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O, 1. BeRTONI (Crue)

BASIC STRUr7URAL AND ELECTRONIC PROPERTIES OF SEMICONOUCTDR

URF, .
s Aees 1.1 - One dimensional chain of atoms.
4, Elechpue Jitfocs SGis Smiple Hoolefs A simple model like one-dimensional (1D} linear chain, with a termi-
nation, can provide an introductory point of view on the formation of
A f - One dimengional chern of alines elecironic surface states. Let us consider the infinite chain of Fig. Ia.

A3 - Tumented choin gnddur /cm it The simplest way to describe an electron in this 1D crystal is to consider
43 - k. a-mflcx eneray da‘al\-uﬂl'm anel w0 h’h"‘HJ  condbiProns a periodic potential of cosine-type

4i L gtk &.'a-.J.-'r.(j model v Wi lireen /.- V(z) = Vot Ve + ¢—%0%) {1.1)

" - 'l‘" “’h ‘JW/““ Lz where only a component of the periodic potential is retained. Here
46~ ‘Yhree dimengl mad AL, # = 2x/a, a being the lattice parameter of the linear chain. Near the
boundary of the Brillouin Zone (BZ), i.e. for k = g/2, the Bloch-type
eigenfunctiona ca be approximated by the sum of two terms;

9. Tdeat Surfaces ond Jurha Sonds

Y(2) = ¢16%% 4 ¢¢°0-4)s 1.2
d /- That Rk as ond JSurface forndies " ? 0
2.9- Prma”:m o/ butk atong dndfr?}d:r_d butk, band Hhuchare ;I‘i(l::.energy eigenvalues can be obtained by the secular system of equa-
A4« e ol fpm' r.){ atadlo (k’;E ( V)', )(c’)‘—'-ﬂ (1.3)
Y - STty o Wy tband bendving Farme fvel tmyin {atrd y LA

Phensmons aifa (‘] prim J wnol telafr where Rydbergs have been used as energy units. Two bands E = Ef,

separated by a gap, are obtained

Ef= %{k3+(k-—,)=i \/[ka_(k_.,)zp._ﬂy’!z} {1.4)

Ef 2
V()= ¢z —‘—V——c'("“')' {1.5)
'

The minimum gap is obtained at the border of the 1D BZ (see Fig. 1b),

where 2

£ 0
Ely= . % |V (1.6)
Vyala) =03 L;'-[e“"/’ (1.5)

]

#0 that for ¥, < 0 one has

¥7,(2) = 20 sin{gz/2) and ¥,74(5) = 2 cos{gz/2)

and for V; > 0 one gets

V) a(2) = 2 cos{gz/2) and ¥,72(2) = 2i ainfga/2).

The charge distribution of the lower-energy state has a maximum in the
midway between the two atoms if V, < 0, as the potential is attractive
in the region of the bond. If V, > 0 the lower energy siate ia mainly
localized at the atomic sites.



The appraximate wavefunctions considered here are Bloch states wich
verify the conditions

Ye(z+a)= ¢"‘"¢J;(z) . [1.8)
[¥a(z + a)|* = [¥u(z)]2. (19)

They can be written as
Va(z) = euy(2) (1.10)

with ur(z + a) = u(2).

1.2 - Evanescent wavefunctions, truncated chain and surface states

Before considering the case of a terminated laitice, we can extend the
class of functions (1.5) to complex values of & but with real values of
energy in eq. (1.4), The condition (1.9) is not satisfied. If we write
k=g/2—ix with x > 0, we find

2
Ei-w= T =XtV -2 B

The values of the energy are real, if X< |V,|jg, and they are found
in the region of the forbidden gap. {Ses Fig. 1c). The corresponding
wavefunctions are still eigenstates of the chain hamiltonian and of the
lattice translation operator. They are Bloch states, satisfying eq. (1.8),
but, with complex k, they are of evenescent type. The phase factor in
eq. (L.10} becomes e'#*/3ex®, vanishing when £ — —oo and diverging
when z —+ co. The wavefunctions with energy in the gap can be written
as
¢’|l3—ix(z) = cxa(en‘ujz + eh‘lc—inlz}

= eX%e¥cos(g2/2 - 5) (2.2)

where & is a phase, depending on the energy, which moves from 0 to » /2
when the energy goes from the lower o the upper edge of the gap, when
itisV,; <0. IV, > 0, § goes from -%/2 to 0, when ones passes from the
lower to the upper edge of the gap. The two types of evanescent atates
are drawn in Fig. 1d.

