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ULTRASHORT PULSES IN FIBERS
A.Ya.Karasik

The development of optical fibers having losses of just a few
decibels per kilometer in early 70s initiated a qualitative Jump in
communication.The prospects of the data transmission with the rate of
some Gbit/s for the distance of 10-20 km without a retranslator caused
the real revolution in this branch of science and technigque all over
the world. However, as it turned out, the main problem at the creation
of superbroadband transmission lines is not the fiber losses, but the
effects of pulse broadening. It is known that the bit transmission is
realized by the pulse signals. The bit rate of transmission is limited
by the broadening of pulses which leads to their overlapping in time.
In a linear system the bit rate of transmission, hence the channel ca-
pacity of an optical fiber is limited by the dispersive characteristic
of the material and design of the optical fiber. "Nonlinear" lines,in
which the parameters of pulses depend on the radiation power, are also
considered in order to increase the bit rate of transmission.

In this lecture I shall describe some mechanisms of pulse broade-
ning in linear and nonlinear regimes.First of all let us consider the
important wavegquiding parameters of fibers and unique properties of
fused silica: which are the wide spectral range of transparency (0.4-
j.ﬂ um), the presence of ranges of positive and negative group velocity
dispersion in this region, the linear losses reaching 0.2 dB per km
and some others.

Linear Propagation of Pulses in Fibers

+he Gamssian pulse is usually chosen as a standard signal for

the analysis of the pulse broadening:
I(t) =I,expl-(2t/7)*] (1)

Here l} is the peak intensity in the maximum expressed in H/cm?, 2 is

the total pulsewidth at the level of the I;Ie » The law of the Gaussian
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here Z} and E} are the pulsewidths at the fiber input (2=0)} and ocutput
(z=1), (.'i is the pulsewidth determined by the concrete broadening mecha-
nisms.Or is the output pulsewidth when the input pulse has the form
of & -function, i.e. at fp<< 2;,2;

The top frequency of the pulse transmission determines the bit rate

of transmission at binary coding:

G— = ————*’ s ety {3)
z;\“!nﬂ
J is the relative overlapping of neighbour pulses. Por the certain se-
paration of signals y < G01 is usually chosen dfn0.01|'1/2=0.47).
We muet introduce the group delay of pulses when calculating the

pulse broadeningT =/ 115 . where zs is the group velocity.

V=G -k @

HeraJ3 ise the propagation constant of a mode,&/is the light frequen-
cy, € and K:2¥/4 are the light velocity and wave number in vacuum.

Now we have
T=f§¢%=£%’; (s)

It is convenient to introduce here the group refractive index

=F(/\/ef (7

For the normal fiber prepared for the communication lines with the

core-cladding refractive index difference of An=/- 2 we have

e =N "M-M"" M n)>‘%’
n_ N ! «
The nomalized effective refractive index of the linearly polarized LP mode is
£ = Blezhn )
He =N
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pifferentiating equation (6} and having in mind equation (B8} we get

equation (9)
ey =t/ + (Ve -0y S (9

The normalized frequency is
Vg
V= 5—- avns-nt {10)

where & is the radius of a core. The first part of eguation (9) charac~
terizes the material dispersion, the second part presenta the group
delay due to the mode dispersion. Physically the mode dispersion can
be explained as follows, For fhe monochromatic excitation at the mode
formation the whole number of wave vectors should be put between the
two core-cladding boundaries. The change of A results in a change of
the wave vector value,that is why we should vary the sliope of the beam
go that a whole number of vectors will again be put between the two
boundaries. The way of the beam and the mode delay are also changed

in this case. .

The derivative determining the difference of Aé/ froma/and A
is shown in Figure 1. Near the cutoff the group velocity equals that in
the cladding. At \/ increase the fields of modes are concentrated in
the core and the wave runs slower than the plane wave in the material
of a core. It 15 explained by the fact that it moves along the zigzaq
trajectory (A‘/)/V), At a significant increase of the normalized freq-
uency the velocities of waves approach asymptotically the value of

vi = ;‘CZ- (/Ve/—r/\{-_ ).

