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1 - INTRODUCTION

In surface physics, one calls adsorption the accumulation at the
solid-vapour interface of atoms or molecules coming from the gas phase. One
usually classifties adsorption phenomena into two domains according to the
energy EB involved in the bonding :

~ when |EBi £ 0.5 eV, the adsorbate 1s said to be physisorbed on the
surface. In physisorption, the adsorbate binds to the substrate via Van der
Waals forces which are due to dipole-dipole interactions. A typical example is
the rare-gas adsorption.

~ when IEBI 2 0.5 eV, the adsorbate is said to be chemisorbed. The
bond between the adsorbate and the substrate is of chemical type 1. e. 1t
Involves sharing (covalent bond} or transfer (ionic bond) of electrons. This
is the case for O. N, H... on transition metals. This domain js obviously the
most important in view of its practical applications {catalysis, corrosion. . .)

and we will limit gurselves tq this phenomenon .

The adsorption theory can be tackled using three complementary
approaches :

- the macrescopic or thermodynamical approach which glves useful relationships
between measurable quantities of the system : fgr instance. the relation
between the amount of adsorbates and the pressure.

— the microscopic approach which aims at calculating the interaction between
the adsorbate and the substrate within the quantum theory.

-~ the stat{stical methods which 1link the above approaches by relating
macroscopic and microscaopic physical quantities.

In these lectures, we will limic ourselves to the microscopic
approach. Within this approach complete knowledge of chemisorption phenomena
requires the determination of

- the geometrical structure of the system (adsorption site. bond
length. . )

- the adsorbate binding and diffusion activation energies

- the charge transfer

— the electronic structure of the adsorbate and substrate

- the vibration frequencies.

These physical quantities can be measured more or less directly by a
variety of experimental techniques. Let us mention for example ‘'’

- field fon microscopy {FIM). low energy electron diffraction (LEED). surface
extended X-ray absorption fine structure ({SEXAFS)}, surface core level
spectroscopy (1. e. electron Spectrascopy for chemical analysis-ESCA-at the
surface} for the geometrical structure,

- microcalorimetiry, thermal desorption, FIM faor binding and diffusion
energles,

- work function measurement, surface core level sSpectroscapy for charge

transfers,



- U¥ and X-ray photoemission (UPS, XPS), field emission microscopy (FEM)}, ion
neutralisation spectroscopy (INS)... for the electronic structure,

- electron energy loss spectroscopy (EELS), neutron diffraction, Raman
spectroscopy... for the vibration frequencies.

Although these experimental data are sometimes rather spread for a
given system, they undoubtly exhibit systematic trends which we will now
summarize :

- the bond-length (1. e. the distance between the adsorbate and its nearest
neighbours) increases with the coordination number Z of the adsorbate as shown
in Table I for 0. S, Se on Ni (111) and {100)'2’. Other examples can be found

€31

in ref. The same trend 1s also obeyed by surface atoms which, due 1¢

their broken bonds, come closer to the subsurface plane 1. &. there is a

‘7 which decreases or even

contraction of the first interlayer spacing
vanishes 1in the presence of adsorbed atoms. Similarly one observes a
dilatation of the interatomic spacing a for transition metals exhibiting a
phase transition from & body centered cubic structure (8 nearest neighbours)
to a compact structure {12 npearest neighbours) : for instance a = 2.48 X far
becec Fe and 2.52 X for fec Fe,

- the most stable adsorption position s usually the site with the largest
coordination number available on the surface ‘. Let us notice however that
some chemisorbed atoms do not oceupy the site with maximum coordination - it
is lmown that, on the (100) face of W, H sits at the bridge rather than at a

centered position '®’,

~ the variation of binding energy with the crystallographic orfentation of the
surface plane (anisotropy) is always smaller than expected from simple
arguments such as the number of bonds even though there is a large straggling
in experimental data‘'®',