Then we assume that the chain is terminated at the midpoint of two
neighbouring atoms at £ = 0, so that the crystal is located in z < 0; the
Dpotential in the external region z > 0 is approximated by a constant term
Vout, greater than the value of the energy at the upper edge of the gap.
The Bloch functions must be matched at £ = 0 with the external solution
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in the semiaxis £ > 0, having the form e~ with ¢ = VWV, — E, at
each energy E where the matching is possible,

In the region of allowed bulk bands the extenal solution is matched to s
combination of ¢4(z) and ¢_x(z) at every E; with real k. In the region
of the gap, the matching condition is obtained by equating the logaritmic
derivative of the evanescent solution and the external decaying function:

—g= x —tg(5). {2.3)

x and g are positive and depend on energy. This equation has a solution
only in the case when § is positive, i.e. when V, < 0. V, is negative,
we know, when the lower-edge state ¢v;‘, has s maximum of the charge
density distribution at the midpoint of the interatomic distance, which is
the truncation point. The matching condition fixes the energy of a new
state, obtained by matching an external exponentially decaying function
and an internal evanescent wave with a decay length 1/x. This state
is a surface state, being jocalized in the susface region and jts energy
eigenvalue lies in the bulk energy gap,

1.3 » k-complex energy dispersion and mateching conditions

In our simple model we found a single surface state if V, < 0, This
condition is a particular formulation of the Shockley theorem?.

In more general cases it is possible to follow the same procedure solving
the band structure - aiso in a three-dimensional (3D) crystal - obtaining
avanescent solutions by removing the reqirement of real k values, allow-
ing complex values of k,, the component of k normal to the aurface.
These solutions must be found at every energy and a linear combination
of them must be matched, with ita derivative, with the external decay-
ing function and its derivative, If the energy is in a forbidden gap the
existence of & solution of the mathching problem originates a surface
state,

In the region of the energy values of bulk state continuvum, the travelling
bulk states with components , and —k, are mixed, to be matched to the
external solution. In this way a propagating wave is completely reflected
by the surface.

For the empty bands, with energy higher than the vacuum levei (E >
Vout), the travelling internal solutions can be combined and matched to
an exiernal travelling state. They correspond, in the 37} case, to to the
#0 called LEED states.

Moreover forbidden gaps can exist also in the enipty states above the
vacuum level, In these region of forbidden energy for travelling waves,
evanescent solutions match a combination of external propagating waves.
These kind of states can play an important rele, when they are used as
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final statea for the excitation of an electron, in surface sensitive speciro-
scopies.
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1.4 - Thight-bindieg model for the linear chain.

To have a further example on the origin of the surface states, let us
consider the linear chain in the tight-binding scherne. We choose a chain
with cne atom per unit cell and describe the wavefunctions in terms of a
linear combination of atomic-like crbitals. At each site § we have the set

of functiona {¢a(z — la}}. We combine them 1o obtain Bloch function
for the infinite chain:

¢(¢) =1 ihisy (s-1
x (2} m;‘ $a(z = la)

vils) = i) = L iklag (2| ol
x(3) z‘;‘k(‘-") i (2) 7N ; z':‘?k(ﬂ)' (#-1a) (01
From Hyu(s) = Evs(x) one has the secular system;

2 {Hpalk) — EuSpalk)}es(s) = 0 (4.2}

where

Salk) = T e [ g3(a)dos~lade = T e 5, 00,)  (43)
i 1

Hpo(k) = Ec““" j $5(s)Hpa(s —la)dz = Ze‘“"Ep.,(O,l) {14)
1 ]

If the crystal periodicity iy jost because of the presence oe some defects
or to the trmination of the chain, we cannot use longer Eq. (4.1) with,
the phase factors containing the wavevector k, and we must replace
¢'M52,(a) by Ara. Then we write:

¥(3) = Y Atadals — ia) (4.19

The secular equations are shen givea by:

3 Y Hpalli V) ~ ESpallit)} Ava =0 (4.2
[

Let us oversimplify the problem, solving the bulk case with a set of two
orbitals (o Jabel can indicate a or p = orbitals as shown in Fig. 2and
assuming Spq(l;l') = 8ga8y. Orbital functions on different sites are
orthogonal, as in the Slater-Koster model2 The integrals Epq(l;1') are
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assumed to be different from zero only forl = Hor i’ = | 4+ 1, so that
only nearest-neighbour interactions are included;

Eu.(iil)=E, E,(hil)=E, Eulil) = Eg(il) =0
ELl£1)=—., Egp(l;i £1) = 1,

Ep(lil 1) =~E,{ilt1}= +94p

where all the 's are positive. The Eq. (4.2) for the infinite chain

becomes (Hea = Er)es(s) + Hyper(p) =0 (4.5)
Hyser(s) + (Hpp — Enex(p) = 0

with

Huy = E, = 27,,c0a(ka)

Hpp = Ey + 2vppc0a(ka)

H,p = —Hp, = 26,p8in(ka)

Let us semplify the model furtherly by putting vy = Vaa = Ypp = Y4p and -

choosing the origin of the energy scale to have (E,+ E,)f2 = 0. We
write A =(E,- E,}/2> 0, where A > 0.

