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1. INTRODUCTION

One of the themes with the present "Spring College in Condensed Matter” is the wily
the basic interaction potential for adparticles physisorbed and chemisorbed on solid
surfaces relaies (o the dynamics of adsorbed particles. In this set of lectures we will iy
to make this connection in some simple cases.

We will mainly treat the situation with a single atom adsorbed on the surface, but the
extension (0 finite coverages will be discussed. Most of the theoretical nudels presented
here can equally well be applied to the adsorption-desorption problem and they may
also serve as o starting point to reat chermical reactions catalyst by a solid surface. The
restriction to classical mechanics for the motion of adatoms are often natural, but in
connection to diffusion of hydrogen we will comment on possible quantum effecis. We
will assume tha the substrate form a perfect periodic lattice neglecting all defects, steps,
polycrystalline effects etc. In order 10 obtain a detailed microscopic understanding of the
dynamics simple and well defined models must be used.

The lectures are organized in the following way. In the first part we discuss two
different phenomenological ways to treat surfuce diffusion. In Sec 2 jump diffusion
models are presented and in Sec 3 models where the continuous motion of the adatom
or adatoms are considered. The second pan of the lectures are devoted 10 the
microscopic basis for ihese two different kinds of models. In Sec 4 we derive and
discuss the microscopic expressions for the rate constanis introduced in connection o
the jump diffusion models and in Sec 5 the microscopic basis for the mexlels based on
the continuous motion is presented. Both in Sec 4 and in Sec 5 we will discuss actual
numerical calculations where the aim 15 10 determine dynarmucal parameters from the

basic interaction potentials.

2. JUMP DIFFUSION MODELS

Due to the periodic arrangement of the substrate particles, adsorbed atoms
experiences a periodic potential along the surface. [n many cases the aclivation energy
for diffusion, i.e. the difference between the maximum and minimum of this potential
energy along the surface, is large compared with the thermal energy. This implies that
the adatoms are mainly localized at different surface lautice sites and the change of sites
and in concequence the diffusion becomes thermally activated. The slow diffusive
motion can be expressed in terms of the rate of change of the probabitities 10 be located
at different sites. This is the basis for using jump diffusion models.!

2.1. Non-interacting adatoms

Consider first the simpliest case; a single adsorbed atom. The following description
is also valid for an adsorbed layer of adatoms if the adatoms can be treated as

completely non-interacting,

Inroduce the notation PS(sj,1) for the probablity o find the single adatom at site i
(i=1,..,NY at time 1. The different sites are defined by the vectors sj and N is the

number of sites. We discuss in terms of probabilitics and a statistical thermal average s
assumed. By conservation of number of particles we have thar

N -
iz;l P35 = 1. (2.1)

The probability 10 be located at a specific site | will decrease in time due 10 Jumps from
that site and increase in time due 1o Jumps to the same site. P5(s;,1) obeys the rate

eqyuanon
d $ 1] . $ 1
5' (sp.) = J(E;U“‘Hi PS(si.1) - ki) PS(si0] (2.2

where kiﬂ,j is the rate by which the adutom is moving from site i 10 site j. The sites i
and J need not 1o be adjacent in configuration space. We will cal ki the rate
constants. Eq (2.2} is also valid in the quantum regime, provided the fluctuations in the
swrrounding is large enough 1o entirely eliminate coherent motion over two or more
lattice spacings. This is general assumed 1o be the case for diffusien of hydrogen and

other heavier particles at not 100 low temperatures.?



Atequilibrium P3s; t) is not changing in time, P50 = PR, und we have

the detailed balance condinon

Y ki PSEUGs)) = Y kjyj PSSUGs)) 2.3
=) i)

I all N sites are identical

PSS = o (2.9)
and
Kimj=kjoi. (2.5)

This assumption will be used henceforth. We introduce a malrix, the ransfer matrix,

according 1o

ka,_H it 1#]
Tispsjd =95 o (2.6)
" Zkism =]
m(=)

and the rate equation can be wruien uy
4 . - e
a—l’*‘ts,.n = - 2 Tispsy iBes). 2.7}
1 ]

1 the sites s; form a fravas Luace the ransfer matrix can easily be diagonalized. By

introducing the intermediate scantering function,
PMQ0) = Y explr gsj) Py b (2.8)
I
the solution can be writien as

Pi(g,) = expl-t/g)) Pig.e=0y 2y

where the differeat relaxation nines are defined by

g =Tg=y Tisisp) expl-i q (s -sp)
1

=2 ¥ kiyj sin(q-(s{ -5;)/2). (2.1
K=}

PY(q1=0) is the initial condition for the probability distribution and we have made use
of the Fact that the transfer mawix only depends on the relative distance, nol on sj and s

separately. By transforming buck to real space we can wrile the solution as

PS(si.0) = 17 X expli 4:5;) exp(-ut(q)) PS(g.1=0) 2.11)
4

The sum over g 1s over all wave vectors in the first Brillouin zone of the reciprocal
lauice.

2.1.1 The self-diffusion constant

The motion is conveniently characierized in terms of the self-diffusion constant,
which is related to the mean square displacement of the adatorn. Assume thal initally
the adatom is located at site k with s;=0. The mean disptacement of the adatom is zero,

<R >= ¥ s; P(s;,0) = 0, (2.12)
[§

but the mean square displacemeny,

<RAy>=3 s Pisy), (213
i

i non zero, We can detennine this yuantity from Eq (2.11) but it is simpler 10 directly

use the rate equation. Multiply both sides of Eq (2.2) with si2 and sum over i. By

interchunging the summation indices for the first term on the right hand side we gei

d .
—< R3(1)>:}_‘ Y ki) (szvs%) PS(s;.0). (2.14)
at [ J

We intraduce 5i3j =8 - sj



d 2 . 2 :
—<R4)>»>=Y¥ kisjts. 428 -85 P%si0 12.15)
o )'-‘ J(%‘I) 2175 1 i !

Hoth kj_,; and Sj—j depend only on the relative distance between site | and site jand if

we use Eq (2.1) and Eq (2.12) we get

J 2 2
— <R > = ki yis. . (2.16)
ot J(§|) I_’J 1—)

or

<RIy > = ¥ ko
(A1)

is (2.17)
i-3j

We introduce the self-diffusion constant D*, which in the general case is i ensor,

according 1o

LS
Ds='2' Lk'_,jﬂ

S. s (2.18)
(=) [EE TR IE] |

For a lattice with cubic symmeuy the diffusion is independent on the direction and we

wrie
<R ()> =24 D% (2.19)
with
s 2
D =57 ¥ kiosj 5 i {2.2th

i)

Here D% is the self-diffusion constant, d the dimensionality associated with the

diffusion process (d=1 for linear motion, d=2 for motion in a plane, ew) und 8j—yj the
distance between site j and site - Eq (2.19) gives the important connection between the
mean square dispiacement for the adatom and the seli-diffusion constant, aml 1t can be

viewed as a definition of DY In Sec 3 we will make this more precise. According to Ly
(2.200 the sebf-diffusion constant £ is simply related 1 the rate constants k, s el by

cateulating “i—--)J the self-diffusion constant can be detenmined,

1.1.2. Macroscopic approximation
From Eq (2.11) i is evident that the solution consists of a sum a modes the relaxes with
different relaxation times 1(q). At sufficiently long times only the modes that

comesponds Lo the longest relaxation times will survive. Tnspection of Eq (2.10) implies
tiat in this limit only small wave vectors contribute and we can write

. i .
T(q) =2-J%.)ki_,j (q-(sj -5, (2.21)

11 this linit the 1ransfer matrix is related to the self-diffusion constant and for a system
with cubic symmetry we can write

Tiq) = D3 ¢2. £2.22)
tonly small wave vectors are important , i e. long wavelength, the latice structure
b:comes unimportant and the difference equation (2.2) can be simplified 10 a differentixl

equation. We call this the macrascopic approximation 10 indicate that the microscopic
letiice structure 15 neglected. Expand P3(sj.1) around s;,

Ps;.0 = PSisi) + {sj - 5;> VPS(s)1) +%((s]- s VIIPS(s0 +. (223

amd insert this expansion into the rate equation (2.2). The standard diffusion equation is
then obtiined,

_9- PS(r,t) = % V2PS(ry). (2.24)
Il
We have assumed cubic symmetry and r is a continuous variable with

PS(si.t) = Jdr PS(r,0) (2.25)
"

anl where the volyme €); defines the lattice site i.

