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STIMULATED EMISSION
IN SEMICONDUCTORS

RELATIONSHIPS BETWEEN ABSORPTION, STIMULATED EMISSION,
AND SPONTANEOUS EMISSION

Introductory Remarks

The simplest deseription of the interaction of light and I'rcu:-carr.icr
clectrons in g semiconductor is based on the Emstein relations,” which
connect the rates of absorption, stimulated emission. and spontancous
emisston. Although the Einstein relations were originally expressed for an
atomic system i free space with two sharp energy levebs. these relations
have been generalized to broad-band spectra and are uselul for semi-
conductors with a distribunion of states in the vdence and conduction
bands. With this approach. the blackbody rudiation 1 considcn;d Lo be
the radiation fiekd. Use will also be made of the blackbody radiation in
relating the emission that results from external excitation to the measured
absorp_lion spectrum. The photon and energy densin dislribuquns !’or
blackbody radiation are derived below and then wtilized in the relationships
hetween E:bsorplion. stimulated emission. and spontancous emission,

Blackbody Rediation

Blackbody radation is the equilibrium emission within a cavity al a
uniform temperature and is of interest because of ils relationship to various
nonequilibrium absorpion and emission processes, Very thorough discus-
sions of blackbady radiation have been given in numerous texts. and a
descriptive treatment is given by Kestin and Dorfman.  The quantitics 1o
be derived for blackbody rudiation are the number of photons per unil
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volume and unil frequency and the number of photons per unit volume and
unit eaergy, which arg.the photon density distributions. Two quantitics are
teceasiry Lo express the photon density distribution. One is the density of
states or the number of allowed solutions (modes or staies) as oblained
from Maxwell's equations. The other is the probability that a photon will
occupy that state and is the Bose - Einstein distribution Jaw.

Consider a cubic enclosure with dimension L and assume that the
atlowed solutions of the wave ¢quation are independent of the boundary
conditions as long as all dimensions of the enclosure are very large compared
o the wavelengths being considered. Although diflicuit to prove, this as-
sumplion is generally accepied, and a simple demonsiration of indepen-
dence has been given by Joyce. * The simplest boundary conditions are
periodic and require the minimum sumple dimension (o be many wave-
lengths. In Chapter 2. the one-dimensional wave cquation (with ff replaced
by k) was given as

(a8, /02 4 k28, =0, (2.2-25)
where
k, =2n/ (2.2-30)
and &, is designated as the propagation constant or wave vector. The wave
travehng n the + = direction was written is
Az = Acostent — k). (2227
The periodic boundary condition requires that
0.0 =4l (3.2-1)
which restricts &, 10 the discrete values of
k, = 2am, ;L. 32-2)
where s aninteger (0, +1, 42, +3....
For the cubic enclosure, the three-dimensional wave equation [Eq.
(24-8)] with periodic bouadary conditions extends the one-dimensional

citse Lo the restriction

Ky=2mm /L, &k = 2em, /L, . = 2, /L, 32-3)

where m, oy mg are integers (0, + 1, 12 £3....) These discrete values of
ke k. and K, give discrete values of & which are called “modes.™ The par-
ticlelike nature of clectromagnetic radiation is fepresented by pholons with
cacrgy

E=In= ]p't'. {3.2-3)
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and momentum p with the components
P, = hk,. p, = bk, p.=hk.. (3.2-5)

where b is Planck’s constant and # is b 2a. The discrete values of k'? k.
and &_ give discrete photon energics, and therefore the allowed soluuqns
are also referred 1o as “states.” The problem now becomes one of counting
the number of these states and deriving expressions for their numbcr.pcr
unit volume. which is the density of states. The density of states determina-
tion is encountered in several arcas of physics (see. for example, Mand!'*).

The density of states is derived in terms of the wave vector k, and there-
fore it is uselul to introduce the concept of k space with

k=ak, +ak +ak. (3.2-6)

where a,. a,. and a. are unit vectors in the x, p, and > directions. The wave
vector kin terms of &, k. and k. given by Eq. {3.2-3} is shown in Fig. 3.2-1.
The unit volume in k-space is indicated by the dotted cube in Fig. 3.2-1 and
has a volume given by

unit volume in k-space = {22 )%, (3.2-7)

Oniv the values of k given by Eqg. (3.2-3) are allowed. and it can then be
concluded that the number of allowed values of k in any volume Vi k-
space is the number of cubes of side 2r L in that volume. _

The density of states may be found frone the number of states in k-space
between Kk and (k + dki. Let the volume of it thin sphericat shell be dnk? Jk.
The unit density i K-space is the reciprocal of the unit volume given in
Eq.13.2-7). Then the number of stales i kespace is the volume times the