We obtain:
Ef = +/A?+ 497 + 47Acos(ka) {4.6)
with
{ (B -a- 21coa(k¢)c|,s:) + 2Zivsin{ka)ey(p) =0 4.7
=2vsin(ka)er(s) + (EF +A+ 2ycos{ka)ey(p) = 0 )
At the center of the BZ, k = 0 (the I point), we have:
Ef=~{A+27)  Ef=+(A+2v) (4.8)

Fig. 2 - Tight-binding basis(a).

r
Crossed or u::e.rolud bands (b), Surface
&nd bulk levels as & function of lattios spacing in terminated olmin

The first eigenvalue corresponds to a state composed of pure & orbitals,
the second of pure p orbitals, as it follows from Eq. (4.5).
At the BZ border, k = x/a (the X point), one haa:

Ef = +|A - 24 {4.9)

As #in(ka) also vanishes st X, also the two states at the gone boundary
are pure s or p. If 2y < A the lower state is s—type and the upper is
ptype. If 2y > A the two states have energies in opposite order, The
effect of large v values is to create an hybridization gap. In the case of
27 > A each band changes its orbital composition on going from I' to
X. (See Fig. 2).

Let us consider the case of a terminated chain. We must use the more
general secular equation (4.2) and see if there are solution at each energy
ot not. We put the last atom of the chain at { = g and the firat missing
atom st { = 1. To build up the function of the type (4.1°) we can use at
each energy the solutions of equations ((4.3), writing:

Aa =Y cla; k;)ettsing, (4.10)
)

where k; = k;(E) are the solutions of the secular equations, as a function
of E, obtained at any energy. They can be real values if E i inside one
of the two bands (4.6) and in this case two values k and —& are found.
If E is not in theae regions one obtaines complex solutions for k (evanes-
cent states) which can give zise to localized states. Ope has also to
include appropriate boundary conditions to represent the missing terms
in the Hamiltonian (4.2') and to ensure the appropriate behaviour {no
divergence) well inside the bulk.

In our simple case real values of E in the §8p are obtained with k, ; =
nfa Fix with x > 0. We must accept only k) 3 = x/fa — iy, to avoid
divergences in the phase factors in ¢q. (4.10), being the atomic positions
of the semi-infinite row in / < 0 sites. Then there is only one term in
the j-sum (4.10).

The other boundary condition to take into account in solving (4.2") is
the surface termination. In our case, where only nearest neughbour
interation are included, it i simply equivalent to

3 Epa(0;1)A10 =0 {4.11)
From (4.10) we obtain:
2. Epal01)ey, (a)e™™= =0 (4.12)
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In our model we have E,(0;1) = —y and E,,(0;1) = 4, so that it is
cx,(4) = ex,(p). From {4.5) it follows that the only acceptable solution
is £ =0, the centre of the gap.

In this way we find a state mainly localised at the surface and decaying
inside the crystal with decay length 1/x. Its orbital compoeition is given
by a symmetric combination of ¥,(s) and ¢,(z), i.e. it is an hybrid
orbital pointing in the positive direction of z (out of the surface).

We can note that it is possible to transform the basis of s and p or-
bitals in a basis of hybrid sp orbitals, by symmetric and antisymmetric
combination of them. The two orbitals have directional lobes pointing
respetively towards 2 > 0 and z < 0. The surface state, if it exists, is
made of orbitals of the first type, with a major contribution coming from
the surface atom at | = 0 dangling bond.