The solution o Eiq (2.24) with the initia) conditior =) = §ry s



P30 = (@rDSy Y2 expg r2ansn, (2.26)

which is easily obiained by Fourier wranstorming kg (2.24). The probability disiribution
for the adatom is a Gaussian. lnitiatly it is a delt-function and when time proceeds the
distribution broadens and the rate of this broadening is determined by the self-dilfusion
constant.

2.1.3. One-dimensional example

Direct expenmental observation of details of the motion of adatoms is ubviously
desirable. In the field 100 microscopy (FIM) the diftusive motion of single metal aoms
i» directly observed. Y4 The self-ditfusion constant can be extracted from the mean
square displacement of the adatom and also the aciual prohability distribution PMs,,1)
can be obtained. The picture that has emeeged is thar the adatom maotion over low index
surfaces is yuite well described in 1erms of uncorrelated jumips between nearest-
neighbour sites. 56

On some crystal surtgees the adatom maves along channels and the diffusion
becomes one-disectional in nature. One such case which has been expernmentally
studied is W aditoms on the W{211)-surface.? If we assume that a single jump accurs
only to two nearest-neighbour sites with the rate o and that SUCLCNSIVE JUInpS are
independent on euch other, the probabiliy disteibution can be expressed in tlerms of the
modified Bessel fupction I, of order j according to

Po(sj.0) = exp(-2an) 1,(2a1). (2.27)

Thus resultis obtauied from By (2.11) wyh the itigt condition 1’5{51,1-.413J:5J(,, The
seli-diffusion constunt is given by By (2,200, 1 ¢
DY = a?, (2.2%)

L&

where a s the lanice spacing. IF we gow atlow for Junp 1 both newrest sites a4 nte o

and 10 second nearest sites at a rate 3, the probubiluy distnibution is given by
P"(:.J,u =expl-20afin] X1 200 4250 {2.29)
k=

and the self-diftusion constant by

1wty ol (2.30)

We notice that the contribulion to the self-diffusion constant scales as the square of the
Jump distance and it implies that even a small jump rate 3 gives 4 comparatively large
contribution to the diffusion constant. Experimental observations of the probability
disinbution for W on the W(211)-surface have been compared with the predictions
Irum the two above models.? In Fig | the results are shown at a time when the ngsien
adatom has in average made half a jump. Points give results of the experiment, light
bars indicate fit of experimental daia to Eq (2.27) and dark bars to Eq (2.29). Best
result 15 ubtained on the assumption that B/a=0.1, i.e. their is a small iendency
correlated jumps.
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Fig 1. Probability distribution for a single wngsten atom
diffusing on W(211). Points give results of experiment.
Light bars indicate fit of experimental data to Eq (2.27) and
dark bars to Eq (2.29) with ffu=0.1.

2.2, Interacting adatoms

So farl we have restricted ourselves (o a single adsorbed atem or equally well the
vise with complerely aon-interacuag adatoms. The sitation is much more complicated
W we have an adsorbed Layer of interacting adatoms. 'To describe this situation we
troduce the notnon Pisj1) for the probubility w find one or maybe several adatoms at

ste 1 time 1 Conservation of aumber of panticles implies that



N
Y P(si1h = N, 2.31)
=1

where Ny is the number of adsorbed atoms. The concentration of adatoms is defined by
¢=Ny/N. (2.32)
2.2.1. Macroscopic description

The phenomenological description of diffusion is embodied in Fick's law, which is
an empirical statement that relates 1he diffusive flow of matier to concentration
gradiems. On a macruscopic level we neglect the lattice struciure (cf. Sec 2, 1.2.) and
we wrile for the probability distribution, or density of adatoms, P(r,1}, where ris a
continuous variable. Fick's law states that the flux of diftusing adatoms 15 proportional
to the concentration gradient,

Jiry =-D VP(r.y) (2.33)

where the proportionality facior D is the diffusion constant. If we add the continuity
equauon

aJ
—Pir,ty = -Vrn (2.34)
h

to Fick's law the standard diffusion equation is obtained;

%P(r,l)= D V2P ). (2.35)
ot

1) is sumetimes called the chemical or collective diffusion constant amt 1t is nportant L
realize tha D2 is not identical 10 the selt - diffusion constant D%, In Sec 2.1. the moim o
a single adatom was monitored. Also when considering an adsorbed layer of inleracling
adatoms i1 can be useful to follow the motion of a specific, tagged, particle. The self-
diffusion constant for the system of interacting adatoms is then refated to the mean
syuare displacement of the lagged particle. We use a superscript s on PStr.p) and on DY

to indicate that these yuantities are related 1o the self motion of the adatom, in contrast

1Y and P(r,1) which are a measure of the collective behaviour. Only when the adawans
can be treated as completely non-interacting D and DS are identical 8

2.2.2. Hard core interaction
IF we testrict ourselves to the case where double occupancy is prohibited but no
other interaction between adatoms are present some progress can be made. We call this

type of interaction hard core inleraction.

The rate equation 1akes the form

) .

— s = 3y ij__,i Pis;t) (1-P(s,0) - ki—)j P{sj 1} (l-P(sJ'.t))] (2.36)
ot H#i)

which directly simplifies 10

dJ
—=Psi=% [kj—si P(s;.0) - ki Psiny. (237
d J(=0)

This equation is identical 1o Eq (2.2) and all results in Sec 2.1 can be used. In the limil
of small wave vectors a connection to the diffusion equatioa can be made and we have
the relation

1 2
D= ki s . 23
HJE:) 1 iy 238

Notice that the rate constants here are related to the chemical diffusion constant [ and
not 1o the self-ditfusion constant DS. Surprisingly, the chemical diffusion constant is
independent on the concentration ¢ if hard core Interaction is assumed.

To get an expresssion for the self-diffusion constant we must solve for P¥(s;,1). This

is more complicated and no simple rate equation can be obtained? Generally we have
thiut

(- ! !
_()—P”(Si.t) =¥ ij_,,j P’(SJ'.I) (1-P(sj.1)) - k,'__,j P“.si,l) (]—P(sj'.t))] (2.39}
U K1)

I}



We can get a closed equation for P3(s;,0) by using a mean Deld approxinatio n, e, we
simply replace P(s;.1} by ¢, the average concentration. Within ths approxinistion the

self-diffusion constant is given by

X 1 2
D% = (]- ki, =(I-cyD (2.40)
(-c) ﬁ]&i) 1-2) "’1-9] (

The factor (1-¢) is called the blocking factor. D® decreases with incresing concentration
which is evident from the relation between DY and the mean square displacement of the
tagged adatom. Notice that D and DS become identical at low concentrations when

mteraction between adaoms can be neglecied.
2.2.3. General interaction

In presence of nontavial imeraction between adatoms the calculation of both static
and dynamic properues becomes mvolved. This goes far beyond the scope of he
present lectures. The jump diffusion models can also be extended 10 several species and
chemical reactions berween specics can be included.

2.3. Limitations

‘The jump diffusion models autorotically caclude g descripion of the ascillat oy
mution of the adaioms. In neutron scalienng expennients both the vibratonal olion
and the diffusive motion are revealed and for a proper intepretation of thuse ex xernicnts
the vibrational motion musi be includeaf i the Junip diftusion models. I the Jifusive
Jumps are assumed 10 be uncorrelated to the vibrational motion tins can casily be

done. W

When the thermal energy becomes comparuble 1o the activation energy lor ¢Hiusion
along the surface the adaloms are no longer mannky localized st ditferent lntice sites
The ume between two consecunve jumps becomes comparable 10 the durstion of 4 Juinp
and the subdivision into individual jumps loses its meaning. A more precise description
of the motion 15 then needed. 1n the next section models based on the continue

maotion of the adatoms will be presented.

3. CONTINUOUS DIFFUSION MODELS

The surrounding substrate influences in a very complicated way the motion of the
adatom. In the previous scction this influence was taken care of phenomenologically in
twar separate sieps. First we made use of the periodic arrangement of the surrounding
substrate aloms and we assumed thal the adatom most of the time was located around
stable lattice sites. Secondly, we incoperated into the rate constants the effect that the
adatom can gain and lose energy 1o the subsiraic and thereby change site. In this section
we will do a similar decomposition of the influence from the surrounding. The
difference is that here we will treat the continuous motion of the adatom. This reatment
Is more general and the corresponding rate equation is more complicated and cannot be
solved analytically in the general case. We restric ourselves 1o 4 single adsorbed atom
but the formalism can be generalized 10 incoperate interactions among adatoms. No
afiempts will be made to include quantum effects into the motion of the adatom.