LT}
4w : .
N .
2w
R -
. 2
.
’ s |
~-- I
] r | N
1 ¥ T v
! b ew an
\ £m
am I..- _J/ L L
L
.
ar
L
.l

FIG. 3.2-1 A plot of k-space in lerms of k,, X, and &, given by Eq. (3.2-3) for periodic
bou—dary conditions.
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density which s
ANW@) = AL2ay dnk? dk, {3.2-8)

where the factor of 2 accounts for two different states of polarization for a
photon of a given momentum. ln Chapter 2. these polarizations were dos-
ignated as transverse clectric {TE) and transverse magnetic {TM). The
density of states is the number of states per unit volume of the solid ¥ =
LY and is

dN(Ky = (k*/n® )k, (3.2:9)
FFor a diclectric solid, the wave vector is
k=2a/7=02nc)itv, (3.2-10
where i is the refractive index and v is the frequency. Then,
dh = 2a(icpde [ 1+ (v mdin dv), (3210

where the term in the brackets is the refractive index dispersion and is unity
for free space. Equation (3.2-9) becomes

dN{v) = Baitet e 1[1 + (e Xl -dvd] dv. (321

The average number of photons per state () is given by the Bose
Linsicin distribution Lsw, which applies 1o a system of identical particles
that are indistinguishable and have integrad spin:!'”

) = [expthe, kT) - 1] °. (32-13)

Therefore, the photon density distribution dDix) is given by (> d N,
which is

Ran™v? |+ v Aladfi; dv)

D) = e AT "
dD(v) ot cxpﬂn'kT'"'“

(3.2-149
Often the bluckbody photon density distribution is given as the energy
distribution, which is the photon encrgy v times the photoa density dis-
tribution df){v). Equation (3.2-14} gives the photon density distribution in
units of the number of photons per unit volume. Ior the anlysis that follows,
il is more convenicnt (o express the photon deasily distribution as the
number of photons per unit volume and unit energy, so that from Ey. (3.2-4)
dv = dE/h, and

Bam*E? | + (Em)dnjdE)

= O e, 32
ADUE) = s e E T i E (3.2-15)
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Then. the spectral density at a specific energy E may be denoted by P(E)
so that JD{EY = P(E)VJE and
Bri*E2[1 + (E/MNdR/dE)]

ME}= T RA[explEKT) = 1]

32-16)

The spectral density has the uaits of the number of photons per unit volume
and unit encrgy interval. The dispersion term [1 + (E/m(dijdE)] is often
written as unity,

The Einstein Relations

Instead of two sharp levels for an atomic system. the available clectron
states in semiconductors are represented as a continuous band of stales
within the valence and conduction bands. [n Fig. 3.2-2, an clectron transition
is represented. The transition 18 from a state E; within the valence band to
a state £, within the conduction band and results from the absorption of a
phaton of energy E; — E; = £y = heo. The rate for this process depends
on several factors:

(1) the probability that the transition can occur. B,.

(21 the probability that the state £, contains an clectron f;,
131 the probability that the state £, is empty [1 — f,]. and
{4t the density of photons of cnergy £, . PiE, ).

The upward transition rate may then be writien as
na= B[l = LIRE) (3.2-17

The occupation probability of £, 15 piven by the Fermi Dirac distribution
for indistinguishable. deatical particles with half-integral spin that obey

Ea - 1“;- CONZUCTION
SRR S AND
————————————————— —-—=—=F,
£ -ty - b
eV Wy g
————————————————— - —---F,
E, £ VALENCE
BAND

FIG. 3.2-2 Transition of an electron lrom £, 1o £, by the absorplion of a photon of
energy £.,. The quasi-Fermi levels lor the valence and conducuion bands are represented
by F, and F,, respeclively.

B b gy 3t 3, 7, P
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the Pauli exclusion principle, and is'’
Ji = txp[lE, — F kT + 1), (3:2-18)

where F, represents the quasi-Fermi level for the valence band at non-
equilibrium. Similarly, for the conduction band

Jy=(exp[(E; — FkT] + 1)1, (32-19)

where F; is the quasi-Fermi level for the conduction band at nonequilibrium.

In addition to being absorbed, these pholons can alse stimulate the
emission of a similsr photon by the transition of an clectron from E; w0 E,.
The downward transition rate for this process is

1y = By [ = fIHE (3.2-20)

where 8y, is the transition probability, f, is the probability that E, is oc-
cupicd and [1 — f, ] represents the probability that E, is empty.

Also, clectrons at E; can spontancously return to E; without inter-
action with the radiation licld P(k,,). The probability for this process is
represented by A, and the spontancous emission rate is given by

nispon) = Ay, L[t - £,] (3.2-2§)

Several uscful refationships can be established with Egs. (3.2-17), (3.2-20),
and (3.2-21).