~ the variation of the binding energy has been studied elther for a series of

adsorbates on a given substrate or for a given adsorbate on a serles of
substrates. Fig. 1 shows the results obtained for 54 adatoms on W (111), {112}
and Ir (111) """ which follow a parabolic behaviour similar to that of the
cohesive energies. In Fig. 2 we give the vartation of the binding energies of
N, O, F, H '®'® along a transition series which decreases continuously when
the substrate d band fills,
- the surface diffusion activation energies have only been measured for 5d
adatoms on various faces of ¥ ‘®’, They exhibit a maximum near the middle of
the series similarly to thelr binding energy {Fig. 3). More qualitatively it
is known that transition adatoms deposited on the pole of a FIM tip are most
often reflected by the edge of the tip ''°'. One also observes that the
diffusion of adatoms along a smooth ledge step 1s little perturbed by the
presence of the step '''’,
- finally the ability of transition metal surfaces to dissociate simple
molecules (N2, 0O, NO...}) decreases along = transitton series (see
Table II''2',

Cne needs therefore s theory which can rationalise all these results
and make good predictions for not yet investigated systems. This is actually a
very difficulc task since, ideally, one should determine the geometrical and
electronic structures self-consistently by minimizing the total energy of the
system. Two main tracks have been followed based either on the quantum
chemistry methods or on solid state physics techniques. However none of these
Iines of attack are fully appropriate since the former most often deals with a
finite number of atoms while the latter usually treats systems with three
dimensional periodicity. We will develop here mainly the methods derived from
salid state physics and we will show how these methads can be modified to deal
with non-periodic systems. We will also give a brief outline of the most usual

quantum chemistry methods. Finally we will only consider the adsorption on
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metals of isolated atoms or molecules 1. e. we will assume that the adsorbate

coverage Is so small that the tnteraction between adsorbates can be neglecred.

2 - QUTLINE OF THE PROBLEM

Let us consider an atom X approaching the surface of a metal the
Fermi level and the work function of the ilatter being respectivels EF and &,
Let us call T and A respectively the lonization and affinity energies of the
free atom (i. e. at an infinite distance from the surface). From these
quantities, one usually defines an effective Coulomb integral U wrich ts the
energy involved in the reaction :

2X + X' + X” (1}

U=1-4 {2)
(U is postcive since A ¢ 1).

When the atom is far from the metal surface, the main intermsction
comes from classical electric Image effects and leads to g shift of fonization
and affinity levels {Fig. 4) which can be easily calculated’'d!

2-1, lonization level

The Image force acting on the outgoing electron is (Fig. 5) :
ez -

FerSo0s = ~ (3)
4z (d + z)

The first and second terms are respectively due to its own image and to the

ion image. z being large, the resulting force is repulsive and therefore the

ionization energy is decreased by an amount which Is given by :

L
2
e
I=JFdz=H=Vlm (1)
d
and therefore the effective jonization energy is
2
e
Ie”=I~H=I—VIm {5)

2 - 2. Affinjty level

Similarly when approaching an additional electron towards the
adsorbate, only its image contributes to the image force. This force is

attractive and the modification of the affinity energy 1s :

d
2 2
e e
“:J-;z-d1=qa-=v]m (6)
and thus
Aeff = A+ VIm (7)

Consequently we can define an effective Coulomb integral Uel'f by :

Uef!‘ =U-2 va {8)

In a very qualitative way and taking Into account that physically we
must have Ae” < Ie“.. three cases can be distinguished according to the value
of the metal work function :

(1) 1T - E-;- >4 > A+ :‘—? 1. e. the Fermi level lies between the effective
affinity and fonizacion levels, in these conditions the adatom tends to remmin
neutral (see Fig. 4) since the transfer of an electron to or from the metal
would cost some energy

(11) -!%'1 <I- % <% i. e. the effective tonizatien level is above the
Fermi level of the metal. The adatom tends to become a positively charged ion

since one gajns the energy ¢ - Ieff when transferring an electron from the

adatom to the meral.

