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1. Low Energy Electron Diffraction Experiments

The essentlal elements are: an ultra high vacuum chamber to
preserve sutface cleanliness, an electron gun to preduce a-
collimated beam of electrons in the energy range 0 to 500eVv,
a crystal holder and manipulator, and some means of

observing the diffracted electrons, typically a flucrescent

screen. Figure 1 shows a sketch.
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Figure 1 A schematic LEED experiment. S is a fluocrescent
screen, Gl' GZ' are grids.

The major difficulty is common te all surface experiments,
that is to keep the surface clean. The UHV chamber will
normal contain an array of techniques for cleaning the
surface (provision for heating the sample, ion bombardment)
as well as some means of detacting impurities at the
surface, usually by detectiop of Auger signals from adsorbed
atoms. LEED is very sensitive to the cleanliness of the
surface and small amounts of contaminant can produce quite
spuricus results. Experiments done on clean, perfect,

surfaces can produce a large amount of structural
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information of high precision. Obviocusly it is only possibie
to produce precise data for surfaces which are well defined
in the first place.

The state of mechanical perfection of the surface can
conveniently be monitored by the LEED experiment itself.
Strangely enough LEED can be very tolerant of mechanical
imperfections, perhaps bhecause only perfect areas of surface
contribute to the sharp diffraction features which are
typically measured.

There are two sorts of observations to be made with
LEED. The easiest sort is simply to take photographs of the
screen. If the surface has been well prepared and is in a
well ordered state, it will behave just like an optical
diffraction grating. The incident beam is diffracted into a
discrete set of beams. These beams can be displayed on a the

fluorescent screen shawn in figure 2.
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Figure 2 a) showing the diffraction pattern of an incident
beam into a series of discrete beams, b) a plan view of a

typical pattern made on the fluorescent screen by these
beams .

The resulting pattern gives information about the unit cell

of the surface structure. Sometimes in simple cases this can
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be inferred from the bulk structure of the crystal, in other
cases the surface may form a new structure due to
interactions between adsorbed atoms, or instabilities of the
clean surface itself. Such observations provide important
information about elemental surface processes which has
enabled to greatly to expand our understanding of the
surface in the past few years.

The more difficult sort of experiment to make is to
observe the intensities of the diffracted beams. Whereas the
spot profile on the screen tells us about the size and shape
of the surface cell, the intensities are far richer in their
information content: they tell us about how the contents of
the cell are arranged. For example if we wish to know the
positions of atoms at surfaces we must measure LEED
intensities, not merely the positions of the spots.

In the early days of the subject diffracted intensities
were measured by catching the electrons in a device called a
Faraday cup. This was accurate, but very slow. Lacating
where the beam was presented difficulties that greatly taxed
the patience of the experimenter and only very limited
amounts of data have been acquired in this way. An easier
but less accurate method is to measure the intensity of
prhoto- luminescence of the spots on the fluorescent screen.
Here one can actually see what is being measured and guide
the measuring device by eye. Nevertheless e ron this n. thed
is time consuming when we wish to acquire tlie very large
datasets needed for really precise work. It also lacks
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sensitivity requiring large currents in the incident
electron beam which can cause problems when chemicalliy
delicate species are present on the surface: the molecule 20
can be desorbed and decomposed by an electron beam.

The most sophisticated solution to these problems
developed so far is the "DATALEED II™ apparatus developed in
Erlangen, West Germany, by Miller and Heingz. The screen
image is amplified by an image intensifier and digitised in
real time by a TV camera working in cenjunction with
sophisticated electronics. Having acquired the data in
electronic form it can be processeq by computer so as
rapidly to extract the information required.

With this apparatus very low beam currents can be used
and data acquired in seconds rather than hours. It will be
essential to the feasibility of the new methods for

extracting structural information from diffraction data.

2. Typical Experimental Patd

Figure 3 shows a typical LEED measurement of the I(E}
spectrum of one of the diffracted beams from a copper
surface. In principle the intensities could be measured as
functions of other variables such as the angle of incidence,

but this is rareiy done.
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Figure 3 Intensity of the 00 beam from a copper {(001)
surface as a function of energy. The incident beam his the
surface at 3° from the normal. Data were taken by Anderscn
on Goteborg. Vertical bars mark the positions where we would
expect to see peaks on the basis of Bragg's law.

