible to grow dislocation-free layers from mismatched semiconductors as

long as the layer thicknesses were kept below a certain critical dimension given by

_ H1-vcos’a) A,
Tl +v) cos A [ln(b)+l] (44)
where v is Poisson's ratio, a is the angle between the Burgers vector b and the length

of the dislocation line that lies in the interfacial plane and ) is the angle between b and

that direction in the interface that ia perpendicular to the intersection of the slip plane
and the interface, f is the unstrained lattice-mismatch between the two layera. For layer
thicknesses iess than A,, wafers without misfit dislocations can be grown.

The strained-layer superlattices that are prevalent today are prepared by the ad-
vanced crystal growth techniques of molecular beam epitaxy (MBE) [16,1] and metal-
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organic chemical vapor deposition (MOCVD) [17]. They consist, in the main, of two
semiconductors of different lattice constants grown alternately on a substrate. For the
GaAs, P, ,/GaP material system, for example, an epitaxy initiation layer composed of
a graded layer is first grown on the GaP substrate. The GaAs,P, ., layer deposited on
the GaP substrate is then graded from r = 0 to some value of T where the superlattice is
to start. Schematically, the superlattice structure would look like the illustration shown
in Fig. 8. For different compositions of z in the SLS, the lattice constant of the strained
layers in the planes paralle] to the interfaces, ay, would be given by [15]

/
a=a [l + I_-I-_(_GT",/GT};,_)] (45)
and
f
oy =ay [1 - m -

where a, and a; are the unstrained lattice constants of the alternating layers I and 2 in
the SLS; G, and A, are, respectively, the shear moduli and layer thicknesses of the layers
¢ (£ =1, 2) and { i» the lattice mismatch {Aa/a) of the unstrained layers. From these
relations, it can be seen that the thinner of the two. layers experiences the greater strain

( this fact is also intuitively obvious).

9. Energy Structure of Strained Layers

One of the most interesting effects of the strain-stress interaction in a semiconductor
heterostructure is the modification of the energy band structure. It is important to un-
derstand this modification because ultimately, the other materials properties depend on
it. It ia & well-documented fact that the application of a uniaxial stress to semicon.
ductor crystals such as Si and CaAs removes the cubic symmetry and lifts some of the

degeneracy at the valence band {18}
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We use, as an example, the strained-layer heterostructure that is formed by the
deposition of (Ga,In)P on a GaAs substrate. The GaAs substrate has a lattice constant
of 5.6534 A which is smaller than that of the (Ga,In}P. The layer thickness of the (Ga,In)P
on top of the GaAs is chosen such that the lattice miamateh is completely accommodated
by biaxial elastic strain. For a quantitative analysis of the energy structure of this
heterostructure, we choose the i-axis to be in the [001] crystallographic direction. The
substrate plane is then that of the (001) surface. Olsen ef ai. (19] have done some
experimental work on the effect of elastic strain on the band gap of {Ga,In)P when it is
grown lattice-mismatched on a GaAs sybstrate. It was noted earlier that the effect of a
“biaxial compressive” stress on the unit cell of s crystal was to tetragonally distort the
cell as shown in Fig. 7(b). The effect of this compresaive stress on the valence band ia
to lift the energy degeneracy at k=0. This is shown in Fig. 9.

In & zinc blende material structure such as the (Ga,In)P/GaAs system, the valence
band edge at k=0 would have been a multiplet with a sixfold degensracy of orbital sym-
metry I'yg without the apin-orbit interaction. With the spin-orbit interaction, however,
the degeneracy is lifted into a fourfold Pyyy multiplet (J=3/2, m;=+3/2, +1/2) and a
P muitiplet (J=1/2, my==1/2}. This is shown in Fig. ®(a). The introduction of stress
into the material results in the further lifting of the remaining degeneracy as shown in
Fig. 9(b). The interaction of the strain and the orbital effects on the valence band py,
state can be described by a Hamiltonian. Hamiltonians construcied to describe strain
effects have been discussed in previous work {20,21,22]. These Hamiltonians are normally
expressed in terms of the angular momentum operator J (J=8/2). The most convenient
description for our purposes here is the Hamiltonian given by