At thermal cquilibrium, the upwird transition rate must equal the
totad downward transition rite

).2 = 71‘ + i“(.‘ipl)ll). ‘3.2'22,
and Fy = F,y. From Egs. (3.2-17),(3.2-20), and (3.2-21), Ey. (3.2-22) becomes
. Anhly - 4]
Pl y= - - - — = " S (3.2-23)
YA TR A B VA TR
and by Lys. (3.2-16). (3.2-18), and (3.2-19). this equation may be writlen s

L TR = . .:i'il e {3224
W explEs kT~ 1] By sexplky, /kT) - 8,
The |1+ (he/mldiifdhe)] wrm in Eq. {3.2-24) has been writlen as unity.
Also, it should be noted that the encrgy density distribution per unat fre-
queney interval is often used instead of the photon density distribution per
unit cnergy, For that case, ' ¥ the left side of Eq. (3.2-24) is

..
A expthv/kT) - 1]
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Equation (3.2-24) may be rewritien as
‘Snﬁ’Eil/h,(J )[BI b3 EKP‘EI 1 IAT' - 82 |] = .‘|2| CXp{E“/kTI - Az[. (3.2‘25]

and separated into temperature-dependent and temperature-independent
terms. Equating the temperature independent terms gives

Az = B E}, ih’c)By,. (3.2-26)
and then equating the temperature dependent parts of Eq. (3.2-25) with
A, given by Eq. (3.2-26) gives

By, = By,. {3.2-27)
Equations (3.2-26) and (3.2-27) are the Einstein relations and show lhn_l the
spontancous emission probability is related 10 the absorption and stimu-
lated ¢mission probability.

Necessary Condition lor Stimut Emission in Semiconductors

The necessary condition for stimulated emission was expressed very
simply by Bernard and Duraffourg.® Stimulated emission in excess of
absorption occurs when a photon is more likely to cause a t.ioywnward
transition of an electron from the conduction band with the emission of a
photon than the upward transition from the valence o conduclim_l band
with absorption of the photon. This condition requires that »,,, as given by
Eq. (3.2-201. must exceed 1, ,. as given by Eq. (3.2-17). so that

By L[V - N]IPE 0 > By [ = RIPLES ). (3.2-238)
Since Eq. {3.2-27) gave B, = B,,. this condition is
LD = A1> A0 - 1) (3.2-29)

with f, and f, given by Eqgs. (3.2-18) and (3.2-19). Equation {3.2-29) then
reduces to

exp[(Fy — F\) AT] > exp{iEs — E\ KT (3.2-30)
or more simply.
F,~F, >E,—E,. {3.2-31)
Therefore. the separation pl the quasi-Fermi levels must exceed the photon
emission energy for the downward stimulated emission rate o exceed the
upward absorption rate, .
The Nel Stimulated Emission Rate

A frequently used quantity is the net stimulated emission rate ry,(stim),
which is the difference between the downward transition rate 15, and the
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upward transition ratc +,,. From Eqs. (3-2-17) and {3.2-20) this difference is
rulstim) = 8,, A1 - f,]P(E,,) - B fi[1 - AIPE,), (32-32)

and since B, = B,,. this expression becomes

. rulstim} = 8, ME ) f; - £,]. (3.2-33)
From Eqgs. (3.2-16) and (3.2-26), this relation reduces Lo
ry(stim) = _Anlfi = 1] (3.2-34)

exp(Ey, /kT) ~ |

In Eq. (3.2-34) it has become common usage'¥ 10 define Anlfi—1] as
the stimulated emission rate Faimi£2¢) because of its similarity in form to
the spontancous rate in Eq. (3.2-21):

FaimlEy ) = Au[f:z - fl]- {3.2-35)

The units of r,, are the number of photons per unit volume per second per
energy interval.

It s important 10 nolc that three rather similar designations are used
for the stimulated emission rate. There are

(1) 1,,. the downward transition rate for stimulation of a similar photon,

(2} ry (stim), the net stimulated emission rate. which is the difference
between the downward transition raie *2y and the upward transition ratc
1y 3. and

3) 7,,ulEx ) the quamtity generally called the stimulated cmission rite
and when . {Ey ) is multiplicd by the number of photons per state
Lexp(Ey/kT) — 1], it becomes the net stimulated CMISSION rate ry (stim).

The Absorplion Coefficient

The interaction of photons and clectrons in the solid may be related to
& macroscopic property, the absorption cocflicient 2. The net absorption
raic is the difference between the upward ransition rate 7,z and the down-
ward (ransition rale 1,. From Eqs. (3.2-17) and (3.2-20) this diffcrence is

rialabs) = By, fi[1 —L)PE) - By fi[V - [i]P(E,). (3.2-36)
and again with B,, = B,, this expression becomes
r|z(abs, = Bl][.fl s j‘v]P(Ezl]. (3.2"37)

where B[ f, — f,] s the net absorption probability.