In a muttimode fiber at uniform excitation of modes the deviation
of delays AT is determined by the difference of the maximal and minimal
effective group indices AT=£AM//C. We can assume that Aﬂ(/-/‘{— N
Z /-2 and the real deviation is aAT=0.3€4n/c. For the typical multi-
mode fiber A/ =0.01 and A7 = 3 ns/km. In real fibers the modes of higher
orders experience additional radiation loss. The deviation of time

delays is also reduced because of the intermodal energy transfer.

’ . 4,
The value of 8 7 =3 ns/km corresponds to the bit rate of cnly 1.lixm8

bit/s per 1 km. (H.-G.Unger. Planar optical waveguides and fibers.
Ciarendon Press. Oxford, 1977).

For example, 1n gradient fibers with the parabolic index profile
the lengths of optical ways of different modes are equalized and the
difference AT is decreased. In gradient fibers the bit rate can reach
1 Gbit/s and more at the length of 1 km.

Let us how consider a single-mode fiber which exclude inter-

modal dispersion and allows to reach the record bit rates.

Single-Mode Fiber. Group Velocity Dispersion

For a single-mode fiber the group velocity dispersion (GVD) deter-
mines the rate of pulse spreading, and hence the bit rate. It can be
obtained by differentiation of Eq.(6)

Ne 4 e ”
dNes d’,J}E x2e?8L = cip (11)
dx W
The dispersion coefficient is defined as

a8 a
K;ﬁ=K§{+A"/V771& (12)

The first part of equation (12) determines the material dispersion,
which is the same for all the modes. The second part presents the wave-
guide effects. In Eq. (11_) a small term is omitted containing the deri-
vative da M/dk . This derivative determines the dispersion of the profile -
the dependence of the difference of group refractive indices on (W .
The dispersion ia small in silica glass having large window of tran-
sparency with the minimum of losses at A= 1.5 um (Figure 2). Pigure 3
shows the dependence of the refractive (h) and group W) indices on A .
Figure 4 1iliustrates the GVD dependence on A . The zero value of GVD
corresponds to the wavelength of Aa= 1.27 um for pure Sioz. At A< /.10
we have a range of a normal or positive GVD, and at A > Ap~ the range of
anomalous or negative GVD. An addition of dopants into 3102 results in a

shift of 29. An addition of heavy in comparison with Sio2 molecules
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{GeOZ) shifts A, into the long wavelength range, and an addition of
light molecules (8203) shifts it into the short wavelength range.

Figure 5 shows the dependence of the wavegulde dispersion on the
normalized frequency V' . At V> 3 this value is negative and patially
compensates for the material dispersion. At V = 2.4 the waveguide dig-
persion is of an order of 10—3 and it can be neglected if compared
with the value of dA/dk far from Ao .

In the vicinity of the waveguide contribution intc the disper=
slon value is higher and can shift the point of zero GVD. The digpersi-
on of a profile also becomes very important in the vicimity of As
and can shift significantly the point of zero GVD up to 1.5 um.

The dispersion coefficient is expressed in ps/nmxkm and the
broadening parameter in a fiber can be written as

aT=ipléan (13)

where A A 1is the spectral width of radiation expressed in nm. The ef-
fect of GVD can be very large., For example, a spectral transform-limited
pulse of 10 ps in width is hroadened by more than 5 times at propaga-
tion in 10 km Bingle-mode fiber.( = 15~20 ps/nmxkm in a normal
fiber at A = 1.5 pum).

At the propagation of a Gausgian pulse E,(f)"e)go[-z(t’/};:)}em(t.% 1‘)
in a fiber along % axis the pulse shape remains Gaussian, and its
duration Z", increases

2'22 =Zf +16 (ﬁ”z-/ro)z (14)
and its amplitude decreases as the ratio g, /&
At the digpersion length [4 the pulse is broadened by V7 times
-~
fd = ‘;‘2‘}1} {15)
Thus, if a 10 ps pulse is doubled in width at the length of 1 km, then
a2 5 ps pulse doubles its width after 250 m of a fiber. Thus, the
natural way to decrease the pulse broadening is to choose ﬂ cor-
responding to the zero value of GVD (ﬂp} . However, the pulse broadens
even at 2=/L, which is associated with the influence of the higher
order 6vD &% /Jw? . In this case the distance at which £ ig
doubled is proportional to Z‘Lj » In reality it is very difficult to
choose the source of radiation with A= Ao » Small deviations from Ap
{about 1%) deteriorate the bit rate by more than ten times.
For a definite length of the communication line we can achieve the
minimal output pulsewidth E"( varying the input pulsewidth. In this

case T:"=2\§ﬂ”/£ + and the pulse satisfying equation (15) appears to
be the optimal one. For the line under consideration the output pulse

6.
has the minimal width of Z;‘: 2V2 8718 and the maximal bit rate of
6 =4S/ \lEly = 45 l/m‘/ﬁl‘lga!n‘fl (16}

At A = 1.5 um, D = 20 ps/nmxkm, J = 0.01 and £ = 100 kn we have
#™**a 2.5 Gbit/s.

