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Electromagnetic Propagation
in Anisotropic Media

There are many maierials whose optical propertics depend on the direction
of propagation as well as polarization of the light waves. These optically
anisotropic malerials include crysials such as calcite, quariz, and KDP, as
well as liquid crystals. They exhibit many peculiar opitical phenomena,
including double refraction, optical rotation, polarization cflects, conical
refraction, and electro-optical and acousto-optical effects. Many oplical
devices are made of anisotropic crystals, for example, prism polarizers, sheet
polanzers, and birefringent filters. Anisotropic nonlinear materials are also
used for phase-matched second-harmonic generation. A thorough under-
standing of light propagation in anisotropic media is thus important if these
phenomena are to be used for practical applications. The present chapter is
devoted eatirely to the study of the propagation of eleciromagnetic radia-
tion in these media.

4.1. THE DIELECTRIC TENSOR OF AN ANISOTROPIC MEDIUM

In an isotropic medium, the induced polarization is always paraliel to the
elecinc field and is related to it by a scalar factor (the susceptibility) that is
independeat of the direction along which the field is applied. This is no
tonger true in anisotropic media, except for certain particular directions.
Since the crystal is made up of a regular periodic array of atoms (or
molecules) with certain symmetry, we may expect that the induced polaniza-
tion will depend, both in its magnitude and direction, on the direction of
applied ficld. Instead of a simple scalar relation linking P and E, we have

P o= e(xE, + xnE, + xnE)
Py = eo{xnE, + XnE, + XnE.), {4.1-1)

P = ey(x5E, + xnE, + xnE,),
69



70 ELECTROMAGNETIC PROPAGATION IN ANISOTROPIC MEDIA

where the capital letiers denote the complex amplitudes of the correspond-
ing lime-harmonic quantities. The 3 X 3 array of the coefficients x, , s called
the electric susceptibility tensor. The magnitudes of the x,, depend, of
course, on the choice of the x, v, and 7 axes relative 10 the crystal structure,
It is always possible to choose x, y, and z in such a way that the off-diagonal
clements vanish, leaving

Px = EOXIIEI'
P, = exnk,, (4.1-2)
P =gy E,.

These directions are called the principal dielectric axes of the crystal.
We can, instead of using Eq. (4.1-1), describe the dielectric response of

the crystal by means of the dielectric permiltivity tensor ¢, ;, defined by
D =g E + &2E, + ¢ E,,
D, =&, E, + eyE, + ¢,yE,, (4.1-3)
D =eE + ERE’ + €5, E,.
From Eq. (4.1-1) and the relation
D=gE+ P {4.1-4)
we have
&, = &l +x,,). (4.1-5)

These nine quantities e, ¢,,,. .. are constants of the medium and constitute
the dielectric tensor, Equation (4.1-3) is often written in tensor notation as

D, =&,k (4.1-6)

where the convention of summation over repeated indices is observed.

In the greater part of this chapter we assume that the medium is
homogeneous, nonabsorbing, and magnetically isotropic. The energy density
of the stored electric field in the anisotropic medium is

U =4E-D = |E¢, E,. (4.1-7)

1544
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When we differentiate Eq. (4.1-7) with respect to lime, we obtain
U =le, (EE + EE). (4.1-8)

According to the derivation of Poynting's theorem in Section 1.2, the net
power flow into a unit volume in a lossless medium is

-V (ExH)=E-D+H-B, (4.1-9)
which, by using Eq. (4.1.6) for D, can be written as

-V (ExXH)=Ee E +H:B. {4.1-10)
Since the Poynting vector corresponds to the energy flux in the medium, the
first term on the right side of Eq. (4.1-10) must be.equat to U,. Therelore, we
have the following equation:

%t'J(E.'E} + EiEJ) = CUEIE-‘;‘ (4[-]')
It follows immediately from Eq. (4.1-11) that
€, =€ (4.1-12)

1) 1N

This means thai the dielectric tensor is symmetric and has, in general, only
six independent clements. This symmetry is a direct consequence of the
definition (4.1-6) and the assumption that ¢ is a real dielectric tensor. In the
event that a lossless medium is described by a complex dielectric tensor
(e.g., optical activity—see Section 4.9), a similar derivation shows that

£, =€ (4.1-13)
In other words, the conservation of electromagnetic field encrgy requires
that the dielectric tensor be Hermitian. In the special case when the
dielectric tensor becomes real, the Hermitian property {(4.1-13) reduces to a
symmetric property (4.1-12),