H, = —0(€es + €y + €4) — 3B[{J3 — J3)e,, + (J3 - J2/3)e,,

7
+(J7 -~ S 3)ers (M/\/j)[{Jer}‘-v +{Ll}ey + {.I,J’,}c,,] )
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where the ¢;; are the ordinary components of the strain tensor, the factors {Jd,}, ete.,
represent the symmetrized products of {(Vady}=L{Jsdy + J,J;). The parameter ¢ is
the hydrostatic deformation potential. The other parameters, b and d, represent the
shear deformation potentials appropriate to the strain for tetragenal or rhombohedral
symmetry, respectively. ‘

In the {Ga,In)P epitaxial layer cn a [001]-criented GaAs substrate, with which we
are concerned here, the lattice-mismatch is accommodated by a uniform biaxial stress
parallel to the [100] and [010] directions. The planar elastic strain components, therefore,
are given by

€rr = €4y = —¢). (48)

The strain is defined as negative (-€) in this case because the parallel lattice constant,

ay, for the epilayer is smaller than the substrate lattice parameter. Our choice of i[f{001]

results in a diagonal strain tensor, ¢;;. The off-diagonal terms of the strain tensor are
zero, I.e.,

€ =€, = €,, =0, (49)

An immediate consequence of this result is that the term in the Hamiltonian repre-
senting the rhombohedral shear deformation vanishes. From ordinary elasticity theory,
one can write down a specific stress-strain (o — €) relationship for the case under discus-
sion. Because of the symumetry of cubic crystals, the generalized stress-strain relationship

of

g, = C.-,‘ €5 (50)
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can be simplified to

(0w ) [Cucucs o 0 o)fen )

L. Cs Cu Cu 0 0 0],

0 | CuaCaCu 0 0 of]e, (51)
0 © 0 0 Cu o0 offo

0 0 0 0 o0cy of]o

Lo J lo o o 0 0C.}flo |

where we have used the additional simplification that the stress is biaxial and the fact that
the strain tensor is diagonal beacause of our choice of the 3-axis. From the stress-strajn

equation above one can extract the result

2C|3 2Cﬂ
=-B =13, 5
€aa cll L Cl.l €] ( 2)

Substituting the elastic strains of Eqe. (48), (49), and (52} into Eq. (47), we obtain the

resultant strain Hamiltonian,

_ Cy ‘Cla) _ (Cll+2Cﬂ 3_£
H“ =2a (—-C—“-— € b -—CT——) (L' 3 )El (53)

where the first term represents the shift of the band gap due to the strain; the second
term is the linear splitting of the Ps;y multiplet. We take the wave functions for the
valence band states in the |[J,m; > momentum Tepresentation. Referred to the [100]

direction, the unperturbed wave functions of both the valence and the conduction bands
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which will diagonalize the strain Hamiltonian of Eq. (53) are given by

e = [Hi>mw = IST>
Un = B> = VIAWVIAIY +i2) 1> —vEX 1) >
33 . (54)
i = 35w = V172)Y +42) 1>
Uy = |i‘.;'>wo = JU—3[I(Y+IZ) 1> +X| >

where T and | indicate apin up and spin down. |X >, |¥ > and |Z > are, again, the
orbital wave functions for the valence band with tetrahedral symmetry similar to the
atomic p functions. The function IS > is the conduction band wave function which
transforms like the atomic s function, We have only considered states with positive m;
here [23] (see C. Kittel, Quantum Theory of Solids, J. Wiley & Sons, Inc.,, N. Y, p
282 1963). The eigen-energies of the perturbed bands are obtained by writing down the
Hamiltonian matrix from Eqna. (53) and (54) and diagonalizing it. With these eigen-
energies, the energy difference between the conduction and valence bands at k=0, can

be given, to first order in the strain as [24,25)

AE(1) = [-2;. (5‘%“&1) +b (c_"%fc_")] 4 (s5)
AEo(2) = [—u (C;'C;—C‘_') Y (9"—2,:—02)] o (56)
A(Ey+ Ag) = -2a (.Cl_‘c.'_‘_lgﬁ) ¢| (57)