The nct absorption rate r, ,{abs) is the absorption coefficient times the
photon flux F(E). The photon flux is simply the photon density distribution
P(E) given by Eq. (3.2-16) times the group velocity r,. The group velocity
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in the diclectric medium is [see Eq. (3.2-11) for dk and Eq. (3.24) for w =
2nE i)

= (_!(‘J - 2adE _ _(f'_' . (3.2-38)
* ok hdk b+ (ER)NdRE)
Therefore, the absorption coellicient may be writien as
XEs ) = ristabs) _ roaabs)  By,[f _.fz]‘ (3.2-39)

HE, —P—lE:ﬂl',_ (]

where the {1 + (E mitdn dE1] dispersion term in v, has been taken as fm?ly.
The absorpuon coctlicient may be related to the stimulated emission
Faiml E213 Equation (3.2-26) permits writing Eq. (3.2-35) as

— Pl B2V = B0 E3 B[ S, - 1) 13.2-40)
so that 2(E) becomes
ME )= = (0P 8antEL i Eqy ) (3.241)
The units for 2E,,} are cm ', Equation (3.2-41) shows that %(£,,) and
ro.mlE 1)) are telated by the constant prefactor.
Relation of Spontansous Emission to the Absorplion Coefticient

Bevause of the Enstein relation given by Eg. (3.2-26), the spontancous
emizsion rate may be written in terms of the absorplion coctlicient. With
Eq.13.2-37) for r| stabshin Eqg. (3.2-39).

B,:[ 1) - LIPE ) = 2E PEY, . (3.2-42)
and by Egs. (3.2-21yand (3.2-26),
ryispon) = (8mii'£3, "'j"J}lefz[l -h]l= FoadE2y). (3.2-43)

Equation (3.2-42) permits chmmation of B,, in Eq. (3.2-43). With v, = (m
r.pont £ 11) becomes

TRl % Y N [ [ s
Pt E2g b= 'j:l_ni.:'-' 2Ly ) {:}[m{—'];l (3.2-44)
or
8nmE: A E
Fepod Exi) = a cnaiba) (3.245)

et iexp[Ey, — (Fy ~ FOJAT — 1)

The units for r . (E;,)} are number of photons per unit volume per second
per energy interval, and the identity of Eq. (3.2-43) was made 10 maintain
notational uniformity.
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Aelation Belween the Spontansous and Stimulated Emission Rales

Equations (3.2-41) and (3.3-45) relae FuadEzs) and r, (E;,) 10 o(E,,)
Thercfore, the stimulated cmission rate, as defined by Eq. (3.2-35), may
readily be related (o the spontancous emission rate

r\llM(El”

“lexp[Eyy — (F; = FO)kT - Th

{3.2-46)

fw‘Ezll' =

or
FuimlE2y) = r.m(En':l - CXP[E“ —{F; - F.’]/kT} (3.247)

These expressions in Egs. (3.2-41), (3.2-45). and (3.2-47) demonstrale that
AWE), 1, (E), und £, (E) are related (0 cach other and that knowledge of
one gives the other two. To evaluate these expressions, one quantity such as
2{E) must be obtained experimentally or the transistion probabilities B, ; or
Ay, must be calculated. Therefore, in the next section of this chapler expres-
sions are considered for afF), Fopad E and r,(E) that have the transition
probabilitics und the distribution of states representative of semiconductors.

3.3 TRANSITION PROBABILITY

Fermi's “Golden Ruls"”

Since Egq. (3.2-45) shows that Fooall) can be found from 2 E) and that
Eq. {3.2-47) relutes el E) 10 1 (E), iU is only neoessary 1o determine aE)
o obtain the spontancous and stimulited emission rics. Also, calculated
values of 2(k) may readily be verified by experimental measurements. For
these reasons, only x(F) will be considered in the analysis that follows. For
photon absorpiton between two discrete levels, the absorption cocflicicnt
Wils given as

HE) = B[ 1, - W {3.2-39)