If we know Lhe force on the adatom we can solve Newion's equation and obtain the
motien of the adatom. In principal we could use the microscopic equation of monen for
the total system and obtain the time dependence of this force. Here we will approach the
problem quie differently and morg phenomenologically. We will ry 1o describe the
influence from the surrounding in some simple erms.

3.1. Brownian motion theory

First we restrict ourselves 10 @ homogeneous medium. We disregard for a moment
the static pan of the force actng on the adatom and ansing from the electrons and nuclei
of the substrate in their average positions. The purpose is to present a
phenomenalogival way 1o introduce the effect that the adatom can gain and lose energy
10 the substrate. Or in other words, we want to introduce dissipation and fluctuation of
the energy of the adaiom.

3.1.1. Langevin's equation

We split the force on the adatom in a smooth friction term, which we assume 1o be
propurtional to the velocity of the adatom, and a rapidly fluctuating force, the stochastic
toree, unsing from the collisions with the individual surrounding particles. We write

Newton's equation as

m::-[»V([) =-mmn V1) + k1), 3.



where V(1) is the velocity of the adatorm, m its mass, 1 is the friction coeflicient and
F34t) the stochastic force. Eq (3.1} is called the Langevin' equation. The stochastic
force is assumed to have zero average value,

<FSlgy > = 0, (3.2)

and it 1s assumed to be totally uncorrelated in time, i.e. < FS(y) FSC) > = 0 for 11,
However, the average vaiue of < FSU(t) F51) > cannot be zero and we postulate that

<FS{ ) FSU) > = o 1 Bet), (3.3

where 1 is the unit tensor and o is a constant, which for the moment is unspecified. We
treat the motion of the adatom in a probabilistic manner. F3U1) is a stochastic variable
and we will only be abie to give statstical predictions for the position R(D) of the
adatom and for its velocity V(1). The brackers in Eqs (3.2) and (3.3) denote a canonical
ensemble average and <R(t)> and <V{()> wiil be the average values over this
ensemble, characierized by the lemperature.

3.1.2. The fluctuation-dissipatien theorem

Direct solution of Eq(3.1) leads 10

) !
V() = V(0) exp(-1 () + = {di‘ expf-n (1-1)] FS'(r), (3.4)
{

where the fixed initial velocity of the adatom is denoted by V(0). From Eq (3.2)
follows direcly that the average velocity is

<V = VI0) exp(- 1y 1) 1.5

and for times t>> 1 there is no information left on the innial veloenty and the average
velocity is zero. This does nop mply that <V2(l)> is zeto, In fact we know from the
equipartition theorem of classical statistical mechanics 1! that for a system in thermal
equilibrium at the temperature T,

T
V2 g kﬁn _ (3.6)

|3

where d is the dimension of the system and kg is Boltzmann's constant, Using the

formal solution of the Langevin's equation we have

1
V2 = V2(0) expt-2 1) + Z exptn 1 Jov exoln -0} Bty vio)

t t
*;II ({dr A[" expl-1 @-13] expl-n (t-0)] FSr).Fslr). (3.7)

By averaging over the thermal ensemble and by using the two propertics of the
stochastic force, postulated in Egs (3.2) and (3.3), we get

2 2 o
V> = V(D exp(-2n 1) +d I -exp(-2n1)]. (3.8)
p(-2n ——-fmm | pi-2n1)]

We natice again that the initial infurmation fades away exponentially in time. Al
sufficiently long times the adatom is assumed to reach thermal equiliboum and its mean
squared velocity approaches the vatue given in Eq (3.6). In order 1o fulfil this we have
1o require that

G=2mnkgT. (3.9}

The parameter a refers to the magnitude of the fluctuations in the medium, whereas n
refers to the magnitude of the collective Friction force. They are evidently related 10 each
other and that is by no means obvious. The above relation is a special case of a generat
one, called the ﬂuﬂmmmmm_[mn Any system which shows dissipative
cffects, as friction above, will also show fluctuations and there exists a relation between
the two. The constant & in Eq (3.3) is now specified in terms of the friction coefficient

3.1.3. The self-diffusion constant

In Eq (2.18) we introduced the seif-diffusion constant DS by connecting it to the mean
syuare displacement of the adatom. In the jump diffusion model the mean square
displacemmet was hnear in time for all times. This is not true in a more microscopic

treatment. At very shon times the adatom is moving as a free particle and

<[R() - ROZ>=< Vi) »12 = ¢ "'I:_‘r,z . (o0 (3.10)



Here we have made a thermal average over alt possible ininal velocines. Eq 03 10) 15 an
exactresult and a model that is supposed 1o comectly describe the short time behaviour
must fulfal this relation. If the motion becomes diffusive the inean square disacement
will approach at long times a linear dependence on time. We define the self-diffusion

constani through

ps< lim 'lcm(ntn(on%. (310

L-doo

The relation

[
R{) - R(O) :Adl' V) 3.1

can be used 10 relate the mean square displacement to the velocity correlation function

for the adatom. We get

i t
<R} - RO)2 > = C[dt'ﬂ[d[" < V')V("} »
L
=) Jd'c(t-t)< VOV >, (413
{

where we have made use of the property < V(') V(") > = < V(I 1) V() >. We can
now relate D (o the velocuy correlation function and a second and equivalent definition
of D* is obtained,

oa

.1
DSEEJdKVm-Vu)) > (3.14)

Bys (3.1 and (3,145 cun alsa be used us detininons of the self- diffusion co stant for
an adsorbed layer of mieracung adatoms. The varisbles Rt in Eg (3,11 amd Vinn By
{3.14) are then the position and the velocity fora single tigged adatom, respectively.
The chemical diffusion constant [ can be defined in terms of another velocity
correlation function ® The correlation function then contains the velocities of sl adutomy

and not unly the velocity of a tgged adatom as in Eq (3.14).

Langevin's equation can be used 10 derive a connection between the self-diffusion
cuonstant and the friction coefficient. From sy (3.4) we directly obtain

Ky T
<V{)v(0) >=d —:‘;—cxp(-nt). (3.15)

If we insert this into Eq (3.13) we get

<IRO- RO > =d 28T L(expenm) (3.16)
o

which is consistent with Eq (3.10) at shon times and in the limit t—o0 the identification

Dsil-‘-EI 3.1h
nm
can be made.

3.2. Adatom dynamics

The substrate breaks the symmetry of the system and an adatom experiences i stalic
potential ansing from the elecrons and nuclei of the substrate in their average positions.
‘This pant of the interaction with the substrate is crucial for the character of the adatom
motion. 1§ gives nse to the periodic force along the surface and to the arractive and
repulsive forces perpendicular 1o the surface of the substrate. In order o properly
describe surfuce dynamical problems as diffusion, adsorption and desorption one must,
besides the above conservative part of the forces, also include the dissipative pant. It is
the latter that is responsible for dissipation and fluctuation of the energy of the adatom
and these effects must be included.

A starting point for treating ydatom dynamics is the following generalized
Langevir's equation;

m Vi = FEAR) - mn v + FQ) (3.18)

with

<FH PN > = 2 mn kgT 1 8G-1). (3.19)



The static force F3(R) = -yvadig, depends on the postion R(t) of the adatom and we
call it the adiabatic force. This is the conservative part of the interaction with the
substrate. The dissipative part is represented by the friction coeflicient and by the
stuchastic force, which are connected by the fluctuation-dissipation theorem in Eq
3.19).

Eq (3.18) is a stochastic equation and one ofien converts if into an equition for the
probability distribution f(r,p,t) to find the adatom at time 1 a1 point r with momenium p.
This is the Fokker-Planck equation with a static force and it reads!2

|ai+ %-V, + Py V) frpo =1 Vplp +mkgTV, I firpy.  (320)
It

Eq (3.20) replaces the rate equation (2.2) and it was first given by Klein.13 In the
absence of the siatic force it can be solved anatytically. 12 The incoperation of the static
force comphicates the situation considerable. Most discussions, based on Fq (3.20) and
#iming 4l analytic results have been restricted to one-dimensional models and to
siuations where the friction coefficient is either small or targe compared to some typical
frequency. Here, we will discuss two such mudels; the escape from & one-dimensional

potential well and diffusion in a one dimensional peniodic potential.
3.2.1. Escape from a potential well

Kramers based a discussion of the steady state escape rate from a one-dimensional
potential well on Eq (3.20) in a seminal paper. 4 He was not able 10 solve the eyuation
for an arbitary value of 0. He could, however, analyze the solution for small and large

vilues of 0.