Nonlinear Pulse Propagation in Fiber

In 1973 Hasegawa and Tuppert proposed to use nonlinearity of the
refractive index of the fiber (Kerr effect) to compensate for the group
velocity dispersion. The honlinearity of the index can be written as:

n=pg+n ‘_T {17)
Hexe /) - the refractive index in linear aapproximation, /7, =

3.2x10"16 cmzlw - a constant for fused silica. In spite of the small
value of /9 , nonlinearity of » can be a powerful effect. The inten~
sityfcan reach the value of 1 megawatt per square centimeter at the
radiation power of 1 W in a single-mode fiber with the core area of
lo—scmz. The nonlinear phase shifts can be very significant at big
lengths of interaction of the radiation with silica. Different parts
of pulse experience an additional phase shift at the propagation of a
pulse with the phase Pff/-wl -k 2 in a fiber of length £ ( effect of
self-phase modulation (SPM}).

aRit)~ %Zlﬂ,ffﬁ (18)

The corresponding for A®/t) frequency shift g¢) () is proportional
to the derivative of the pulse envelope in time

a’atplt)‘____'_ 2 ,”‘ %ﬁ‘)

Ak){f‘l=--d—t—— {19)

As a result of SPM the pulse spectrum broadens, and the pulse
acquires freguency modulation (“chirp®). It follows from (19) that the
frequencies in the leading half of the pulse decrease (a Stokes shift)
and in the trailing half - increase {an anti-Stokes shift), (Figure 6).

Let us assume that a pulse at the propagation along the fiber
in the region of positive GVD acquires the chirp (Figure 6). When
the beam with the chirp falls into the delay line on the base of two
diffraction gratings (Figure 7), then “red" frequency components run
after the diffraction longer distance than the “"blue" frequency com-
ponents. And as a result of the compensation of the time delay between
these components, the pulse is compressed to the duration determined by
the conversed width of the spectrum after SPM. For optimal compression
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It is necessary to choose correctly the distance between the gratings.
These methods of compression are actively investigated in many labora-
tories all over the world. Nowadays the shortest pulse of &= 6 f8
(leo_lss) was achieved by this method. The compressed pulses can find
application in a lot of different fields of science and technique.

Different materials can be used as media with the anomalous or
negative dispersion, gases. 1iquids or a pair of diffraction gratings
among them.

At the pulse propagation in a fiber, when dispersion is negative
{ K< 0), the higher frequencies of the tralling half will overtake
the lower frequencies of the leading half. This pulse will be col-
lapsed in time. The evolution of the pulse envelope shape is governed
by the nonlinear Schrddinger equation

. 2 2
‘g?g*il%'g‘t%-f'%ﬂlﬁ'l’ﬁ.‘=a (20
It has been analytically shown by Zakharov and Shabat (Sov.Phys.JETP;:
v.37, 823, 1973) that equation {20} for k¥ < 0 has soliton soluticns
for the input pulses of a hyperbolic secant shape, and their amplitu-
des are integral multiples of the amplitude of the fundamental soliton

- /
E(2-97)~ ZE‘:‘/M"%, Nsech (:Trt',) {21)

at,= 0.568 £,, i, - the pulse width, A - an integer. AtA/ = 1 we have
the solution for a fundamental soliton. A fundamental soliton i a pul-
se which propagates in a losslesa fiber without the evolution of the
envelope shape. In this case the frequency shift due to the nonlinear
change of the refractive index is exactly balanced with that which is
due to the group dispersion.