In this expression the transition probability B, is unknown, and it can be
cxpected to depend on various propertics of the system that relate the inter-
action of clectrons in the solid with clectromagnetic radiation. This interac-
lion requires recourse 1o quantum mechanics in order (o cvaluale 8,,.
Consideration of the interaction between electroas in the semiconducior
and clectromagnetic radiation requires the techniques of time-dependent
pecturbation theory.* With this procedure, the properties of the system are
determined in the absence of radiation, and the alteration that occurs with
the radiation is then calculated. If convergent lechnigues can be used for
the perturbation effects, solutions can then be obtained for the actua) prob-
lem. Rather thun go through the steaightforward but iengthly analysis, the
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well-known result referred to as Fermi's “Golden R_ulc" will bc_glycn.. Solu}
tion of the Schrodinger equation with a perturbation harmonic i time o
the form

ety = 1) coswi {3.3-1)

gives the transition probability as®
By = (r 20 Q¥ e n[H' Y e ), 3.3-1

which is called Fermi's Golden Rule. In Eg. (3.3-2).ris the Ihrcc-dipcnsuona!
spatial vector, W, *ir.1) the complcx‘conj_ugute of the wave function of the
initial state. H' the interaction Humllmlpan. and W.ir, rl the wave fum.lu'm.
of the final state. The transition probability I'ro!n_Fcrn::'s Golden Ruie has
also been given by Stern'® and by Bebb and Williams. »
The quantity (‘P,*lr.n]fl']‘l’,lr.fl) is commonly called the matrix
element of the interaction Hamilionian M hclwgc.n ¥, 'flr.n _;lnd L ()}
As will be shown later, I is essentially V. the familiar dlllc.rc.n.llall opcrulm.'.
Therefore. the matrix element 45 the scalar product of the initial state w:nlc'
function ¥, *ir.1) with the function that rc:".uils from the operation :'.)I' ‘I
tdifferentiation) on the finai-state wave function W yir.1). The matrix element

is given by?
ol = {0 e 3.3-3)

The remainder of this section is devoted to the determination and evaluation
of the intcracuon Hamibionian in the matrix element.

The interaction Hamiltonian

In this part of Section 3.3, the quantities llr._ll enter the inlcrucl.imz
Hamilronian in Eq. 63.3-3) are dlustraced and dcscr_:hcd. The 1ext by White!
discusses very thoroughly the concepts to be briclly presented here and
should be consulted for further description, o o

In quantum mechanics, the deseription of (I_u‘ p.'ll‘llClC.IS conlal_ncd in its
wave function ‘*ir. 1. This state function contains all thc_ mformat'non about
the system. The behavior of Wie.1d as a function of spatial coordinates and
time is given by the Schrodinger wave equation

Ho\Pin )= —th pLeRte )ice), {3.3-4
where H. as dgscribcd in the following, is the_operator associated with
the syvstem Hamiltonaan.

The system Hamilionian refers 10 the total energy of the system. The
classical Hamiltonian for a particle is a conservative force and is the sum

e e
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of the kinetic and potential energy

H =(p¥2m) + V(r), (3.3-5)

where m is the particle mass. A conservalive foree is one thal is derivable
from a single-valyed potential, thatis, F= —V¥{n, It requires the poteatiat
of a particle at a given point to be independent of the path by which the
particle reached that point. This requirement implics that the potential of
the particle is independent of its velocity at that point. For force duc 10 the
clectromagnetic fieid, it will be necessary 1o consider a nonconservaltive
force on an ¢lectron.

A mathematical operator such as H,, may be associated with physically
obscrvable quantities such as ‘¥(r.1). From the propertics of the operalor,
it is possible 1o obtain ihe behavior of Wir,1). For example, in the one-
dimension , the expression cWix, 1)/°x can be considered as composed
of the operator 3/0x and the operand ¥(x,ii. The operator associaled with
the momentum p becomes®

P—hjiv (3.3-6)
so that the classical Hamilionian operator I, becomes
Hl = — (V22 + Vi), 3.3-7)
With Ey. (3.3-7), Eq. (3.3-4) becomes
[~ 2mw? + VinJ¥ie.n = —tyj[eie. 1) il (33-8)

This cquation may be scparated inle two cquations, one involving spatia
virriables and one involving time. The separation of variables was ilfustrated
in Scction 2.4 for the wave ¢quation. As for the waveguide prablem, applica-
lion of boundary conditions will fead 10 cigenvalue equations, and the
system cigenvalues are products of a spatial cigenfunction and a harmonic
time function

Y.ir. 1) = wrlexpl ji ), (3.3-9)

Next, consider the Hamiitonian for the interaction of clectromagnetic
radiation with an electron (see C hapicr 2 of Ref. 3). The force on the clectron
of charge ¢ moving with the velocity v in an clectromagnetic ficld is given
by the Loreniz force

F=g&+vx ) (3.3-10)

Since F depends on v, this case is nonconscrvative. and F cannot be obtained
from the gradient of a scalar field. For the nonconservatjve foree, it is
convenient to represent the clectromagnetic ficld by the vector ficld A,
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This field is found from Maxwell's equations that were given in Section 2.2;