For large values of 1, 5o large that the distance a thermally drifting particle traverses
in the time 1y is small on the scale of variation of vad(x), g (3.200 reduces 1o a

diffusion equation for the density pix,1) = fdp ftx,p.t) alone, the so called

Smoluchowski equation. Kramers solved it for the steady state escape rate and under
the additional assumption AE>>k aT he obtained the rate,

waw’ .
k=—25-—cxp(vAhlkBT). (n>af ), (1.21)
n

The frequencies wy, and w¥ are the ones associated with the second derivative of the
static potentiat at the bottom and a1 the top of the barrier, respectively, and AF is the
barrier height.

In the opposite limit, 1) small, the energy of the particle will be slowly varying, not
1s position. Eq (3.20) can then be reduced, by using a canonical transformation, 1w a
diffusion equation for the probability P({E,t) 10 find the particle with a certain energy.
Kramers solves this equation too and using the same assumption about the harrier
height as above, i.c. A>>kgT , he finds the rate

AE
k=n k';f exp(-AE/kyT), ( N<<wakpT/AE ). (3.22)

Kramers reatment is an attempt to go beyond the transition state theory (TST) for the
escape rate, which for the above situanon leads to the cxpression

k = ‘;—’A exp(-AE/KpT). (3.23)
n

The TST will be discussed in Sec 4. Here we only stress that their is no explicit
dependence on the dissipative part of the forces in the TST. Kramers shows that by
including dissipation and fluctuation through the use of the Brownian motion theory
targe deviations from the TST-result is obrained for small and large values of n. He also
argues that TST applies for intermediate values of 1, large enough 10 ensure
replenishment of the equilibrium distribution but not so large as (o inhibit the motion of
escaping parucles. It is the former effect that is responsible for the depletion of the rate
in the low friciion limit and the (arter effect gives nise 1o the reduction of the rate in the
high friction limit. From this follows that TST is always overestimating the true steady
stale CSCEIPC rate.

3.2.2. Diffusion in a periodic potential

We now consider the motion in a one-dimensional periodic potential, V(x). The
diffusion constant 13 not solely determined by the escape raie, but also the jump distance
1> needed. This distance depends on how efficiently the cnergy of the diffusing aom is

dissipated away.



tor small values of N the jumip distance can beconee large. 10 the coupling 1o tie
substrate 1s weak, Le. 1} small, adatoims with energies above the potential barmrier,
activated adatoms, will move rather freely and adatoms with energies less than the
barrier energy will vibrate locatly for a long time. To a first approximanien in the low
fricuon limir only adatoms with energies above the potential barrier contribule 10 the
diffusion constant. Their contribution is given approximativety by Ey (3.17). A more
careful reatment leads 1o the resulc!S

kT P . 2 il oa
D= ﬁr]“‘ ’muk!BT A[gE v(E) ]exp(-l:JkBT) I;({dx expl-Vix)ykgT) } 1 (3.24)

where v is the average velocity

a
v(E) :i-:—ddx i, EN (325)

This is essentially Eq (3 17) nmes the probaluiny to find the adatom above the potential
barrier. Notice that we consider a system in themnal equilibrium and we alwiys have
adatoms with energies above and below the potential barier. in the low friction hmit
both acuvation and desctivation of adaioms becomes equally inefficient.

In the opposite limit, 1 large, the energy dissipation is efficient and the Jump distance
15 equal o the lattice spacing u. The diftusion constant is then given by Kramers result
m Eq (3.21) imes 42 A, the analysis can be mude more presice and by solving the
Smoluckowski equation une obtuins 1641718

. kyT 1 ® !
D= =By = expt-VixIkGT) © fdx expVirykyT) | | (3.26)
nm xl( |.|'

In the imu AE>5kg 1 Fy (3.26) reduces 10 Kramers result nenes a2, We notice th the
diffusion constant is proporuonal w lin buih limues, a0 contrast 1o the steady st

escape rate that depeads linearly on 1) i the small friction i,

19

3.3. Limitations with the Brownian motion model

We end this section by pointing out some limitations with the Brownian motion

mosde] and by making some comments on the applicability of the above analytic resulis.
3.3.1. Three-dimensional motion

The result for the escape rate in Sec 3.2.1 and for the diffusion constant in Sec
3.2.2. are all based on one-dimensional weatments of the adatom motion. The results
{or the escape rate will not be qualitatively different if the full three-dimensionai motion
of the adatom is included. 19 However, it has been shown that in order 10 describe
correlated jumps one has 10 include the three-dimensional character of the adatom
motion. 20 A diffusing adatom follows to no extent the minimum energy path and i
moves rather enatically on the surface. This can not be simplified to a one-dimensional
motion without loss of qualitatve featres. The resuit in Eq (3.24) is therefore of
limited value in the case of surface diffusion. Their is no probiems, expect numencal, to
B0 beyond the one-dimensional treatment within the Brownian motion model. One has
10 solve the full three-dimensional Fokker-Planck equation in Eq (3.20).

3.3.2. Position dependent friction

We have anly considered a consiane i, but in many situations it would be more
appropnate o use a friction coefficicat which depends on the position of the adatom.
Such a siuation obviously oceurs in thenma) desorption, where 1(z) approaches zero
with increasing distance z from the solid surface. But also in surface diffusion the
friction coefficient can have a strong dependence on the position of the adatom as well
as on the direction of the adatom mouen.2 ) Al the bridge position on a fec ((01)-
surface the couphing 1o the vibrayons of the substrate atoms is weak in the direction of
the nunimur energy path but sirong in the two other directions. These effects can be
incoperated into the Brownian moiion model if one allows for a position dependent
friction, n-=n(r), and if 1ensor nagure of the friction coefficient is ncluded, e} —nir).

3.3.3. Memory effects

A mwre serious limitation with the sbove approach is connected to the basic
assumption behind the Brownian motion model. In wnling the equation of mation on
the simple Eangevin's form, one has assumed that the fluctuations in the surmounding
are fast with respect 1o the adatom motion. This is the case if the adatom is much



heavier than the substrate particles but it is cerlainly not true in the general case, For the
latter cases Kubo has suggested that one should modify Langevin's equation 10

t
mg?vm = Fﬂd(R) - der TV (') + Fsl( (3.27)

where the simple friction term is replaced by a term that depends on the whole past
history of the adatom. The function F(1) is usually calied 1be memory functipn. In Sec 5

we will come back 1o Eq (3.27), lhﬁlﬂnﬂalm‘d.hngmmm which can be

shown 1o be exact as it is merely a formal separation of the 1o1al force on the adatom

into different components,
3.3.4. Quantum effects

The Brownian motion model is based on the assumption that the motion of the
adatom can be treated classically. In recent years a lot of anempts have been made 1w
generalize the model to the quantum regime. The guantum version of Kramers problem
has been solved?2:23 and results on the influence of a dissipative environment on the
dynamics of a quanium system has been reviewed 24

(2%
T

4. THERMAL RATE CONSTANTS

In Sec 2 we discussed the jump diffusion model. The important parameter in that
maodel is the thermal rate constang ki—+j- In this section we will relate kj—j to the basic

inkeraction potential between the constituents,
4.1. The Born-Oppenheimer approximation

The dynamics of an atom adsorbed on a surface is fundamentally a complex quantum
mechanical problem. An important simplification is obtained by using the Bom-
Oppenheimer approximation25 1o separate the motion of the nucleis from the electronic
deprees of freedom. The quantum mechanical interactions of the electrons and nucleis
are reduced to an interatomic potential energy hypersurface,

Y(Ro.R,...Rp). 4.1

Here Ry, dznote the position of the adatomn {previousty denoted by R ) and R;.
i=1..N, cenotes the positions of the N substrate atoms. The assumption of classicul
mechanics is usually appropriate and the motion of the atoms are obiained by solving
Newton's equation,

d? ,
mianRi, = - VRiV(Rﬂ'Rh“"RN) N l=0,...,N, (42)

with appropriate initial conditions. At low temperatures and for small masses m;
quartum mechanical effects such ay zero point motion, wnneling and inteference
pheromena may be important, Newton's equation is then replaced by the Schridinger
equation.