4.2. PLANE-WAVE PROPAGATION IN ANISOTROPIC MEDIA
In an anisotropic medium such as a crystal, the phase velocity of light

depends on its state of polarization as well as its direction of propagation.
Because of the anisotropy, the polarization state of a plane wave may vary
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as it propagates through the crystal. However, given a direction of propaga-
tion in the medium, there exist, in general, two eigenwaves with well-defined
eigen-phase-velocities and polarization directions, A light wave with polari-
zation parallel 1o one of these directions will remain in the same polariza-
tion state as it propagates through the anisotropic medium. These
eigenpolarizations, as well as the corresponding cigen-phase-velocities (or,
cquivalently eigenindices of refraction), can be determined from Egs. (1.1-1)
and (1.1-2) and the dielectric tensor.

To denive these results, we assume a monochromatic plane wave of
angular frequency w Propagaling in the anisotropic medium with an ¢lectric
field

Eexpli(wr ~ k + 1)] (4.2-1)
and a magnetic field

Hexpli(wt — k + 0], (4.2-2)

where k is the wave vector k = (w/c)ns with s a unit vector in the direction
of propagation. n is the refractive index 10 be determined. Substitution for E
and H from Eqs. (4.2-1) and (4.2-2), respectively, into Maxwell's equations
(1.1-1) and (1.1-2) gives

k X E = wuH, (4.2-3)
k X H= —u¢E, {4.2-4)
By eliminating H from Egs. (4.2-3) and (4.2-4), we obtain
k X (k X E) + wlueE = 0. (4.2-5)
In the principal coordinate system, the dielectric tensor ¢ is given by

€

., 0 0
, 0. (4.2-6)

£

™

£ =

0
0

[~

X
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Eguation (4.2-5) can be writlen as

2 P
wipe, — k2 — k2 k. k, k.k, E,
k k, wipe, ~ k2 — 2 k k, E | =g
kk, kk, wine, — k2 - kX1 E,

(4.27)

For nontrival solutions to exist, the determinant of the matrix in Eq. (4.2-7
must vanish. This leads 10 a relation between w and &,

wlpe, — k2 - k2 kk, k ok,
det kk, wipe, ~ k2 ~ k2 k,k, =0
kk, k,k, Wi, ~ k2 - k?

vector associated with these Propagations can also be obtained from Eq.

PE. ;,zpey : (4.29)

k- Wl J

It will be shown in Seciion 4.3 that the two phase velocities always
comrespond 1o two mutually orthogonal polarizations (for displacemeni
vector D) (see also Problem 4.]).
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£,

Figure 4.1. The normal surface.

For propagation in the direction of the oplic axes, there is only one value
of k and, consequently, only one phase velocity. There are, however, two
independent directions of polarization. _ _ o

Equations (4.2-8) and (4.2-9) are often wrilten in terms of the direction
cosines of the wave vector. By using the relation k = (w/c)ns for the plane
wave given by Eq. (4.2-1), Eqs. (4.2-8) and (4.2-9) can be wnitten as

2 2
. A S L (2
nt—¢/eg n?- €./t n*—e/feq n
and
(5,
nZ - E..1/50
5
- (4.2-11)
n €,/€
It
"2 - £1/":0
respeclively,
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Equation (4.2-10) is known as Fresnel's equation of wave normals and
can be solved for the eigenindices of refraction, and Eq. (4.2-11) gives the
directions of polanization. Equation (4.2-10) is a quadratic equation in n?,
Therefore, for each direction of propagation (se1 of s,, 5,, 5,) it yields two
solutions for n? (Problem 4.2). To complete the solution of the problem, we
use the values of n?, onc at a time, in Eq. (4.2-11). This gives us the
polarizations of these waves. It can be seen that in a nonabsorbing medium
these cigenwaves are linearly polarized, since all the components are real in
(4.2-11). Let E, and E, be the eclectric field vectors and D,.D, be the
displacement vectors of the linearly polarized cigenwaves associated with n?
and n3, respectively. Maxwell’s equation ¥ + D = 0 implies that D,,D, are
orthogonal to s. Since D, * D, = 0, the three vectors D;, D,, and s form an
orthogonal triad and can be used as a coordinaie system for the description
of many physical phenomena, including optical activity. Maxwell's equa-
tions also imply that D, E, and H are related by

D=-"sxH (42-12)
and
n
H="sxE (4.2-13)
pe

According to Eqs. (4.2-12) and (4.2-13), D and H are both perpendicular to
the direction of propagation s. Consequently, the direction of energy flow as
given by the Poynting vector E X H is not, in general, collinear with the
direction of propagation s.