Vxd=-04/0 (2.2-1)
and
V-#=0. (2.2-7)
From vector algebra. the divergence of the curl of a vector is zero. ie.,
V-VxG =0 {3.3-11)

and by Eq. (2.2-71. V - .o = 0. Therefore, .4 is the curl of some vector defined
as A

A=V xA. (3.3-12)
Equation 12.2-1) becomes
Vxd =~V x A (3.3-13)
and
Vxid+(FcnA1=0 (33-14)

Also, from vector algebra, of the curl of some vector is zero. then this vector
must be the gradient of a polential . and

& +(CCNA = Vo 3.3-15)
The vector A and scalar ¢ may be chosen so that ¢ = 0 and
&= -7A/n (3.3-16)

Although not derived here, the Hamiltonian for the electiron moving in the
nonconservative potential is given by the well-known expression (see
Chapter 2 of Ref. 3)
H =1 2a(p — 4AF + Fin, 3317
where Eq. (3.3-121 defined A, and Eq. (3.3-16) relaed A to &£.
The interaction Hamillonian is then obtained by writing out the squared
termin Eq.i3.3-1Tas

H=10 2m)p? = 24A - p + A% + 1n). {3.3-18)

The higher-order term ¢°A? is neglected, and by Eq. {3.3-6) the operator
H,, becomes

Hoo =10 2mp(—h*V? - 2yh A - ©) + Vin), (3.3-19)

|

|

|
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Comparning this operator with H,, Tor the classical Hamiltonian jn Eq.{3.3-7)
gives

3 ]
Hy, = iy, +H.,, (3.3-20)
where
H,',., = —(gh/imA - V, (3.3-:21)
or
I" = —(¢/m)A - p. (3.3-22)

Equation (3.2-22) defines the interaction Hamiltonian given in operator
form in Eq. (3.3-21).

Tha Matrix Element

The expression for the matrix element in Eq. (3.3-3) with #' given by
Eq. {3.3-22) can be fusther simplificd by representation of the vector poltential
by the clectric ficld. The electric ficld for a traveling wave may be wrillen
as [see Eq. (2.2-27))

& =ad,co8(on - kz) = a 4, expl e — k2)), (3.3-23)

where the Re lexpl floxt — k=3]} is implied for expljtest — k2)] as described
n Section 2.2, In Eq. (3.3-23), the cleciric field is polarized parallel 10 the
x-uxis with wave vecior k. For the cubic crystals o be considered here, the
direciion of polarization is unimportant. The vector ficld A is refated 10 &
by Egy. {3.3-16} s0 that

A = (juéofmiexpl fest ~ kz)]. (3.3-24)

and
[A]> = |A - A% = &, u. (3.3-25)
To evaluate the magnitude of the electric ficld & a. the electromagnetic
Nux as given by the real part of the Poynting veclor may be related 10 the

photon energy E = hn. From Eq. (2.2-57) the Poynting vector S| in expo-
nential notation is

B[=Reis x ¥*), (2.2-57)
and for & given by Eq. (3.3-23), # is given by Eq. (2.2-14) as )
K, = (8,8 ok/pow)expl jlwr — kz)), {3.3-26)
and
IS| = $(do2k/pgen). (3.3-27)
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The Nux magnitude for a photon is also given by the photon encrgy hw
times the group velocity ¢/7 so that

heoc /A = Hig,d o e, (3.3-28)

where Eq. (3.3-27) has been rewritten with k = fiw/c and ¢ = 1fuge,.
By Egs. 13.3-25) and (3.3-28),

(A} = 2 cgiien. (3.3-29)

For the more general three-dimensional polarization vector n, the same
|A* results as Eq. 13.3-29) but A of Eq. (3.3-24) becomes

A = (ndo/elexp[jlmt - k - r)]. {3.3-30)

The transition probability given by Eq. {3.3-2) may now he wrilgcn vyilh
Eq.13.3-9: tor the wave functions, Eq.(3.3-22) for the interaction Hamiltonian,
and Eq. (3.3-30) for the vector potential as

q( 2h )' !
-— n . - ___I.L
M Ll o)

2
w;(r)exp(jm;ll>l . (3.3-31)

n
812=E

<|.b.'lrlcxp| ~ fint)

X cxp[jl(r)l ~k- rl] *p

For the harmonic condition that = ey — oy, the exponential time
dependences goes to unity. and this expression may be written as

B,, |<r er pursteny |2, (3.3-32)

= o
where expi— ik« r} has been taken as unity because the range of r where
vy "ir) and éieh have value is very small compared to /. ic. k-r < |. The
momentum p 15 utilized in its operator form of Eq. (3.3-6). The expression
in brackets is called the momentum matrix element M. and in the same
manner as for Eq. (1.3-3)