At integers A= 2,3, ... (W=12/81 1/ a multisoliton pulse
experiences periodic evolutions along the fiber length and periodical-
ly restores its shape (Figure 8). The soliton period is

2«2
°= 21"l (22}
The peak intensity corresponding to the fundamental soliton is
[=
= ?ﬁ:ﬁ; 23)

These formulas are very important for practical estimations. In 1980
L.F.Mollenauer et al. (Phys.Rev.Lett., v.45, p.10%5, 1980) for the
first time experimentally investigated solitons in single-mode fibers.
They used the pulses of 7 pa in width at A = 1.55 um of a godium

8.

chloride crystal colour center laser. According to (22) and {23}
the power of the fundamental soliton R, ~ K”li‘,z . In our case,
if take into account the fiber parameters and O = 15 ps/nmxkm,
fp=1 W, For a 1 ps pulse the power P, 18 essentially higher {(about
50 W). It is clear that for communication the problem is the crea-
tion of esemiconductor lasers with the pulsewidth of £ =1+7 ps
and the peak power of about 10 W. (We must take into account the fiber
coupling efficlency as well}. For a pulsewidth of 7 = 30-35 ps the
power A, will be 0.04 W at the same GVvD. On the other hand, we can
shift the zero GVD, for example, to A = 1.5 um by the variation of
the refractive index profile. In thies case at the reduction of X7 122)
we can achieve the power of about 1 mW for 1+10 ps pulses as well.
These values are quite real for the quickly developing semiconductor
technology.

when nonlinearity dominates over the dispersion broadening of the
pulse, muitisoliton regime of pulse propagation can be usged in com-
munication ilines. In this case the fiber length should equal the
soliton period 2Z, (22) (Figure 8). However, it is necessary to con-
duct experimental verification of the restoration of a multisoliton
pulse shape at a few periods 2, . It ghould be noted that for the in-
put pulses of width €, = 30 ps and close to zero GVD the period of
a soliton can reach tens of kilometers. It is theoretically shown that
the bit rate can be made an order of magnitude better than that of the
best linear communication lines utilizing the wavelength at the zere
group veloclty dispersion.

Nonlinear regimes of the pulse propagation in a fiber give rise
to a new important branoh of sclence in the range of the ultrashort
pulse formation. it is clear from Figure 8 that we can get the shor-
test pulse if we cut a fiber in the point of the quarter soliton
period { 2/% = 0.25), that is in the point of the maximal compression.
The degree of compression will increase with the increase of the BO-
liton order/\/=f5fﬁ:. At large A theory gives the maximal degree of
compression

. 41NV (24)
T ’

Soliton compression makes it possible to obtain 30-100-fold comp-

ression and to pass from pico-to femtosecond range of the time

scale. Such investigations are conducted in USA(BTL), England and
USSR (General Physics institute, Academy of Seiences of the USSR).
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High energy in the broad wings of the compressed pulse can be conside-
red as one of the drawbacks of the s0liton compression {(gee Figure 8).
It is aesoclated with the following fact. The "ehirp® due to SPM is li-
hear in the central part of the pulse and changes 1its 8ign at the pulse
wings (Figure 6). It results in the compression of only the central
part of the pulse. At A/=20 according to the calculations the degree
of compression equals 82. But the compressed pulse will have only 17
percents of the energy, and 83 bercents will contain the pedestal.

The method for the pulse compression without a pedestal was
proposed and realized in the General Physics Institute of the Academy
of Sciences of the USSR. This method introduces into the dynamics of
the pulse propagation one more nonlinear proeess -that is stimulated
Raman scattering.

The investigations of nonlinear reqimes of pulse propagation in
fibers allows to discover a great number of nice and novel effects. Un-
fortunately we can not coneider all these effects in this short lecture.

The main problem for the soliton application in communication is,
if it can exist in long fibers of tens of kilimeters in length and with
non-negligible losses ? In the best fibers the losses are about 0.2
dB at the wavelength of 1.5 um. And the losses in 15 km-fiber are
3 dB/km, that is two times lower in intensity. The theory has examined
the effect of a loss term. The loss term was added to the SchrSdinqer
equation and treated as perturbation.It was shown that if the loss rate
is not too great, then a soliton can be maintained. For example, for
the losses of 3 @B the pulsewidth will increase by a factor of two. But
if the losses are higher,a fundamental soliton can be destroyed.