There are cases when the Born-Oppenhesmer approximation must be improved. [n
several surface dynamical problems s for instance in ion neutralization and ionization a1
surfazes and, general, in chemical reactions more than one poiential energy
hype-sarface is involved. For such cases “surface-hopping” techniques has been
devehoped. 26 Metal surfaces introduces new phenomena, compared with gas phase
reactions, due 1o the presence of the conduction ¢lectrons. The moving adatom may
excite electron-hole pairs which can effectively dissipate excess energy. Electron-hole
pairs can be provided with infinitesimal energy and the single Born-Oppenheimer
potential hypersurface should be replaced by a continuous band of very nearly parallel



hypersurlaces comesponding to different combimstions of electron-hole PHIT CXCIations MAX) = Ax C*I’l’ﬁ\"(xu)l (4.4)
X .

This effect will be discussed 10 the next section in enms of  friction coefticient.

jux expl-fvix))
4.2. Transition state theory
and the probability for the particle 1o have the velocity v is

Diffusion 1s in essence a dynamjcal problem but in an important class of theories the
explicit dependence on the dynamics is bypassed and the diffusion constant is obtained expl-P mv? I i
from an eguilibrium consideration. These are based on the ransition statg theory (TST) P(v) = Z = e

o 2 2x

'jdv expl-p "—]-5— ]

for the escape rate,27:28 which originates from the absolute rate theory of
Eyring.29:30 In applications 1o solids the theory was developed through the work of
Zener and Wen3) and Vineyard, 32

where [§ = I/kyT. Notice that in the expression for P(Ax) we have normalized by

IF we assume that the diffusive motion consisis of uncorrelated Jumps between niegraing from -oe 1o x5 We need the probability for the particle 10 be located at the
adjacent kantice sites the diffusion constant is ubtained from the relation ransition state, provided it is situated in site A (x<xg). The escape rate is now obiained
by taking into account all positive velocities v, i.e.
[ 1
; ! 2
S = W2 £
i mk i (4.3)
Vix) |
where k is the escape rate from a laitice site A key observation is that the change of
sites is a thermally activated process. In the realm of classical mechanics the adaiom S
must puss over the energy barrier that separates regions of lower energies from cach 1
other, the surface lattice sues. Thus, a barrier region is 1 ransition slate, a stiate thai
must be visited duriny the passage from one site 1o anuther and it acts as a bottleneck
for the reacton. B B
AL
A
. . 1
4.2.1. One-dimensional example
i >
To introduce the method of trunsition « e theory (I5T), we consider 4 one Xa X0 *p X

dimensional example, as shown in Fig 2. We want 10 caleulate the raie k by which " . . . .

P & A BDY Fig 2. A one-dimensional potential V(x) for the reaction

the particle 1 i i i ing i arucle has ; :

p:.ll"llL]C‘:I\ moviig from site A 1o sile B {n moving from A to B the parucle has 10 coordinate X. An energy barrier AE separates the iwo
1-‘; 1 k‘ Sil i H 1t Sk i o A A 1 > b

pass the paint S, the saddle p(]ll.ll lur the transition stale. During 4 slln.)_n linwe injerval, sites A (xexg) und B (x>xg) from each other.

say At, the particle will escape if it has pustiive velocuy, v20, and it it s withan the

distance vALof §, Le. xy vAI< X < x;). The e interval At is choosen smiadl enougl so -

i ST
thut the potential energy can be assumed ke be constant over the distance vAL We now Ak, = ({d\f P(v) P(Ax=vAr1) (4.6)
assume that the system s in thermal equilibien at the wmperature T, The probabulity 1

find 1he particle within the distance Ax of $ is given hy
or



Ka = CXPLTWUH : 47
Varmp _.:[f.“ expf-BVix))
Another way 10 write this is
k:VSIB =< v B(x-xg) B(v) >4, (4.8)
where 8(x) is the Dirac delia function, B(x) the Heaviside step function,
o= {y ¥ 20 -9

and where the subscript A in the bracket notation, <..>, , indicates 4 ensemble average

restricted to the configuration space of the site A only.

If the potential barrier is farge compared to k1" the integral in the denominator in Eq
(4.7) is dominated by values around x=xp. If we expand the potential,

Vix)= V(xA)+2|—m mi 24 . (4.1

keep the guadratic term and extend the integration limit te infinite the well-known result

TST _W .
kMB=;t’lcxp(rﬂ AE) 4.1n

is ubtained (ef. By (3.23). The prefacior Wa/21, the so called anempt frequency, comes
from proper normalization and has nothing to du with kinetics. The usual physical
ttepretation that Va=wa/2n should be considered as the frequency with which the

particle tries 1o escape is therefore somewhat misleading in this coniext.
4.2.2. The multi-dimensional case

‘The above one-dimensional expression for the TST escape rae can be extended ws
the mulii-dunensional case. Fig 3 gives a two-dimensional picture of the motion in the
{IN+3)-dimensional configuration spuce. 101 uwselul w introduce new coordinates such
that one coordinate, the reaction coordinate s, runs along the ditfusion path between A

and B. We denote the comresponding velucity by v,. The value s=yydefines g (IN+2)

26

dimensional surface, which we cail the dividing surface or the TST surface. The TST
value for the escape rate is now obtained by taking the probability to be located in the
rrunsition state region times the mean velocity in the reactive direction,

Fig 3. Two-dimeasional picture of the (AN+3)-dimensional
configuration space. A and B are the minima and § is the saddle
point. The dividing surface is defined by $=5¢ and it is shown as
a dashed line in the figure.

kﬁ,TB =< vg 8(s-50) B(vg) >, , (4.12)

where the average is over all degrees of freedom of the system. The escape rate can also
be wnitten as

L
5T kT Qa
,\'5:';;:%-% (4.13)

G

where ()3 i3 the classical mechanical partition function for the system when the particle

15 lovated 1n the region A,

W3 g4 do,
Q;‘,= I I« q‘h p'lcxp(-ﬂH) 4.14)
=1

#. S ‘ .
and ch 15 the corresponding one when the particle is located in the ransition state

region,



i
= ll (‘—"‘—L)cxp( 1LY (4.19)

H i3 the 1otal Hamilonian for the system and HY is defined in the Lransition sate region,
i.e. =5 and v, does not appear. Egs (4.12) and (4.13) are 1wo equivalent cxpressions
for the escape rate within the transition state theory. 1t is worth noting that the integrals
in: Eqs {4.14) and (4.15} are equilibrium averages and can be evaluated exactly by
means of numencal Monte Carlo methods. 33 The starting point is then an assumed
form fur a Bom-Oppenheimer potential energy hypersurface. For computational
reasons one ofien uses a model with pair-wise additive imeraction puotennials, This gives
a connection between the escape rite within the ransition stale theory and the

microscopic force laws.

In the same way as in the une-dimensional example we can expand the potential
energy and get an expression valid in the harmonic approximation. We write for the
potential energy around the stable point A

| N 2 2
V(..,;:VA+2— )_ m, Wiyl + .. 4.16)

and around the saddle point

| INe2 ¥ 2
)—V”+2- T omptw gl + 4.17)

I=

"
where @ and w, are nomial mude frequenciey god ¢ normal mode coordinates (noy

neccesenly the same o the two expressions). The phase-spuce integrals in bys (4.14)
and (4.15) can now be performed and ustav the notation AE=VYV 4 we armnve a the
frequency-product formula of Vineyard, 12

N+
” (l)l
=1
st 1! :
ko ,“g}‘mg—'ﬂp( |$ Al (5.1%)
[1 m’:

1=1

4.3. Quantum transition state theory

Classical concepts have been used in an essential way to obtain the transition state
theory result in Eq (4.13). Especially in cases when hydrogen atoms are involved one
would like 10 incoperate quantum effects into the expression for the rate constani.

First we make the obvious modification thar he classical mechanical partition
functions are replaced by their quantum counterparts,

Q) = Q= Tral expl-BH) (4.19)

und correspondingly for Q:t' This takes into account the discretness of the excitation

encrgies and it is important if a typical vibrational energy is large compared to the
thermal encrgy. For hydrogen this can be important even ar room temperature.

Secondly we notice that the facior kgT/h in Eq (4.13) comes from the evaluation of
the rute by which the panicle cross the dividing surface. The calculation is based on the
assumption that velocity and positon coordinates are independent which is not true
quanium mechanically. We must comect for lnneling through the potential barmer at
encrgics below Lhe classical threshold, as well as the possibility of reflection at energies
above the classical threshold. To do this we look at the classical calculation,2?