V= ¥, ellpl¥ ) = [, np e, (3.3-33)
The transition probability now becomes
2
ngth ’
=g, — |\ 33-34
12 mzlioﬁzl'l(rjl ! . ( )

The expressions in Eq. (3.3-33) are often called the dipole matrix element
because they correspond 10 a term of the form & -d where d is the dipole
moment. Although it is not at ail obvious, it can be shown? that Eq.{3.3-33)
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gives the ciectric-dipole interaction, and hence it has become named the
dipole matrix clement as well as the momentum matrix element. Also, the
quantity 2M{" /hom is called the oscillator strength.!®

3.4 OPTICAL ABSORPTION AND EMISSION RATES
IN SEMICONDUCTORS

Density of States

The absorption and emission rates considered in Sections 3.2 and 3.3
fepresent transitions for the entire system between pairs of discrete encrgy
levels scparated by ho,,. Extension of these cxpressions must now be made
to include the various states within the valence and conduction bands of
the semiconductor. The single-clectron approximation is made, and the
transition is considered as the change in state of a single cleciron. Elementary
discussions of the singlc-electron approximation have been given in numer-
ous texts, such as the books by Blakemore, 2! McKelvey,?? and Bube,?? and
will not be repeated here.

The density of single-clectron states per unil energy for the conduction
band is given by the familiar parabolic expression??

PE — E) = (2x?)~ ' (2m /2 MYE — E )", (3.4-1)

where m, is the eflective mass for clectrons in the conduction band and E,
ts the conduction band edge. Similarly, for the valence band??

PAE, — E) = 122%)" "Q2m /R YE, - E)'2, 34-2)

where m is the effective mass for holes in the valence band. nd E, is the
vaienee band edge. An cxampie of the density of states for a conduction band
with an effective clectron mass m, = 0.07m,, where m, is the free clectron
mass, and for a valence band with an ellective hole mass m, = 0.5m, is
shown in Fig. 3.4-1a, The cenergy gap E, 1s the separation (E, — E,) between
the valence and conduction bands. These cllective masses represent GaAs,
which will be considered in detail Luter i this chapter. The energy gap has
been taken as 0.5 ¢V for convenience in plotting.

The Absorplion Coeificient

In Eq. (3.2-17), the upward transition rate between states ) and 2 was
taken 1o be proportional to the probability f, that the state E | Comains an
electron. For transitions between the valence and conduction bands of a
semiconductor, the rate depends on the density of filled states in the valence
band p,(E)f,. Similarly, the empty-siate probability in the conduction band
[1 - £;] becomes the density of empty states py(E )[1 — ;] The occupation
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FIG. 3.4-1 (a) The vanauon of the parabolic densily of slates with energy for m, =
0.07m, ana m, = 0.5m,. (b} The distribution of holes in the valence band and elactrons in
the conductionband forp = 1 x 10" cm ™ andn = | x 10" cm~% at T = 297°K.

probabilities were given in Eqgs. (3.2-18) and {3.2-19). These densitics of filled
and empty states become
PUEM, = plE, - E)f,. {34-3)

and

PAEIL = 2] = pdE = E[) - ] (34-4)
The densines of filled and empty states are illustrated in Fig. 3.4-1b for
the effective mass values used in Fig. 34-1a. For the valence band, p=
1% 10" ¢em ™. und for the conduction band. n = | x 10" ¢m~*. To obtain
these curves in Fig. 34-1b. g (E, — E) of Fig. 34-1a is muluiplied by / of

Eq (3.2:13). and pAE ~ £ of Fig. 3.4-1a is multiplied by /. of Eq. (3.2-19).

The quasi-Fermi fevels F, and F, are obtained in the manner dcscribcfl i.n
Section 4.3. To illustrate both the density of filled and emply states, il is
necessary 10 use the semilogarithmic piot.

The ébsorplion cocliicient is proportional 1o the diffcrence between the
upward transition rate and the downward transition rate and was giv_fcn by
Eq.13.2-39) for two discrete levels. In a semiconductor, instead of two discrete
levels there is a continuum of states i the conduction and valence bands
characierized by the densiy of states p(E — E.) and p(E, — E) that are
given in Eqs. (3.4-1) and (3.4-2). Therelore, 1he absorption coeflicient must
be the sum of the absorption coctlicients at hew for all of the encrgy levels
separated by hes. The sum becomes the integral

when = f %[ Sy = RIpME, ~ EWJE ~ EMME, - E, - b)dE.  (34-5)
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in Eq. (3.4-5). the integral is taken over the products of p(E, — E|) and
pPdE; — E) of the various E, apd E, in the conduction and valence bands
that are scparated by a given photon energy huw. Note that the delta function
OE, — E, — hw) is used 10 specify that p{E, - £,) and PlE; — E,) are
scparated by ha.