Several points are worth noting. First, the I(E) data are
highly structured. Think of the curves from an information
thecry point of view: how many different numbers would you
need to guote in order to describe the curves?, Well, I can
identify something like 11 peaks or shoulders in the data.
For each of these I would need to specify the energy and
intensity, 22 numbers in alj. That is a great deal of
information content. Furthermore we can easily generate many
more curves py looking at different beams, or by shifting
the angle of incidence. This is the special power of LEED:
it has an extraordinarily high information content. Even for
the copper (001) surface an investigation of atomic
positions will involved specifying the position of the
second layer relative to the first (one atom per unit
surface cell), and the third relative to the secdond.
Sensitivity to the fourth layer is probably not great. Thus
we need information on 6 independent coordinates, 3 for each
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displacement. Also we would expect to double check on each
coordinate, hence the 11 peaks are only just enough to give
a determination of the structure of this simple surface of

clean coppert

3. Theoretical Problems

The experimental data contain information, but how can we
extract that information? Somehow we have to relate the raw
data, peak positions and intensities, to the arrangement of
atoms at an atomic level.

The intensities are generated because electrons scatter
from atoms in the surface. The electron wavefunction at the
detector is given by a sum over all possible scattering
events that the electron can make within the surface. Each
scattering path will change the phase of the wavefunction by
a different amount depending on the path length and the
wavelength of the electron. As the energy is varied the
wavelength changes and the intarference conditions change:
hence the succession of maxima and minima in figure 3. The
problem for interpretation of the data is that the
scattering paths contributing to the intensities are rather
complex. In general an electron will scatter off more than
one atom before it leaves the surface. This multiple
scattering problem held Up the development of LEED until) we
had developed an adequate thecretical base for calculating
its effects. Today the theory is very well understood and we
have access to far more sophisticated computers than was the
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case only 10 years ago. The theoretical calculations needed
interpret fiqure 3 in terms of locations of copper atoms can
now easily be done gn a personal camputer costing less than
$10400.

What ingredients control this theory? Again figure 3
proves to be a mine of information. Notice that the
structure in the curves tends to be rounded: none of the
peaks is very sharp. In fact the most narrow peaks seen have
a width given by

&6E = BeV, {3.1)

This uncertainty in the energy of a feature we can relate by
fundamental quantum mechanics to the lifetime of electrons
in the surface. The uncertainty principle tells us that

§E >= h/T. - (3.2)
Taking the narrowest peaks we deduce that the lifetime of
electrons is

T s h/6E = 10°'% seconds, (3.3)
dAuring which time a 100eV electron travels about SA.

This short penetration depth explains the surface
sensitivity of electrons with energies of the order of
100ev. It is just enough to sncompass the first few atomic
layers of the solid in which all the interesting surface
effects on atomic structure usually take place,

Now let us turn our attention to the intensities.
During time t the atoms have to scatter the electron

strongly enough to give jintensities of the order of 1%. Let



the rate of back- scattering be given by a matrix element

|Tb|‘/h, then the scattered intensity will be given by,

|T,.]2.t/h IT,|2/6E = 0.0l (3.4)

pl*
hence |Tb|2 = 0.01 &E = 0.1 ev. {3.5)
One further important parameter is missing from our picture.
Scattering of electrons by atoms is by now means isotropic.
The atoms are much better at scattering the electrons in the
forward direction. Crudely speaking we can distinguish
between forward- and back- scattering by defining a separate
matrix element for forward scattering, IT¢)?. I have already
remarked that the electron scatters from several atoms
before it leaves the surface. How do I know this? If the
electron only scattered from one atom, ie scattering was
very weak, then we can take over the theory used to describe
Xray diffraction. Here Bragg's law tells us that weak
scattering waves diffract from planes of atoms. In the case
of figure 3 we are observing the 00 beam from a copper {((001)
surface, and the relevant planes are the (001) planes.
Bragg's law predicts peaks when the condition,

wavelength = 24 cos(e}, (3.6}
is satisfied, where 4 is the interpianar spacing and @ 1is
the angle of incidence cf the waves measured relative to the
normal to the planes. In figure i I have marked where
Bragg's law would predict peaks and it 1s evident that there
are many more peaks than are predicted. The only way in
which Bragg's law can break down is if the conditlions for
its validity are violated: the scattering cannot be weak.
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We have demonstrated that the back scattering matrix
element is in fact small relative to the lifetime of the
electron, therefore we can expect only one back scattering
event in general. Any multiple scattering must be due to
forward scattering. Such this must oceur in order that
Bragg's law is violated, we deduce that,