-ﬁ— T Jdp exp - "h‘ Jm exp(-BE) = F [dETd(L) exp(-BE) , (4.20)

where T (d:) 18 the classical probability of crossing the potential barrier at an energy ¥
measured with respect 10 the barrier maximum, T (E)=1 if E>0 and zero otherwise.
This suggests that we replace T(E) by the quantum probability of crossing a suitable
choosen one-dimensional potential barrier at energy E, We define the quantum
carrection K('T), which lakes 1nto account tunaeling and non-classical reflexion, through

K1) = kT JdE Eym(E) exp(-BE), (4.21)

where 'l‘qm(E) is the quantum mechanmical ransmission coefficient and where the zero of
the energy E is located at the classical threshold. We can now write the raie constant

within the quantum transition state theory (QTST) as



ky T
kJTop = ¥ $— (4.22)

go}.,ﬁo .

There are several weaknesses in this simplified QTST. One of the main approximations
in Eq {4.23) 15 the assumption of separability between the reaction coordinate and all the
other degrees of freedom. Severat attempts have been made 1o go beyond the
assumption of separability. 27 The quantum transition state theary is, however, not as
well founded as its classical counterpart. For applications of QTST 1o hydrogen
diffusion on solid surfaces see the work by Lauderdale and Truhlar, 34.35 Valone,
Voter and Doll#6-37 and Raquet and Miller, 38

If we again use the harmonic approximation the patition functions Qq?“ and Qq':“ can

be evaluated analytically. We can also determine w(T) in the same level of
approximation. At not 100 low temperatures the rate will be dominated by the shape of
the potential barrier in the vicinity of the classical threshold. We can then use a parabolic
approxirmation

V(s)z-)'—mS (") §2 423)

for which the transmission probabulity is known. > The rate constant can then be
writlen on the symmetric form

3N+3sinh([}ﬁ(0ﬂ)
LOTST _ i=) _ (Bhu/2) TST (4.24)

AB T Gn(Brat2) I Asinh(hayhay A8
PBra’2) i (Bhe,2)

4.4. Dynamic correction factor

The TST is approximative and it does not give the correct value for the escape rade.
‘The basic assumption in TST is that cach crossing of the dividing surface corresponds
102 reactive site change event. This is not true. TST ignores dynamical effects such as
recrossing effects. Another assumption that must be made in order 1o describe diflusion

using TS s that a particular jump mechanism must be mposed. I one ussumes single

30

uncorrelated jumps between adjacent lattice sites the diffusion constant is related 1o the
escipe rate through Eq (4.3). The mi¢ correetion fomalism 4041 is a method by
which both these assumptions can be relaxed simultaneously and formally exact
expressions for the different rate constants are obtained, 92.43 They are expressed in
terms of different M!Lﬂwmmnmm A major advantage wilh this
approach is that the correct quantum version can be derived. 44-45 We consider firsta
two site system and thereafter the multisite case, necessary in describing correlated
multiple jumps on a surface.

Before we discuss the dynamic correction factor we comment on the use of the
equilibrium configuration in the transition state region. The adatom is in constant
contact with a nearly infinite "heat bath” and it is therefore perfecily appropriate o use
the canonical ensemble to describe this system. This is the basic assumption we make
and the corresponding rate constant is then the thennal rate constant. The use of the
equilibrium distribution in the wansition state region is a rigorous result that directly
follows from the use of the canonical ensemble. 46 It does not depend on how easy or
difficult the botileneck, i.e. the transition state region, is 10 enter, or on how quickly the
typical trajectory passes through. It is misieading to regard the relaxation of the
surrounding substraie atoms when the adatom is approaching the transitions state solely
caused by the approaching adatom, Iy can equally well be that a fluctuation of the
substrate atoms, a relaxation, makes the adatom approach the mansition state. The jump
event is more properly treated as a tluctuation in a many-body sytem at thermal
cquilibrium; the presence of the adatom in the transition state region neither causes, nor
results from, bur is rather instamaneously correlated with a relaxation in the mean
positions of the surrounding substrate atoms. Similar arguments imply that the velocity
distribution of adatoms found in the wansitions state region is Maxwellian. Although a
Jumping adatom wit! usually need more than average kinetic energy to approach the
saddie point, al! this excess kinetic energy have in average been converted into potential
energy at the saddle point, only 1o be recovered as kinetic energy during the descent.

4.4.1. Two-site system - heuristic derivation

As shown in Fig 4, we consider a system with two stable configurations, A and B,
separated by an energy barrier at $=5). The reaction coordinate s(1) can for instance be
the distance 2(1) between an adsorbed atom and the surface in the case of thermal
desorption. The “site” B then extends 1o infisuty. In isomerization (1) can be an angle
ft) characierizing two different stable configurations of the nx ‘e. Five typical



trajectones which all cross the dividing surface at s=spone or several tmes are shawn.

Unly 1wo of these rajectories, {a) and (b), are true reactive events {or the reachon A -l

»
»

50 8

Fig 4. Five typical trajeciories which all cross the dividing surface
ai s=5q one or several tmes. The arrows indicate the direction of the
time. Only wrajectory (a) and (b) correspond to rue reactive events
for he reacuon A -1

and only these should conmbute when calculating the rate constant k. 1f we

examine a canonical ensemble of systems i a given instant of ume, we find thal cach of

the eleven crossings shows in Fig 4 are presens. If we now use (he TS'T approxation,

defined in Bq (4.12), we wilt find the follgwing: Trajeciory (a} will conuribute. in
trajeciory (b} both crossing 2 and 4 will contribute, but not crossing 3 due to the
negative siga of the velocity. The trajecioey (b s a single reactive event, bt in TST it
will contnbute 1wice. The trajectories (c), (d) und (¢) are all non reactive bug i UST the
crossings 6, § and 11 will contribute whea calculanng dhe rate constnt. These
“correlated dynamical evenis” cause the TST approximation 1o be an ppper bound on
the true rate constant, since each reactive event consists of at least one 157 surlace

crossing,

To ger the rue rate constant one must ensure that a crossing corresponds W a reactive
eventand that no multiple counting of a single reactive event is performed. This is done
by generalizing the TST expression in Eq (4.12) 1927,47

Ka_yu = < B00-s(-40) v 8(s-50) O(s(A1)-50) >4 . (4.25)

For each crossing of the TST surface we must run the majectory backward in ume o
ensure that it started in site A and forward in time 1o ensure that it ended in site B. This
is taken care of by the two Heaviside siep-functions. The time At is somewht arbitary
but in a system with well-defined reactive events the time At will also be well-
defined. 48 More precisely, define T . as the time-scale on which the correlated
dynamnical events occur and define 1., as the average time between reactive evenls, i c.
the inverse of the true rate constant. Systems with well-defined reactive events will then
be characterized by the time-scale separation T, << T, and the time At shouid be
¢hoosen longer than 1., but much shorter than Trxn- We now apply Eq (4.25) 1o the
ajectoncs in Fig 4. The rajecwory (a) still contributes to the rate. In Irajectory (b) all
three crossings contribute. However, crossing 3 gives a negative contribation (v<)
and in a perfect sampling of rajectories, crossings like 3 and 4 (or equally well 3 and 2)
will exactly cancel each other, The net conmribution form trajectory (b) will then be a
single reactve event. The trajectories (c}, (d) and () make no contribution to the rare
due 10 one or both of the step-functions in Eq (4.25).

We can make a further simplification of the expression for the rate and write it as48
Ky g =<V¥ 8(s-30) B(s(41)-sp) >a - (4.26)

This is seen by first using the identity 8(sy-s(-At)} = 1 - 8(s{-At)-5;). From this it
follows that he difference between Eqgs (4.25) and (4.26) is the quantity < 8(si(-A1)-5)
vy 8350 B(s(Al)-sg) >,, which is the average flux across the surface =y given that
s(-At)>5) and >(A>sg. According 1w Liouville's theorem, that averaged flux is zero.