2
{1it) d A+ %!— < -I-;-—A 1. e. the effective affinity level is below the

Fermi energy of the metal. The adatom tends to become a negatively charged ion
since one gains the energy Aeff - ¢ when transferring an electron from the
metal to the adatom.

¥hen the adatom comes near the surface, the classical image theory
starts to break down and. in addition to their shifts, the levels begin to

broaden and therefore the charge transfer may be a fraction of an electron. We



will see Iin the following that the exact determination of the charge transfer
is very difficult since It Involves the treatment of electronic interactions.
This is a many body problem for which only very approximate solutions exist up
to now. This range of distances is actually the most interesting since it
corresponds to the distances involved in chemisorption phenomena. The alm of
these lectures is to show that, in spite of the difffculties arising from the
charge transfer problem, one can set up simple models from which experimental

trends can be understood.

3 — ANDERSON-GRIMLEY-NEWNS HAMILTONIAN
The Hamiltonian has been first introduced by Anderson''*’ to (reat

dilute impurity problems in bulk metals. It has been adapted by Crimley''s’

18]

and Newns to study the chemisorption of adatoms on a metal surface. Since

these early works, this type of Hamiltonian has been used by many others.
The Hamiltonian can be written :

H=H + H

ads subs * H(:l:)u]:!l ing 9}

Harls' Hsubs and “!:oupllhg are respectively the adsorbate, substrate and

coupling hamiltonlans. [u. the sake of simplicity, let us consider that only

one valence orbital of the adatom Is involved in the bonding like in the

hydrogen case. Then :

o 1
Hads=§ [Ell nm-&il}nw na—a] (10.a)
o
Houbs = z € Mo (10.b)
ko
Heoupling = ) [vak a0 “ko * Yka ko cao] (10.¢}
ko

E: 1s the atomic level of the considered atomic orbital | a > and €, are the
+

cao(cm:r) and c;w(ck.o) are respectively creatjom

eigenvalues of Hsubs .

{annthilation) operators in the spin-orbital | a0 > and metal state | ko >,

the corresponding occupation number operators are -

-

Mo = Carr Sau (11.a)

N, = c;w €1y {i1.b)
U Is an effective Coulomb integrai on the adatom (U = le” - Ae”] and s

usually taken as a parameter. Finally

vak=<a.|ulk>=vka (12}
is the coupling matrix element. Let us notice that this hamiltonian does not

take into account the core-core repulsion between the adatom and substrate

atoms.
3 - |. Hartree-Fock treatment
In the Hartree-Fock approximation the two body operator By Mag is
replaced by an effective one body operator :
nmna_0==b<nw>na_a+<na_a)nw—(naa)(na_o)
In this approximation, H becomes :
i
H=§[H.:;F §u<naa>(nh,>] (13)
g
with ;
+
H;’rF=emnM4§eknka+§(vak €l G * hec) (14.a)
k k
and
E =€E2+U<Cn_ > (14.b)
ao a a-o

One sees at [lirst glance that spins are now decoupled and therefore each spin
can be treated separately. However since Em_I depends on N >, the Final
solutlons should obey a self-consistency conditien.

3 - 1. 1. Local density of states on the adsorbate

Let us consider the states with spin ¢ and assume that | a o >,
lko> ts a complete orthonormal basis. The local density of states on the
adsorbate can be obtained from the corresponding diagonal matrix element of
the Green operator :

[ 1 oo

pa(!-,) =-3 EIim Im Ca“a {E + i€} {15.a)

+



with
G::(E+1E)=<aal ! laa)
E+1E—H;J"._.
A
E+iE—EM -vakl kva]u
-1 " _
{E+1E~—H§F) = [ -V, E+ 1€ -g 0
§
-V 0 E+ 16 - € .

G::(E + 1€) 1s the first element of this matrix, i. e.