By substituting Eq. (4.2-13) for H in Eq. (4.2-12) and using the vector
identity A X (B X C)=B(A-C) - C(A - B), we obtain the following ex-
pression:

"2 ﬂz
D= —TSX(SXE}=_1-[E—S(S'E)]
cu cp

(4.2-19)
2
= c;# Elnnsvcru'
and since s * D = 0 and n?/c% = nZ¢,,
1N 2
D= Z_E-D = ni,E-D. (4.2-15)

p
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In other words, D, E, and s all lic in the same plane. 1t can be shown that
these field vectors satisfy the following relations (see Problem 4.1):

D,-D,=0,
D-E, =0,
(4.2-16)
DZ.EI =0,
s*D,=s+D,=0.

E, and E, are in general not orthogonal. The orthogonality relation of the
cigenmodes of propagation is often written as

s+(E, X H,) = 0. (4.2-17)

This latier relation shows that the power fiow in an anisolropic medium
along the direction of propagation is the sum of the power carnied by each
mode individually.

4.2.1. Orthogonality Properties of the Eigenmodes

We now derive the orthogonality relation (4.2-17) between the two eigen-
modes of propagation along a given direction s. Using Eqgs. (4.2-_}). (4.2-2)
for the field vectors and the Loreniz reciprocity theorem, we obtain

s-(E, x Hy) = s+(E, X H,). (4.2-18)

If we substitute Eq. (4.2-13) for H, and H, in Eq. (4.2-18), it becomes

i1'-;~s-[l-:, X (sx E)] =

- T [E,x (s XE)].  (4.2-19)

pc

This equation can be further simplified by using the identity
A-(BXCy=C+(AXB),
and becomes

%@x&r@x2g=%bx&yﬁxEﬂ. (4.2-20)

Since this equation must hold for any arbitrary direction of propagation s

THE INDEX ELLIPSOID Tl'

with 7, = n,, it can be satisfied only when both sides vanish. This proves
s-(E‘XHz)-s-(szH,)-O. (4.2.21)

To summarize: along an arbitrary direction of propagation s, there can
exist two independent plane-wave, linearly polarized propagation modes.
These modes have phase velocities tc/n and tc/ny, where n} and n? are
the 1wo solutions of Fresnel's equation {4.2-10).

In practice, the indices of refraction n,, ny and the directions of D, H,
and E are found, most ofien, not by the procedure outlined above but by
using the formally equivalent method of the index ellipsoid. This method is
discussed in the following section.

4.3. THE INDEX ELLIPSOID

The surfaces of constant energy density U, in D} space given by Eq. (4.1-7)
can be wrilten as
p D} p?

Stk IR 2R S 20,
e, £

where e, ¢,, and ¢, are the principal dielectric constants. If we replace
D/ J2U, by r and define the principal indices of refraction n.,n, andn,
by n} = €,/¢q (i = x. y, z), the last equation can be written as

~
)
(]

E
L]

=|'1

-

|

=+ =1 (4.3-1)

a
"~

-}
L

This is the equation of a general ellipsoid with major axes parallel to the x,
¥, and z directions whose respective lengths are 2n,.2n,, 2n,. The ellipsoid
is known as the index ellipsoid or, sometimes, as the optical indicatrix. The
index ellipsoid is used mainly 1o find the two indices of refraciion and the
two corresponding directions of D associated with the two independent
planc waves that can propagate along an arbitrary direction s in a crystat.
This is done by means of the foliowing prescription: Find the intersection
ellipse between a plane through the origin that is normat to the direction of
Propagation s and the index ellipsoid (4.3-1). The two axes of the intersec-
tion ellipse are equal in length to 2n, and 2n,, where n, and n, are the two
indices of refraction, that is, the solutions of (4.2-10). These axes are
parallel, respectively, to the directions of the vectors D, ; of the two allowed
solulions (see Fig. 4.2).
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Figure 42 Mecthod of the index ellipsoid. The inner cllipse is the intersection of the index
cHipsoid with the plane normal 10 s.