Next we will denive Eq (4.26) in a more formal way and put it on & more rigid basis.
lrtore doing this we notice that the TST result in £y (4.12) is obtained by taking the
Lnut At—0in By (4.26). The TST is obtained by assuming that all rajectories passing

the dividing surfuce in the reactive direction comesponds to a true reactive event,



4.4.2. Two-site system - formal derivation

Consider aguin the situation in Fig 4. We want 1o determine the raie by which the
system is changing from A 10 B. To make the derivation more general we will do it
fully quantum mechanically. We introduce the operator

S0
A =B(syg-s) = [ds Is><sl , (4.27)

which is 1 il the sytem is in the configuration A and zero if it is in the configuration B,
We also introduce the notation

oa

B=1-A=0(ssg) = fdsism<sl, (4.28)
)

The variables s, A and B are now operators and we must keep track of the order. We
assume the Hamiltonian 10 be on the standard form

2 2
1f = z&nz"- z EellnT + V(5.q),4q3,..) (4.29)

1
and the time evolution of A is given by
Aft) =expliHim) A exp{-tHih) . (4.30)

The expectation value of 4,

<A>=ZTTr| Aexp-pH) | (4.31)
with
Z =Tr| exp(-BH) 1 , (4.32)

is the probability that the system is in configuration A.

We now perturh the system slightly from equilibrium by applying an exiernal time-
dependent field thar vouptes 1o the dynamicad variable A. We wrm on the pertubation
slowly and a 1= w15 suddenly tumed off,

3

Batryy) = ?: explel) if 1<0 (4.33)

if >0
with 8a and € small and positive. The unperturbed Hamiltonian H is modified to
(1) = H - A 8a®*l(1) (4.34)

and at 1=() the expectation value of A, <A>g,, will be slightly larger the equitibrium
value. The subscript “ne” denotes a non-equilibfium average. Afier 1=0, when the
perwbation is turned off, the system will spontaneously relax back t the equilibnum
configurgrion. By calculating the linear response (o the weak external field 8a%*Y(1) thiy
relaxation is given by49.50

8<Al)>, = B C(1) Ba (4.35)
where
B<Al> e = <A@z, - <A> (4.36)

is the fluctyation from the 1rue equilibrivm value and where C(1) is the relaxation

function

p
C(t):é—{fdl(ﬁA(-ihl) BA(> . (4.37)
{

By taking the time-derivative of Eq (4.35), we obtain the following expression for the
relaxation of the perturbed sysiem;

d Cwy
aﬁ(z\(l)'bm. = T 8<A(I)>nc R (4.38)

We now gssume thal 4 simple linear rate equation describes the relaxation, i.e.

%‘:A“))nc =k <Bil)>p, - k <Al)ope (4.39)

B -3A A B

or

B AN = kegy <AWI> e (4.40)



with
k
A--B
N (441

We expect the ate equation to valid for times > T, where Teom 18 8 RICTOSCORC

time-scale that characterizes the rapid transient relaxation. We can then nu ke the

Kot = - o (4.42)

where the time At satisfies the condition
Teorr < AL (4.43)

By numerically calculate the tine dependent function k()=C () we can estabish it
the pruposed phenomenclogical rate equation (4.39) is valid. [n that case k(1) should
reach a constant value for imes T, the plateau value bebhaviour, and the value of the
Fate constant can be extracted. If the platesu value behaviour is not observed one must
conceive of a different phenomenclogy. The cormelation functon Cl1) is o anging on the
tmne-scale oo Wk and as loug as we are considering Limes ALK, we can
replace ClAL) by CrO} in the denonynator in Ex (4.42). In the classical lim | we have the

dentny
C(y = <A> <H> . 1414y

In the yuantum case this s an excelient approxaaion il the systein is "we ] localized”

w site A orin site B 25T We cay then wile the rate constan on the for
— I A .
kA B O<A> Ch(AU : T S AL, {4.45;

where

I
N _
Cply= 2 5 J.u IT[ expCald) Ko exp-AE Bt expl 315 | (1.16)
i

Here by denotes the flux operator
: i ) 1 3
I‘A;--‘\;‘—;M.“HH(PS &(s-sp) + Bls-sp) py) . t4.47)

Eq (4.45) 15 the quantum version of the classical expression in Eq (4.26). One can
show that the initial value of the comrelation function is zero in the quanfum case,
Cistt=0)=0,32 in contrast 10 the classical limit where Cp(t—0*) is finite and equal 10
the TS'T value. 48 This makes the problem of defining a quantum version of the classical
TST apparent.

By using the fact that C(1=0)=0) we can also write the rate constant as

Al
1
K TS [ACH0, oo < At<styy, (4.48)
where
j p
Cn =2 B Jdl Tr{ exp(AH) F 5 cxp(-AH) Fol1) exp(-BH) } . (4.49)

The rate constant deseribes how the sylem evolves over macroscopic times. In eg
{4.48) 11 15 related 10 o time-integral over a flux-flux correlation function, which decays
0N a microscopic time-scale. This kind of relation between a Tansport coefficient, the
rite constant, and an equilibrium correlation functionS 3 is often called a Green-Kuho
formula In connection 10 reaction rtes it was first given by Yamamoro 44

4.4.3. Multi-site system

Inthe case of surface diffusion the adatom can be located in more than two sites,
allowing for the possibility that an energized adatom will make a correlated multple
Jump and thermalize in a nonadjucent lattice site. This kind of systern can be weated in a
fashion similar o the two site system, using the formalism developed by Vorer and
Doll. 54 They simple generalize the expression for rate constant in Eq (4.26) 1o

kiosj =< v, §, 640 >, Teor < A <<t,n ., (4.50)



where v; is the velocity normal to the dividing surface (defined as positive when the
sysiem is exiting from site i) and 8; defines the location of the dividing surface. I'he
function 8t} is 1 if the adatom is located in site j attime t and otherwise it is zero. Eq
{4.50) connects the phenomenological rate constant kj—j. introduced in Eq (2.2), 10 1he

microscopic force law.

Voter and Doll have applied the formalism to a model system that is supposed to
mimic the diffusion of a Rh-atom on 2 Rhi()01) surface.54 The Bom-Oppenheimer
potential energy surface is represenied as a sym of pair-potentials of the Lennard- Jones
form. They combine a Monte Carlo approach for static properties with molecular
dynamics to obiain the ume dependence needed in Eq (4.50). For computational
7e450ns it is then ctucial that the trajectories need 1o be followed only for relatively shon
times. In their case At is of the order 1ps. For thai particalar system they conclude that
at T=1000 K and below the dynamical comrections are negligible, indicating thar the
TST-value for the escape rate together with the assumption of single uncormrelated jumps
is & very good approxunation. They also clain that it is probably true that dynamical
correction factors are uile minor in genera! for surface diffusion of adaloms, provided
the TST surface is chosen properly.43 That conclusion is supporied by FIM
experiments &

The method with dynamic correction factors can be extended o include interactions
among adsorbed adajorns. 55

R¥

R

5. FRICTION COEFFICIENT AND MEMORY
FUNCTION

The phenomenological reatment in Sec 3 is based on the Langevin's equation,
where the force on the adatom is divided into a friction force and a siochastic forve.
This is an approximation. In Sec 3 we pointed out that in order to gencralize the
Langevin's equation one has 1o incoperate memory effects into the formalism,

5.1. Formal exact equation of motion

[tis more convenient 1o base a discussion on the generalization of the Fokker-Planck
equation than on the gencralized Langevin' equation in Eq (3.27). We want 1o derive
an equation of motion for the probability distribition f(r.p,1) to find the adatom ar time 1
at position r with momentum p. To do this we introduce the microscopic phase-space
density

Pl = 8(ry-Re(1)) 8(p,- Py), {5.1)

where [ is a short hand notation for the phase-space point (ry.p). The position and
momentum of the adatom is as previously denoted by Ry(t) and Py(1), respectively. In
thermal equilibeium we have the probubility distribution

) 2
P> = <n(r))> (Br2nm) V2 exp-hLy | (5.2)

where <i(r)> is the mean density of the adatom. To discuss dynamic phenomena in an
equilibrium system we form the phase-space correlation function

CHLED = <p(1)>"L <piiny pr17)s . (5.9

As previously, the superscript s indicates that we are oeating the self-motion. CS(11')
is & mathematically well-defined quantity and it satifies the initial condition

CHIT'=0) = 8(11) = 8(r)-ry) 8(p;-p)) . (5.4)

It is equal 1o the conditional probability, i.e. the probability 1o find the adatom at time 1
al position r with momentum p if it at time t=0 was located at r and moved with
momenum . By multiplying the phase-space correlation function with different
powers of momenta and integrating one can exaract the more familiar density and



current correlation funcuons. The Laier can be used 1n determining the velocity

correlation funciion and from Ey (3.14) one can then obtain the self-diffusion constnl,