" {E+1e - € )
Kk k

Coo(E + 1€) =

{E+ie - €. ; (E+iE - €.} —E Ivakl2 ¥ 5 (E+ig - €}

. k#

or equivalently :

2E + 18) = 1 - 1
E*ls-EM—EW EflE*Em—S(E'FlE)
k

which defines the § function,

Using the well known identity :

Vol v, 17
4 E- 6 —iIEIVakFA(E—Ek)
k

in which ¥ means the principal part, we can define two functions :

,[ IEkaE |2 ]
k

k

lim = =
E_.0+kE—Ek+iE

A(E)

A(E)

v 2 |\.'alkf2 8(E - €)
k

(15.b)

(16)

)

118)

(19)

(20.a)

(20.b)

10

S(E + 10) = A(E) - 1 a(E) (20.c)

A(E) and A(E) are not independent but are related through an Hilbert

transform :
ME) = 2 réﬂl-ds- (21)
o E-E
Consequently :
lim G7%(E + 1€) - ! (22)
gsq’ 22 E- € - A(E) + iA(E)

is fully determined by the knowledge of &{E) which is usually called the

chemisorption functipn. From eq. (22) we have :
p:(E) = % AE) 2 2
(E - € - A(E))® + A%(E)

(23)

(4
As already stated Eaa and thus pa(E) are functions of ¢ na_o) and

therefore ;
E

F
N W I pg(E) dE = N( <n___>) (24)

Therefore the self-consistent p:(E) should be such asg :

i, > = N{<n_ >} = N(N(<n__ >)) (25)

Let us discuss the features of p:(E). assuming that the
self-conststent value of (na_”a) 1s known. p:(E) has a continuous spectrum
which comes from 4(E) and thus coincides with the substrate energy band. In
addition one or twoe bound states may appear when the equation :

E-EM-A(E)=O (26)
has roots Eea vutside the continuous spectrum (A{E) = 0). The weight of this
bound state is given by :

ng > = (1 - A'(Em)]" {(27)
where A'(E) - (—!s—ég This last quantity is always negative outside the band so
that

0<C<n, > <1

2o
To proceed further let us adopt a specific form of &(E). Following



Newns‘'®’, let us reptace [V, |* by an average value IVak|zav :
= . B 28.
AE) = ¥ Iva.klav E S(E E"l() {28.a)
k
~ 2 lb
=% Ivaklav p(E) (28.b)

p(E) being the {bulk) substrate density of states which we assume to have a
semi-etliptic shape. It is known that this is actually the local density of
states on the first atom of a half {nfinite !inear chain in the tight~binding
approximation with nearest neighbour hopping integrals (see Appendix 1), Then
A(E} and A(E) are glven respectively by the real and Imaginary parts of the
corresponding Green function multiplied by lvakf:v' This Creen function is

derived in Appendix 1

G(Z) =

n=1+1 (29)
'2

8
where ¥ {5 the bandwidth, the value of m being chosen so that G{z) has the

correct behaviour at infinity and has a negative imaginary part. Thus

w
"1‘ E < - '2—
E+ E? - ¥
4
2
AE} = IVakl“ - {(30.a)
]
A(E) = 0 (30.1)
w ]
SRUES-R3 R
mE) = E (31.a)
wz
2
B(EY = v, |7 %2- L (31.b)
av

—ifE)E

AE)

(32.a)

A(E)

1}
(=)

(32.b)

The variatiens of A(E) and A(E)} with E are shown in Fig. 6. Let us now discuss
the two limiting cases :

3711 a) Meak-coupling Iimee.