There are some possibilities to amplify solitons in fibers with
non-negligible losses. These possibilities are provided by the amplifi-
ers on the base of semiconductor diodes and, for example, on the base
of Raman ampiifiers. Now I would like to remind you the principles of
operation of a Raman amplifier. If we introduce, for example, in a
Bilica fiber two laser frequencies Wy andw),, and if &} is more thand) |
and if the differenceu&-u& equals the optical phonon frequency
W) -w) =QJ*), then we shall have Raman amplification of a wave at the
Stokes frequency Lo& ¢+ which is described by the following equation

I, =T, exp(Z,§-)¢ (23)

Here ? is the Raman gain, L is the pump intensity at the frequency

. 10.

Wy, ¢ is the length of a fiber, & is attenuation in cm~! and I, is
the intensity of the prohe wave at the Stokes frequency ), . Fused
silica has a very nice, very broad spectrum of Raman amplification.
This spectrum is determined by the overlapping of some inhomogeneously
broadened phonon resonances and spreads practically from zero up to
more than thousands of cm'x (Figure 9). We can tune the difference of
two frequencies in a wide range and can have effective amplification
at a small pump power and large lengths of a fiber. Atf,il =16 7,
equals_]; - The process of amplification will be effective when amplifi-
cation exceeds losses I,! >ct. In BTL L.F.Mollenauer et al. demons-
trated the compensation of loss by the Raman gain at a soliton propaga-
tion in a long fiber. The distortionless propagation of a 10 ps pulse
{fundamental soliton) at A = 1,56 um along 10 km of a single-mode fiber
was demonstrated {(Opt.Lett., v.10, p.225, 1985},

In our laboratory in 1985 we proposed to use Raman amplification
for the formation of Raman solitons at a Stokes freguency with a sing-
le-frequency pump wave. (JETP Lett., v.41, p.294, 1985; v.39, p.691,
1984} . Now we shall consider the mechanism of this complicated process.
At the propagation of a short pulse along a single-mode fiber in the
region of negative GVD its spectrum is broadened due to S5PM. We have a
“chirp®-dependence of a frequency shift in time (Figure 10).

Some part of the broadened spectrum (the part of the low-frequency
spectrum) falle in the range of Raman amplification of silica fibers,
which spreads practically from zero. On the Stokes frequencies we have
nonlinear siit which selects pulses shorter than the input pulse.

Thus a pump pulse itself forms a sufficlently intense probe signal at
the Stokes frequency. We called the proposed mechanism as a process
of Raman amplification from the self-induced by means of SPM probe wave.

Recently this process was investigated theoretically in our lab-
oratory and in BTL (USA).

In the range of the negative GVD the Stokes low-frequency pulse
has the lower group velocity than that of the pump pulse. In the pro-
cess of formation and propagation of the Stokes pulse it begins to de-
lay relatively to the pump pulse, and effectively amplified in the
field of nondeplated pump.

I have already told you that at the multisoliton propagation the
compressed pulse has a high energy pedestal. In the regime under con-
sideration the Stokes amplified pulse “eats up" the behind of the
pump pulse pedestal.As a result, we can obtain a pedestalless powerful
short compressed pulse at the Stokes frequency, This model was confir-
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med by the experiments carried out in our laboratory.

In our experiments we used a parametric oscillator which generated
30 ps pulses tuned in the range of 0.74+ 1.9 um. As a result of the
described nonlinear interaction in a long single-mode fiber, at the
output of a fiber we selected femtosecond powerfull pulses without a
pedestal. From 30 ps pulses with the power of about 1 kW we obtained
short pulses with the width of 100-200 fs and power of about 50 kW. We
could tune these pulses by means of tuning of the pump pulses in the
range from 1.5 to 1.65 um.

It is possible to form optical solitons in multimode fibers. These
solitons have theoretically investigated in some works by Schvartsburg
et al.(Sov.Quant.Electron., v.10, p.1059, 1983) and some of italian
scientists (Crosignani B., D1 Porto P., Papas G.N., Opt.Lett., v.6,
p-329, 1981; v.6, p.61, 1981).

But solitons in multimode fibers were not investigated experimen-
tally. It is very interesting to discove experimentally these solitons.