It 1s nowadays well established how one can derive formally exact ranspon
equations. One method is based on the projection operator techniquetd.50.56 iniroduced
by ZwanzigS7 and extended by Mori. 58 If we apply that formalism to the phase-space
correlation function we can write2t

d p p .
I Vs Fd(e)v ) oy

L
=Jdi Id!vp L(lll-i)»l%p+\7‘,ICS(H'I'}, {5.5)

This s 4 correct formal generalization of the Fokker-Planck equation. The influence
form the surrounding on the adaivm is splitinie two pans, one static und one dynamic,
The static pan gives rise 10 the conservanve {orce F“d(r) = -Vl r), which s
temperature dependent. 1tis equal 1o the force acting on a fixed adatomn at puositicn r
when the summounduag 15 in thermal equilibrium around that atom. We can define it
through

Fidiry = < Fie) >, (5.6)

where F(r) is the force on the adatom and <..>p denotes an average over all the
degrees of frecdom of the substrate in prescence of a fixed admom anr. The

carresponding potential V#(r) is a free cuergy and the mean density cin be wrien as

<a(ry> = Z' enpl-Bvadip)] 5.7

where 7. is the configurational purt of the parttion function,

Z= [dr exp]-BVir)] . {5.8)

Iy average the force on the adionn 1y given by I-‘“d:r) and ui transition state theary
(TST) anly this part of the interachon is included and afl Huctuations of the force around

the statc value is neglecied. The dynamic pan, represented by the nienwry funcion
LCIT, 15 a direct generalization of the fricuon e and 1 is Tesponsible for Quctuation

and dissipation of the energy of the adatom. Obviously, one can not evaluate the

memory funcuon exactly for any real many-body system, bur its formal EXpression can
be the base for relevant approximations. 1t contains the flucivations, 8F = I - l-“'"-', of
the force on the adatom from its adiabanc value and it depends therefore on the
simuhaneous motion of this aiom and the surrounding particles.

5.2. Fokker-Planck approximation

In cases where their is a clear time-scale separation between the motion of the adatom
and the motion in the surrounding, one can justify approximations of the memory
function. If the fluctuations in the substrate have decayed before the adatom has moved
appreciably, the motion of the adatom can be replaced by its initial value and the
memory function reduces (o

L1ty = 8(11') < 8F(0) 8F(1) > (5.9)

Here 8F is the fluctuating part of the force on she adatom, 5F = F - F4, and he
subscriptry in the bracket notation indicates that the force-force correlation function
should be evaluated in the presence of a fixed adatom at position r. The delta-function
represents the effect that the adatom has no time to move or 10 change momentum
durtng the time the force-force correlation function decays 10 zero, If we are only
interested in times longer than the typical refaxation time of < SF(0) 5F(1) >r, the

equation of motion (5.5) reduces 1o the Markoffian equation?9.59

|;i+ BV, + (o) 9, CH(1IY = Ve p + 'E"v,, | C3D . (5.10)
|

with

ey = & far < 560) 8K @) >, (5.11)
1)

m

This is the Fokker-Planck equation but with a position dependent friction tensor, in
conirast 10 what was assumed in Eg (3.20). Eq (5.11) gives the microscopic expression
for the {nction coefficient and it is basically a property of the surrounding. The only
dependence on the adatom is that the force-force comelation function shouid be

eviluated in the presence of a fixed adatom.



5.2.1. Electron-hole pair excitations

The obvious candidate 1o treat within the Fokker-Planck approximation is the
coupling to the electronic degrees of freedom. 60.6 1 Since the electron mass is much
smaller than the mass of any adatom, the fluctuations in the surrounding iy fast with
respect 1o the adatom motion, and the assumption behind the Fokker-Planck equation
should be valid. If we assume that the adatom couples to the density of the surrounding
¢lecirons, the force on the adatom can be WTitien as

BF = - [dr Vg V(R.r) 8n,(r) (5.12)

where 8n.(r) = n(r) - <Ne(ri>g is the flucwating pan of 1he density operator for the
clecrmons, R is the position uf the adatom and V(R,r} describes the interacrion between
the electrons and the adatom, The friction coefficient can now be expressed in terms of
the densiry -density correlation function for the electronic motion according 10

n(K) =r% [dr {dr Vv (R,1 ({dl < 8ny(r,0) B (e >p VIR . (513

An estimate of the order of magnitude of this expression leads ot

M fr
-4 b (5.14)

where m, is the electron mass, m the mass of the adatom and eg is the Fermi energy.

In order 1o evaluate the frictipn coefficient one has to calculate the densuy-density
cotrelation function for the eleviromic motion in the presence of 4 fixed adaom. For a
chemisorbed adatom this is very difficult 1o do fram first principle. The density
functional theory provides 4 one-eloctron scheme for caleulating ground stale
properties, which takes into aceount exchange and correlation effecis 62,63 The
friction coefficient is, however, a dynamic property but due to the time-integral from
wero w infintty only the low lying excitations {@w—{}) are needed. It is then plausible that
the density functional scheme can be used.54 Within 4 one-electron scheme Eg5.13)
reduces 1095

41

o Inh .
iRy =22 i 1A VYR [dryy () g () VB VR

(Elx:Ek‘:eF)
(5.1%)

where wy(r) is 3 one-electron wavefunction with wavevector k and energy £y, and f§
denates a cantesian coordinate. The factor 2 comnes from spin degeneracy. Actual
citlculations based on the density functional scheme with the local density
approximation for the cxchange-correlation potential have been performied 66 Typically
one finds bn of the order | meV for hydrogen chemisorbed on a jellium surface.

The excitations of electron-hole pairs in metals provide an energy dissipation
mechanism in addition o coupling 10 phonons. In the language of Bom-Oppenheimer
potential energy hypersurfaces (he electron-hale pair excitations promote transuions
among nearby hypersurfaces 26 The strength of this nen-adiabatic coupling can be
obtained from the above ab initio calculations. They can also be the starting point for
quantitative investigations of the relative importance of elecron-hoie pair excitations
versus phonons in adatom dynamics.

5.2.2. Phonons

IT we instead consider coupling 1o phonons we can simply replace the electronic
density i Fig (5.13) by the density of the substrate atoms. It is then convenient o
expand in the lattice displacements uy and the following formula for the friction
coefficient can be derived,?!

i

m

nBBR) - by vzg(R—Rl)({dlcu?(l)u‘ﬁS VP R-R)) (5.16)
a

In deriving Eq (5.16) it is assumed tha the adatom interacts with the substrate atoms
through a pairwise additive potential ¥(r). The subscript eff indicates that a Debiye-
Waller factor has been combined with the potential to an effective voupling term and o
and B denote cartesian coordinates. In the presence of a fixed adatom the equilibrium
positions of the substrate atoms are displaced and u; are the displacements from these
pentusbed equilibrium positions, which are denoted by R; = Ry(R). The harrmonic
approximation for the latlice motion is assumed and only the one-phonon term has been
etained. An estimate of the order of magnitude of this expression vatid when the
adatom is located around its equilibrium position leads 1067



o s,
- ) A7
m, %) D (5.17)

where iy is the mass of the substraie atois, w, is the vibrational frequency for the
adatom and wr, is the Debye frequency of the subsirate phonons.

Using the Fokker-Planck equation in this case is certainty highly guestionable. Only
when the adatom is much heavier than the substrate atoms the friction description is
supposed o provide an accurate description of the coupling 10 the phonons. However,
actual calculations of the motion of an adsorbed atom show that the Hme-scuks
sepuralion between the motion of the adatom and the substrate motion need not 1o be
lurge. If the Debye-frequency is at least iwice as large as the characteristic vibeational
frequency for the adatom, the Fokker-Planck equation gives quile accuraie results,
provided ane uses a proper positien dependent frction coefficient 67

5.3. Mode coupling approximation

For light adsorbates one has 10 go beyond the Fokker-Planck approximation and
treal the memory function i # more accurale way. The tme extension of this function
depends on how the excitations in the substraie propagale and decay, as well as on the
raotion of the adatom and the coupling in between. These effects are incoperated in an
approximative way in the so called mode coupling upproximations, which take
expliciy into account the appropriste Line-scale of the fluctuating force through the
inclusion of the dynamucs in the surounding. In the simpliest approach one write the
memory funcuon as a product of CS(11'1) and pari thal contains that substrate motion,
The resulting equation of mution becoines non-linear in CECL1') and has w be solved
sell-consistently. The lack of translaponal symmetry makes the numernical work
complicated and only studies where the adatom is restricted 1o nuove in one dimension
have been performed. 2§64
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