The condition of existence is c(a) = ¢(p) # 0; in order to satisfy with
this solution Eqs. (4.7) It is necessary to have not only £ = 0 but also:

A + 2yeos{kja) — 2iqsin(kya) = 0 (4.13)

Because one has 2c0s(k1a) = ¢X*+¢~X* and —2Ziain(kja) = —eXo+¢~Xe,
the condition is:
A = 2pe~Xe (4.14)

which can be satisfied only for 2y > 4, i.e. in the case of a gap of
hybridization type. In this case the lower bulk energy state at X point
is made by a combination of p orbitals with a large value of the charge
density at the middle of the bond. If we create the surface at this point
and if the lower edge of the gap corresponds to a bonding state, a surface
state of the dangling bond type appears in the gap. We obtain a result
consistent with the one obtained in Paragraph 2, using plane waves.
The energy of this state is 0, in our scale 1/ 2Ep + E,), the mean energy
values calculated for the hybrid orbital. From eq. (4.14} it is clear that
this state decays rapidly inside the chain if 27 is much larger than A,
A choice of a less symmetrical model with 4,, # Tpp # 718p would give
leas simple formulas, but essentially the same physical picture,

1.6 Classification of surface states,

Using two complementary approaches, we have seen that states localized
at the terminating region of the linear chain with an exponential decay
inside the bulk can arise in particular conditions. In both models the
crystal is terminated abruptly and, roughly speaking, the condition of
existence of surface states in the gap is linked to the possibility of ac-
commedating electronic charge density in the region of the broken bond.
In both models the potential ecen by the electron repeals periodically up
to the termination and there is a sudden discontinuity ai ihe surface. The

seality should present & smoother profile. The potential at last atomic
sites is not necessarily the continuation of the petfect bulk potential and
in the external region it should continuously reach the vacuum level.
Additionally the equilibrium position of the last atoms in the chain can
change with a local relaxatjon of the interatomic distance.

These effects can be introduced in the tight-binding model by changing
the values of the intra-stomic parameters and of the hopping integrals
in the last atoms of the chain. These changes can give rise to states
localized at the surface and located in energy near the edges of band gap
and inside it, also in absence of Shockley states. These surface states are
commonly claseified as Tamm sTATES?.

Similar states which come out from the border of band, mainly arising
from the orbital of the same type, are encountred in the study of ionic
crystal. The 1D jonic cryatal is a sequence of different atoms carrying
different orbitals with A > «. The two bands are separated by a wide
gap, not of hybritization type. Bands are uncrossed, but the last atom
of the chain has a different environment respect to the atoms of the same
type inside the bulk.

We can consider an sp-chain like the one considered in §1.4, but with
different sites for 4 and p orbital. A is reduced in the last two planes and
the possible consequence is the presence of a state immediately above
the valence band (1st band), if the termination is at an anion site, or
immediately below the conduction {2nd band), if the terminating atomic
is the cation®. Both kinds of states can be found in a real surface where
both atomic species are present. Their presence reduces the gap at
the surface, Also in the case of partially ionic semiconductors the states
originating from the hybridization gap can have different energy location
as a function of the atom at the surface which mainly contribute to the
state.

A review of one dimensional models for the study of surface states is
given in Ref. 5.

1.5 « The three-dimensiona! case.

The previous description can bs generalisad to a realisiic description
(3D) for & semi-infinite crystal, The s = 0 plane divides the region
{z < 0) where the bulk potential is imperturbed, from a selvage region
containing the outer atomic planea (s > 0), where the potential can vary
respect to the bulk and continuously change to reach the vacuum value.
The infinite crystal one-electron problem is considered as completely
solved: E.(k) and ¢uu(r) are known across the whole 3D B2, including
the extension to complex values of &,.

One haa to match at every value of energy E, the external (z > 0)
solution with the internal one (# < 0}. The 3D k vector is not a good
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labe! for the state but only ki = (ke,k,) and one has to mix all the
solutions with the same energy  corresponding to different k « including
slso the decaying solutions of the type &k, = x — {y. Thus one has
to extend the bulk calculation to the complex values of &, in order to
include all bands of evanescent states, which branches out of maxima
and minima of the real-k band structure. Fig. 3 indicates schematically
a possible mixture of different (periodic and evanescent) states.

At & given k|| cne haa:

Yin(r Ky, E) = 3~ Ap(r, ky, £5(E)) £<0  (8.1)

and
You(F, k|, E) = Y Bax,(r,kp, E) £>0 (6.2)

A solution exists only if the matching of the two functions and their
derivatives respect to 2 is poasible at every point of the plane = = 0, If,
at given k; and E, bulk periodic states exist one finds how the surface
modifies the bulk wave functions,

If the extended bulk states are mixed with evanescent states in the
matching procedure, one gets a state which js a combination of the two
types {iravelling and localized) of functions. These states are called
surface resonances,

If no bulk state exists at E, one has to match only decaying states on
both sidea (for £ < V,y). I the matching condition is satisfied a true
surface state arises.
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