And now I would like to discuss an important problem in the forma-
tion and measurement of ultrashort pulses with a "chirp". This problem
deals with the radiation spectral filtering. The pulse frequency spect-
rum after SPM is given by the Fourier transform of pulse amplitude:

-t . . _
Flw) =t § Prtf*e et (26)

Here P (£} 1s the pulse power and &, 18 the central frequency of radia-
tion. AP (¢) is the phase shift (18). _

The frequency shift can be written as Au)/t);%;@}.—-xﬁ:} %{—ﬂ
Figure 11 shows the spectrum of a Gaussian pulse at AP = 66. It is
clear from this expression that the maximal frequency shift into the
Stokes and anti-Stokes spectral reglons can be achieved in the leading
and trailing parts of the pulse in the inflection points of its envelo-
pe. In these points the "chirp® is absent (da(t)/dt = 0). If we rea-
l11ze spectral filtration of the extreme line in the spectrum, then an
unmodulated pulse at the frequency shifted relatively to should cor-
respond to this line. This assertion is confirmed by a simple modelling
on a computer. It is clear from Figure 12 that at the spectral filter-
ing of the extreme Stokes (or anti-Stokes) line in the leading (or
trailing) fronts of the initial pulse a short spectrally-limited pul-
se 1s formed. The power of the selected pulse equals the power of the
initial one. It should be noted that at the reduction of the slit width
inside the extreme line the selected pulse remains spectrally-limited.
At the increase of the slit width when some other lines are covered
the selected pulse broadens and the time substructure emerges.

. 12.

At the increase of the unput pulse power with the growth of the pha-
se shift, the duration of the selected pulse at optimal filetring dec-
reases. For the values AP =5, 60 and 250 the ratics 2,/¢ equal 1.8;4.7
and 7.5, respectively.

These calculations are confirmed by the results of our experiments.
(JETP Lett., v.44,p.155, 1986). Figure 11 shows the spectrum of a 50 ps
pulse at the output of a 0.5 m-long single-mode fiber.(We had the radi-
ation of a g@rnet neodimium laser with A = 1.06 um). At the iatput power
in a fiber of about 20 kW, which corresponds to the phase shift of a® =
66,the theoretical spectrum agrees well with the experimental one.

At the aoutput the collinear radiation broadened in a fiber at SPM .
is expanded into a spectrum by a diffraction grating. After the grating
the beam acquires an elliptical form. For the restoration of the form
the beam returns to the grating. Then by spatial filtering we can select
th: extreme {(or some other) part of the beam. Using this method
we have selected 10 ps pulses from the initial 50 ps ones.

By changing the phase shift value A® at the variation of the input
power or the length of the fiber we can tune the wavelength of the
selected pulses. The frequency shift i8 AW =¢gSAaw,aP .

At the generation of a second harmonic in a nonlinear c¢rystal the
width of the phase synchronism of the crystal is used as a spectral
slit. The width of this slit may be varied over wide limits by the cholice
of different type crystals and by variation of the crystal length.

The method for the generation of a second harmonic in a nonlinear
crystal is widely used for the measurement of the ultra-short pulse
duration. Taking into accound the data mentioned above, 1t 18 necessary
to choose correctly the type and the thickness of the crystal, because
it can distort the measured pulse duration.

The method of spectral filtering is very useful for the investiga-
tion of different aspects of the spectral-time conversiong and for the
control of the temporal characteristics of the pulse radiation.This
method is discussed in the following papers: Nicolaus B. et al..Opt.
lett., v.8, No.3, p.189, 1983; Kitayama et al. Appl.Phys.Lett., v.45, No.6,p.838
1984; Herlitage J.P. et al,, - " -, v.47, P.87,1985; Weiner A.M. et al.,Opt.Lett.
v.11, No.3, p.153, 1986; Dianow E.M.,Karasik A.Ya. et al. JEIP Lett., v.40, p.148,
1984; JETP lett., v.44, p.155, 1986, JEIP, 1985.

Conclusion

We have discussed the physical aspects of some linear and non-
linear regimes of the ultrashort pulse propagation in silica fibers.
we have considered the soliton regimes of propagation which can find



\3

in the future application in superbroadband transmission lines. These
regimes can be used for the pulsewidth tuning and for the formation
of powerful femtosecond pulses, which is very important for the inves-
tigation of ultrafast phenomena in different branches of science and
technique. Further prospects of these investigations are assoclated
with the perfection of the Plcosecond diode lasers and photodetec-
tors, with further investigations of a number of problems, as well asg
with the beginning of the experimental tests.
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