To show that this procedure is formally equivalent to the method of the
last section, we define the impermeability tensor 7, ; as

nr’j = t‘n(t_l)”. (4.3'2)

where ¢! is the inverse of the dielectric tensor e. By using this definition,
the relation between the field vectors E and D can be written

E-Lup. (4.3-3)
£9

Substiwtion of Eq. (4.3-3) for E in the wave equanion (4.2-5), leads to
sX [s X nD] + +p =, (434)
n

where we have used k = n(w/c)s, and s is a unit vector in the direction of
propagation. Since D is always transverse to the direction of propagation
(s D = 0), it is convenient 10 use a new coordinale system with one axis in
the direction of propagation of the wave, and denote the two ransverse axes
by 1 and 2. In this coordinate system the unit vector s is given by

0
s = (0 . {4.3-5)
|
and the wave equation (4.3-4) becomes
T Mz Wy 1
Tae M2 Wy D=—=D, {4.3-6)
0 0 o "

Since s+ D = 0, the third component of D is always zero. We can ignore

PHASE VELOCITY, GROUP VELOCITY, AND ENERGY VELOCITY ”

M3 N3 and define a transverse impermeability tensor 7, as

Tu ™y
kK0 ("lzl LY ) (4.3-7)
The wave equation then becomes
("r - ;I;)D =0 (43-8)

where D is the displacement field vector.

The polarization vectors of the normal modes are cigenvectors of the
transverse impermeability tensor with eigenvalues | /n%. Since n, is a sym-
meiric 2 X 2 tensor, there are two orthogonal cigenvectors. These two
eigenvectors, D, and D,, correspond 1o the two normal modes of propaga-
tion with refractive indices n, and n,, respectively. :

Let £, £,, ¢, be the coordinates of an arbitrary point in the new
coordinate system. The index ellipsoid in this coordinate system is expressed
by

Nasbaly = 1. {(4.3-9)

where summation over repeated indices a, B (1.2,3) is assumed. The inter-
section ellipse between a plane ( €, = 0) through the origin that is normal to
the direction of propagation and the index ellipsoid is obtained by putiing

3 =0 in Eq. (4.3-9). Thus we obtain the following equation for the
intersection ellipse

Mkl + nl + 29,68, = 1. (4.3-10)

The coeflicients of this ellipse form the transverse impermeability tensor 7,.
The eigenvectors of this 2 X 2 tensor therefore are along the principal axes
of this ellipse. The lengths of the principal axes determine the values of »
according to Eq. (4.3-8). This proves the cquivalence of the method of 1he
index ellipsoid and the method of the last section.



Electro-optics

- we treated the propagation of eleciromagnetic radiation in
anisotropic crystal media. It was shown that the normal modes of propaga-
tion can be determined from the index ellipsoid surface. In this chapter we
consider the problem of propagation of optical radiation in crystals in the
presence of an applied electric field. We find that, in certain types of
crystals, the application of an clectric field results in a change in both the
dimensions and orientation of the index ellipsoid. This is referred to as the
cleciro-optic effect. The electro-optic eflect affords a convenient and widely
used mcans of controlling the phasc or intensity of the optical radiation.
This modulation is used in an cver-expanding number of applications,
including the impression of information onto optical beams, oplical beam
deflection, and speciral tunable filters. Some of these applications will be
discussed further in the next chapter.

7.1. THE ELECTRO-OPTIC EFFECT

The propagation of optical radiation in a crystal can be described com-
pletely in terms of the impermeability tensor 7, (4.3-2). We recall that
n = €z~ '. The two direciions of polarization as well as the corresponding
indices of refraction (i.e., velocity of propagation) of the normal modes are
found most easily by using the index ellipsoid (4.3-9). The index ellipsoid
assumes its simplest form in the principal coordinate system:

L
-~

=

(7.1-1)

3 ’h
Y
+
!
+
!
]

&
A

where the directions x, y, and z are the principal axes—that is, the
directions in the erystal along which D and E are parallel. i/n3, 1/a2, and
1/n} are the principal values of the impermeability tensor 7, i

20

THE ELECTRO-OPTIC EFFECT d]

According 1o the quantum theory of solids, the optical dieleciric imper-
meability tensor depends on the distribution of charges in the crystal. The
application of an electric field will result in a redistribution of the bond
charges and possibly a slight deformation of the ion lattice. The net result is
a change in the optical impermeability tensor. This js known as the
clectro-optic effect. The clectro-optic coeflicients are defined traditionally as