A = BE =  gev. (3.7)

4. Kinematic Theory

So much for estimates of the nature of electron scattering
at a surface. Now let us try to do a better job, first by
concentrating on how a single atom scatters an electron.
Later we shall discuss the multiple scattering problem.
units
to simplify the writing of equations it is usual to adopt a
simplified system of units. I shall use atomic units in
which,

h = el = m = 1. (4.1)
In this system the units work out as follows:

unit of energy = 1 Hartree = 27.2ev (4.2)

unitv of length = 1 Bohr radius = 0,52924  {4.3)
and the sSchrddinger equation becomes,
1

-— Vid + Vo » Ed. (4.4)
2

Conventionally we divide the potential into two parts,
V(r) = v, o+ v (r) {4.5)
where the constant potential,
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v = v +iv

o or oi’ (4.6)

comprises a real part which represents a shift of all
electron energies in the crystal relative to the vacuum, and
an imaginary part which represents the lifetime of the
electron inside the solid. Typically,

Vor = -10eV, Voi = -4eV, (4.7
In fact Vo is only constant inside the surface, outside it
gradually falls away to zero. However it does so very
smoothly and it is usual to neglect any reflection from this
step in potential] at the surface. Its effects are confined
solely to changing the wave vector of the electron inside
the surface,.

That an imagihary potential reproduces the effect of
tinite lifetime can be seen as follows: neglect V, in the
Schrédinger equation, Then we can solve for ¢ in a constant
complex potential,

& = exp({iK.riexp(-iEt) (4.8)
so that,

{K|2 + Vor * vy, = E. (4.9)
Evidently if we choose K to be a real vector, then E bec¢omes
complex, so that

|@it)j2 = exp(2Im(E}) = exp(zvoi), (4.10)
and since Voi is negative,-this represents decay of ¢ with
time. Alternatively we may reguire E to be real (it may be
fixed by voltages in the electron gun, for example) in which
case we are free to choose the companents of K to be

complex. If we define X, ¥ axes to lie in the surface plane,

-11-

and the positive z axis to point into the surface, then we
can only choose the z component of K to be complex: complex
Ex would result in the wavefunction growing unphysically to
w at +/-x = », and similarly for Ey. On the other hand we
are free to choose K, to have a positive imaginary part so
that ¢ decays away inte the surface. Thus absorption can
result in a wavefunction that decays in time, or in space
depending on the experimental circumstances. In a LEED
experiment the energy is fixed to be real in the electron
gun, therefore from (4.4),
kK, = +J/[2E - V.
The x and y components of K are fixed by the direction of

-2V, - K& - 5;]. (4.11)

the incident beam.

Next consider the atomic part of the poetential. It is
usually a good approximation in a LEED calculation to take
this to be spherically symmetric., Its effect is to sScatter
the wavefunction ¢ into a different state so that far
outside the range of Va itself we have to add corrections to
our wavefunction to take account of the scattering by an
atom located at Rj‘

P' = exp(iK.r) + f(GJexmiE-Ej*iIEIIL-BJ-WIIEll{*lel-

(4.12)
where @ is the angle between K and r. The scattered wave is
an outgoing spherical wave centred on the atom, and whose
amplitude depends on the direction in which it is scattered.
£18) will be large for forward scattering, and small for
backward scattering, as we have discussed. It is usual to
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express the scattering factor in terms of entities, 61,

called phase shifts:

£(8) = 4n|k|!

o0 +1 - .
150 milexpualmn(alj 1-1)“‘!1mt51v1_m(£) (4.13)

where Y1, 15 a spherical harmonic, and i denotes the angular
coordinates of r.

In LEED théory we usually think of a surface in terms
of layers of atoms, each laver parallel toc the surface, and
the scattering from the surface as a whole is built up in
step wise fashion: first considering the individual atoms,
next the layvers of atoms, and finally the combined effect of
the layers is calculated.