According to these equations the change in the fundamental band gép, AEy(1), is
a linear function of the strain (to first order). In the experimental results reported by
Olsen et al. {19], several strained-layer heterostructures of GagsIngsP/GaAs showed a
linear band gap shift with strain. If the parameters in Eq. (53) are known for this ma-
terial, the quantitative results can be compared with experiment, Up to this point, we

have discussed the eflect of the strain on a single epitaxial layer on a lattice-mismatched
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subatrate. In a normal ;frlined-hyer superlattice, two semiconductors of different band
gaps are alternately deposited one on top of the other. We consider in this last part of the
discussion, another common combination of materials for SLS's: the In,Ga;_,As/GaAs
system, In,Ga,_,As has a smaller band gap than GaAs; but it has a larger lattice con-
stant than GaAs. In the In,Ga,_,As/GaAs SLS, the In,Ga;-,An is under compression.
Its band gap will increase with respect to the bulk value. The valence band degener-
acy will be lifted and the heavy- and light-hole bands separated. The GaAs layers on
the other hand, are under biaxial tension. The band gap of these layers will decrease
because of the tension. In addition to this, the light-hole band moves toward the con-
duction band, reversing position with the heavy-hole band. The quantitative description
of the changes in the band gape is still given by the Eqns. (85), (56) and (57). The
elastic strain constant, ¢, is now either negative or positive depending on whether the
layer is in biaxial compression or tension. Fig. 10 shows a schematic illustration of the
effect of planar biaxial compression and tension on the band structure of a direct gap
semiconductor.

The energy structure of a strained-layer superlattice can be calculated by using a
tight binding model. The tight binding parameters for the alloy semiconductors would
be obtained by taking weighted averages of the constituent binary compounds. In this
case it would be the compounds of InAs and GaAs in the In,Ga,_,As/GaAs SLS's,

Ar alternative approach is to use the envelope function approximation discussed
earlier in the context of the unatrained superlattices. The modification one would have
to make is to include in the Hamiltonian a term for the strain. Such s term would be the
strain Hamiltonian given in Eq. (47). The complete Hamiltonian that would be used in

the calculation of the band structure for a strained layer superlattice would be
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H=H,+H,+H, (58)

where H, is the Hamiltonian in the single particle approximation including the periodic
potential discontinuity between the layers, H,, is the spin-orbit Hamiltonian and H,, is
the strain Hamiltonian given above, In principle, then, the band structure of SLS's can
be solved by using the envelope function approximation within the k.p framework once
the Hamiltonian has been determined.

High quality strained-layer superlattices of In,Gwn;_,As/GaAS have been fabricated
{27]. Fig. 11 shows the photoluminescence apectra obtained for z = 0.2; the Ing;GagsAs
quantum wells are ~ 38 A and the GaAs bartiers are varied from 30 A to 90 A, Notice
how the peak emission shifts to higher energy with increasing barrier thickness. This is
a result of the combined effect of size quantization and biaxial strain.

In this work we have discussed the basic physica of SL$'s including the relevant
quantitative relations. The experimental aspects of these structures can be found in

some of the literature cited and the references therein.
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Figure Captions
Figure 1: Configuration of a single GaAs quantum well sandwiched between two (AL Ga)As
confining layers.

Figure 2: Schematic energy band diagram of a single (Al,Ga}As/GaAs/(Al,Ga)As sin-
gle quantum well in both the conduction and valence bands.

Figure 3: A graphical solution of the eigen-value equation for the even carrier states in
a single (Al,Ga)As/GaAs/(Al,Ga)As single quantum well.

Figure 4: Room temperature photoluminescence spectrum of & multiple quantum well
(Al,Ga)As/GaAs/(AL,Ga)As atructure and that of a bulk GaAs crystai.

Figure 6: Band diagram of » single and multiple (A1,Ga)As/GaAs/(AL,Ca)As quantum
well system showing the character of the allowed optical transitions. Also shown
in (b) are the transitions in & bulk GaAs crystal,

Figure 6: Band structure of a III-V compound semiconductor (¢.¢. (Al,Ga)As or GaAs)

in the vicinity of the Brillouin zone.

Figure 7: Schematic representation of the strain effect of tetragonal distortion of a unit

cell of a lattice.
Figure 8: Schematic illustration of a strained-layer superlattice {after Osbourn {9l)-

Figure 9: Effects of compressive stress on the bands of GaAs (adapted from Pollak and
Cardona [18]).

Figure 10: Effects of planar biaxial compression and tension on the band structure of
a lII-V compound semiconductor (e.g. GaAs).
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Figure 11: Photoluminescence spectra of In,Ga,_,As/GaAs SLS's with z ~ 0.2. The

In,Ga,_,As layer is ~38 A. The GaAs thickness is varied as shown (after Anderson

et al. in [27]).
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