Because most of the literature on this subject is by Stern, his notation
will be used. When writing the ntegral in Eq. (3.4-5). it is convenient 1o shifl
the valence bund upward by hw, as illustrated in the next part of this section
for the spontuncous cmission rate. In 1his casc, the photon cnergy fun is
designated by £, and E' becomes the encrgy variable with E'= 0 a1 E_, and
E” = E' — fun. Thercfore p(E ~ E.) becomes PAEYand p(E, — E)is shificd
upward by fiey and becomes i (E”). With Eq. (3.3-34) for B,,, 1he expression
for the absorption coeflicient in Ey. (3.4-5) becomes®

ME) = (nq*h/egn? RE) j' _"j‘ PAEPLE")|ME . EM[ f(E") - fIE))dE,,
(3.4-6)

where &, is replaced by ¢, /4n for cgs units. When several valence bands are
present, as for 111-V semiconductors, both the heavy-hole and lighi-hole
band must be included. The absorption cocflicient is then given by the sum
of terms like Eq. {3.4-6) for cach valence band.

The Spontaneous Emission Rale

The probabitity of Spontancous emission A,, was related 1o B, through
the Einstein relations given by Eqgs. (3.2-26) and (3.2-27). With B, ; given by
Eq. (3.3-34). 4,, becomes

dniglL,, 3
T mteghict M. (34-7)
The spontancous emission rate between two discrete levels E; and E, was
given by Eq. (3.2-21), In the same maancer as for the absorption coeflicient,
the spontancous emission rate depends on the density of filled conduction
band states and the density of cmpty valence band states and may be written
as®

21

4Kﬁq1E « e P .~ e +
"'..p.mlE) = m‘-,;h?(—_, J-. . jlu(Elﬂ.,(E ,,M(E‘h )llﬂﬁ ][l = J"E ’] dE',

(3.4-8)
where the photoa emission energy £ = E' — E” as lor Eq. (3.4-6). The density
of empty valence band states (holes) p(E) = p(E, - E)[1 - 1.] and titled
conduction band states {elecirons) m(E) = PAE — E)f. that are scparated by
hew are illustratcd in Fig 3.4-2a. In the evaluation of Eq. (3.4-8), the hole
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FIG. 3.4-2 {a) Representation of the emply valence band states {holes) and filled
conduction band states (etectrons) at 297°K. The integral in Eq. {3.4-8) sums the emission
petween pairs of slates a-a” and b~b' separated by hw. {b) Represeniation of the evalua-
tion ol the sportanequs emission rate by £q. (3.4-8). The hole disiribulion has been shifted
upward by k.. and the integral containg the producl ol the overlapping of these eleciron
and hole distributions.

distribution is shifted upwitrd by Ivo as illustrated in Fig. 3.4-2b. The location
of pi£) with respect to n(E) will differ for cach value of photon cnergy hon,

The Stimulated Emission Rate

The stimulated emission rate between two discrete levels £, and E, was
given by Eq. ¢3.2-35) and contains the same probability A, as spontancous
emission. With Eq. (3.4-7) for 4. the stimulated emission rute depends on
the ditference between the densmty of filled conduction and vatence band
states and may be written as

dmig’E o, - I B ) g
= '_ . pPIEIIE Il.\ﬂl:.f l]'[_IlE Y~ iE ]](": . 13.4-9)

Except for the Fermi factors. Eq. (3.4-8) for Lthe spontancous cmission rate
and Eq. (3.4-9) for the stimulated emission raie are identical. The net stimu-
lated emission rate roistim) [see Eq. 13.2-34)] is Eq. (3.49) muhiplicd by the
number of photons per state [exp(€ kT) — 1] ", It should be ¢mphasized
that quasi-equilibrivm is assumed 1o exist within the conduction and valence
bands for Eqgs. (3.4-61. 13.4-8) and (3.4-9). In several papers; departure from
quasi-equilibrium has been suggested to explain certain unexpected features
of their results.?*~*” However. at room temperature the equivalence between
steady-state and time-resolved spectra demonstrated that quasi-equilibrium
exists within the conduction and valence bands.?*

R s
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The problem of evaluating a{E), ool E), OF 1, {E) becomes onc of
evaluating p(E'), p(E”), and |MUE, E")|%. At the high impurity concentra-
tions or excitation levels encountered for semiconducior lasers, the density
o_l' slates are concentralion dependent and cannot be represenicd by the
simple parabolic expression of Egs. (3.4-1) and (3.4-2). The concentration
dependence of the density of states is considered in Section 3.5. The evalua-
tion of the matrix element is then discussed in Section 3.6,