- Suppose that we have a complete layer of atoms, all of
the same type, spaced on a Bravais lattice defined by,
gj = mia o+ njg. (4.14)
Then the wavefield corrected for the effect of the layer

scattering can be written:

®'' = exp(iK.r)
+ 5 Mk T explik.R. + ik’ . (r-R V). (4.15)
LMk K.R, K =R ), .
where M K+/_,K = 2mi K .
(_g K) ni f(ng/[A“gH_gz]], {4.16)

A is the area occupied by each atim in the layaer, e9 is the
angle through which the qth beam is scattered, and the

Superscript +/- refers to whether the relevant beam has been
Scattered to the +z or -z side of the layer. Note that, now

W& are scattering from a pericdic object, the scattered
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amplitude has the form of a discrete set of beams defined by
the reciprocal lattice vectors, g- These in turn are defined

in terms of the unit cell:

q = ha + kB, (4.17)
n
where A = —_—— (by, -bx), {4.18)
{axbY - bxay)
2n
and B = (-a_, a_). (4.19)
= " Y X
(axby bxay)
The wave vectors of the scattered waves are given by,
+/- -
[Eg L, = Ke + 4. (4.20)
+/ -
= + .2
[K—a/ ly Ky + 9y (4.21)
+ = — - - - -
[59 1, = +/-JI2E v, (1_»(_Y + gy)’ (Ky + g,)%].

(4.22)

Equation (4.16) is an approximation to the exact
expression for the layer scattering. We have omitted to take
account of the multiple scattering terms. However they enter
a5 corrections to M, and the general form of the Scattered
wave is retained even in the multiple scattering regime.

Equations (4.15) and (4.16) can be simply interpreted
as follows: in the single scattering approximation, an
ordered array of atoms results in the scattering directions
being quantised; the amplitude of waves in each quantised
direction being given by the atomic scattering factor for
that direction.

Next we add together scattering from several layers to

Calculate the scattered wavefield just outside the surface.
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We assume that layvers are equally spaced and that no

multiple scattering occurs between layers:

R, = nc, ’ (4.23)
and ¢''' = expl{iK.r)
+ £ L M{K_,K) exp(iK.R_ + iK_.(r-R_}),
n=0 g 4 n . n
= iK.r) + iK_.r), (4.24)
exp(ikK.r) : Og exp(l_g r
MIK ,K)
where L ‘? = (4.25)
1 - (K - K ).c
expl(i(K Kgl-<

Expressions (4.24) and (4.25) constitute the so called
kinematic formula for diffracted amplitudes. It contains no
multiple scattering at all and therefore rarely represents
an accurate account of a realistic situation. It does
illustrate some interesting aspects of LEED which do not
depend on multiple scattering, Figure 4 shows the kinematic
formula evaluated for the (100} surface of a simple cubic

crystal using typical values of the parameters:

\' = -0.5 Hartrees, (4.26)
or
Voi = =0.15 Hartrees, (4.27)
¢ = (0,0,n) Bohr radii, (4.28)
K, = a, Ey = 0, (4.29)
g‘X=O' HY:Or 14.30)
-15-
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Figure 4. Diffracted intensity, l@onl‘, calculated in the
kinematic approximation assuming constant atomic scattering
amplitude and plotted against incident energy for a simple
cubic crystal. Note the strong peaks near the Bragg
diffraction conditions.

This simple model reproduces peaks of the correct sort of
shape and width. Including the proper atomic scattering
factor would give roughly the right intensities, provided we
correct them for thermal vibrations, a topic which we shall
not have time to treat here. We can also see from (4.25)
that the peak positions are determined by the energy and the
interplanar spacing. This glve the structural sensitivity we
seek. Increasing the spacing between planes moves the peaks
to lower energies. The shape of the peaks is modified if
each pair of planes has a different spacing: in this way it

is possible to resolve all relevant inter planar spacings.

5. Multiple Scattering

This subject i1s a technical one and those interested in
making detailed calculations should read one of the relevant

texts on LEED theory. The underlying principles can be

_16_



demonstrated by a one dimensional model. Take a 1D array af

atoms: figure 5 shows a schematic picture of the potential.
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Figure 5. A one dimensional potential in which an electron
may move. Amplicudes of forward and backward travelling
waves between scatterers are indicated.
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We shall assume that if a wave,

expl+ik{z-nc)), z < nc, ) (5.1)
is incident on a layer located at z=nc¢, then the transmitted
and reflected waves are respectively:

t expi+ik(z-nct), z > nc, (5.2)

r expl(-ik{z-ncli), z < nc. (5.3)
Correspondingly if a wave,

exp(-ik({z-nc)), z > nc, {(5.4)
1s 1ncident on a layer located at Z=ne, then the transmitted
and reflected waves are respectively:

t expi(-ik(z-nc)), z < nc, {S.5)

r exp(-1ki{z-ncl}, z » nc. {5.a)
For simplicity we have assumed that for each uf the two
different incident waves, the relevant transmission and
reflection ccefficients are equal. In general this is not

true.
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Transfer Matrices

We are now in a4 position tc show how to calculate the band
structure of the system. Bloch's theorem tells us that if
the system consists of a set of identical objects, equally
spaced, then the electron wavefunctions can be classified by
a4 wave vector, K. In this instance, between layers n-1 and n
we have forward and backward waves of amplitudes a;/-. and

+

between layers n and n+l waves of amplitudes aniz.

theorem says that we can find solutions of the Schrédinger

Bloch's’

equation which satisfy

a+ = expliKc) aﬁ
’

ntl {5.7)

a =
n+1

exp(ike) ag (5.8)

We can calculate the wave vector K from the scattering
properties of the layers. Using equations {5.1)-(5.6) we
find the following relationships:

+ = exp(+ikc) ¢ a+ -

n + r a (5.9)

n+l n+l
a T expltike) tap,, . o4 (5.10)
n n
Defining,
c' = exp(ikc) t (5.11)

and we can rearrange these gguations, writing them in matrix

form to give:

+ +
1, -r a t', 0 a

o+l S n (5.12)
0, ur an+l -r , 1 a,

and matrix inversion leads to,
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r 1 r
a+ l-r2/t'3, r/t! a’
n+1 = n (5.13)
- - ' t!
a1 r/t . 1/ ay

Substituting for the left hand side using the Bloch

condition from (5.6) and (5.7),

1-r3/e'2, r/t'||a
exp(iKe) . (5.14)

-/t . 1/t ]ia

210+
21D+

we see that the band structure, that is to say exp(iKc), can

be found from the eigenvalues of the transfer matrix,

l-r2/t'2, r/t*
T = . (5.15)
-/t . 1/t
The most general way of sclving the problem of
reflection from surfaces involves using the eigenvectors of
the transfer matrix, ie the Bloch waves. Here are the rules
by which the calculation is made:
i) solve for the eigenvectors of the transfer matrix:
there will be twoc of them:
+ - + -
[bl'bll‘ ang [b2'b2]’
ii} chocse the eigenvector with net current flowing into
the the surface, let us say gl:
+ -
- F
k (bl2 b1 y > 0,

i1ii) the reflection coefficient is then given by,

+

R = b /bl'

1
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Rule i} simply states that the wavefunction inside the
surface must solve Schrédinger’'s equation. Rule ii) means
that the wavefunction must not correspond to any sources of
current buried inside the surface. This leaves a wavfunction
corresponding to an externally incident wave prlus a
reflected wave.

This general method is rarely used in prgctice and
simpler methods are used. the most popular of which is the
"layer doubling method". It works like this: .a single layer
has reflection and transmission coefficients,

t(1) = t', r(l) = r. (5.16)
Taking two layers and calculating the scattering from the
pair gives for the combined transmission coefficient,

t(2) = t(l).t(1) + tili.rzlll.ttl) + t(ll.r4l1).t(l)

e e® e + oL (5.17)
The terms in this series can be interpreted as follows: the
first term describes transmission through both the layers;
the second term corresponds to transmigsion through the
first layer, reflection from the second, another reflection
from the first and finally transmission through the second
layer at the second attempt. This is what we mean by
multiple scattering. The series is a simple geometric series
which can be summed to give,

t(2) = t3(l)/(1 - £2(1)). {5.19)
Similarly the combined reflection coefficient of the pair of

lavers is given by,
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r(2) r{i) + t{l).r(l).e(1) + t{i).22(1).t(1)

v otii).ri(1).e(1) +

r{l) + £2(ly.c(1)/(1 - r2ily). (5.20)
We can repedat the process to calculate t(4) and r(4) from
t(2) and r{2), doubling the number of lavers each time. In
this way we can easily find the reflection coefficient of an
effectively infinitely thick pile of layers representing the
surface. In practice 8 layers are usually enough, though 16
may sometimes be needed.

These methods have been described for a simple one-
dimensional example, but they can be generalised to real
surfaces using the same principles, the only difference

being that t and r are matrices.

.
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