‘L,‘(E) - 'l.j(‘”‘mlu =k + Siin1EL E,

=S+ 8iuify Py, (7.1:2)

where E is the applied electric field and P is the polarization field vector.
The constants 7, s and f, , are the linear (or Pockels) electro-optic coeficients,
and 5, ., and g, st a7 the quadratic (or Kerr) electro-optic coefficients. In

cffect was first discovered by J. Kerr, in 1875, in opucally isotropic media
such as liquids and glasses. The Kerr electro-optic eflect in liquids is
associaled mostly with the alignment of the anisometric molecules in the
presence of an electric field. The substance then behaves optically as if it
were a uniaxial crystal in which the electric ficld defines the optic axis. The
linear electro-optic effect was first studied by F. Pockels in 1893,

7.2. THE LINEAR ELECTRO-OPTIC EFFECT

from the redistribution of charges due 10 the application of a dc electric
ficld. It may be expected that the electro-optic effect will depend on the
ratio of the applied eleciric field to the intraatomic electric field binding the
charged particles such as electrons and ions. In most practical applications

nomenon.



Electro-Optic Modulators Using Cubic Crystals. Cubic crystals are opl.i-
cally 1sotropic {no birefringence) and therefore offer a wide field of view in
many optical systems. Here we consider the case of crystals of the 43m
symmelcy (zinc blende) group. Examples of this group are InAs, CyCI,
GaAs, and CdTe. The last two are used for modulation in the inirared, since
they remain transparent beyond 10 pm. These crystals are cubic and have
axcs of fourfold symmetry along the cube edges (i.c., (100), (010), (001)
directions), and threetold axes of symmietry along the cube diagonals {re,
(L), ¢T1), €171, 1T 1) directions),

According to Table 7.2 and Eq. (7.2-3), the index ellipsoid in the
presence ol the electric ficld is

2 2 2
X+ +z
——:—2—— * 20 (y2E, + 2xE, + xyE) = 1, (8.1-29)

where £, £, and E, are the components of the field along the crystal axes,
and r,, is the electro-optic coefficient. In this case, all the three variables
(x, y, z) are coupled. The general approach to transform Eq. (8.1-24) into
its diagonal form is to solve the following eigenvalue problem;

;'_1 rak, mE,
!
mE =k (v--ly (8.1-25)
n n
i
r‘lEr r4|£1 _2
n

The eigenvectors V are the new principal axes, and the eigenvalues a’ are the
new principal indices of refraction. To be specific, we consider the case

when the electric field is in the (110) direction. Taking the field magnilude
as E, we have

E,=E~—E =0 (8.1-26)

Substitution of Eq. (8.1-26) for E,,-Ey, and E, into Eq. (8.1-25) leads to the
following secular equation:

I i I
= - - 0 —r E
n? a7 V2 T
1 1 1
0 Wt FrE =0 (8.1-27)

I I I 1
—rmE  —rE —_-1]

V2 & s} u n? n? |

The roots of this equation are the principal indices of refraction and are

given by
n.=n+ {n’r, E,

n,.=n-inr,E, (8.1-28)

n.=n.

The new principal axes are given by

xX=dx+ly—- —;z,

z

y=ix+iy+ —Lz. {8.1-29)

V2
] l

2= —x - —y.
20 V7
An amplitude modulator based on the foregoing situation is shown in Fig.
8.4. The phase retardation is

L
r= i—’rnlr‘l(ﬁ)lf. (8.1-30}
Table 8.1 summarizes the phase-retardation and clectro—optica} pro_pcrlics c_)f
43m crystals with the field along (001), {110), and (I 1 l? dlr_ecuons. Itis
seen that the maximum achievable phase retardation is given by Eq.
(8.1-30). The hall-wave voliage is given by

d A

=— (8.1-31)
oL 2y,
E I <i10>
<
Input (110} Quiput
beam 1
) 1 |
tnput y Output
polarizer polarizer

{crossed with respect
1o the imput polarizer)

Figure 84. A iransverse clectre-optic modulator using a zinc-blende-1 ype (43m} crystal with E
parallel 10 a cube diagonal ({110} direction),



Table 8.1.  Electro-optical Properties and Retardation in 43m {Zinc-Blende-Structure) Crystals for Three Directions of Applied Fiels

£ 1 (001) plane £ 1 (110) plane E L (111) plane
E
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