This 1s the case when ,vaklzv ts small compared to ¥* and then a(E)
and A(E) are small compared to W. p:(E) reaches only a high value when E - Em
- AME) vanishes. This can be solved graphically (Fig. 6.a). one obtains a
unique solution :

E=e  + A€, ) (3n)

If this energy falls within the energy band of the metal, A is not zero and
can be approximated by A(GM) In which case the adatom level can be thought of
as a virtual bound state with a half width at half maximum {FwHM) A(Ew). i)
this value of energy falls outside the metal band p:(E) will be composed of a

true bound state Eea with a weight <n£c> Elven by eq. (2/) and of a continuous

contribution extending all over the metal band with a weight | - <n8cr)
{Fig. 6a").
3 -1, 1. b) Strong coupling limit

In this case IVA'KI(I;“r is large relative to ¥* and then A{E) and A(E)
are large compared to W. One sees on Fig. 6.b that eq. {26) has generally
three roots (at least when Eaa is not too far from the center of the weta)
band} : one in the metal band and the others on both sides of it p:(E) has
thus two bound states and between them a weak continuous part extending over
the metal band {(Fig. 6.b'). These two bound states can be thought of as the

bonding and the antibonding states of a surface molecule formed by the adatom



and 1its neighbours. This will we clearly seen below in the tight-binding

formalism.

37 01 e) Magnetic versus non magnecic solutions

Two types of solutions are possible for eq. (25) :
{i) <nw) = (“a-cr)‘ this solution always exists and corresponds to a non
magnetic adsorbate.
(11) (nm) = (nam>. in this case the adsorbate has a magnetic moment.

¥Yhen the two types of solutions exist, in principle, the right
solution has the lowest energy. For hydrogen, this soluticn turns out to be
magnetic when the coupling is weak enough. However, the Hartree-Fock scheme
for the adatom becomes questionable in this limit since U jis larger that
A(Em). Then electronic correlations should be taken iInto account and it is
vell known that they decrease the tendency to magnetism which is overest:mated

in the Hartree-Fock scheme.

3 - 1. 1. d) Adsorption on a substrate with a narrow band.

In the tight-binding approximation. In this case, one obtains more physical
insight into the chemisorption function which can be calculated exactly (1. e.
without replacing vak by an average value). For the sake of simpiicity, ler us
first consider a substrate with one s orbital per site. In the tight-binding
approximation we can write :

o> = ) a, (£ 1> {(34)
i

[k> 1s a band state of the semi-infinite crystal and |i> is the atomic orbita}
centered at site 1.
Vo = <& Il o> = ) a, (&) B, (36)
i
where Boi = <8 H| > g5 the hopping integral between the adsorbate and

substrate site i. Thus

SE) = v ) 8 a6 &6, ok - ) (36)
1.4.k

We can limit the interaction to the nearest neighbours of the adsorbate, and
when the adsorption geometry fs such that all these neighbours are equivalent
'Ba;i = §* for any i nearest neighbour of a and ﬂt;l = 0 otherwise. We get :

AE) = wp'? )3 2846, a3(e,) B(E - ¢ (37)
k

1.
nearest neighbours
of a

Let us now consider several simple geometries occurring for instance

on a surface with a square lattice.

— on top posttion {(Fig. 7.a) the adatom has only one neighbour | and

A(E) = wp'? Ea','(ek) ai(e,) B(E - €) (38.a)
k
- () (38.b)

in which n:(E) is the surface local density of states of the clean substrate.
A(E) is thus proportional to this quantity.

- bridge stte (Fig. 7.b}. The adatom has two neighbours noted by |
and 2. Let us first introduce the matrix elements G‘;j of the clean substrate

Green function.

< le> <kl a (€ ) a’(€,)
o _ | S R ™ (39)
WELEvie-€ E+1€-¢
k k
Consequently
o [
lim, InGJ| = - 2 ay(6) al(e,) 5(E - €, (40)
£+0 "
and
A(E) = - p'? Im[GT: + GT2 + GS, + GYa) (41)

which can be simplified by introducing the group orbital ‘1®’

le> = = (11> + |25) (42)
TR
A(E) = - 282 Im (g:'Go!g:) (43.a)



= 2%p'2 5 L(E} {43.b)
gs
where n b(E) is the local density of states of the clean substrate associa:ed
E
s

with the group orbital |g:)

- centered site (Fig. 7.c}, similarly one obtains :

A(E) = 4%p'? n <(E) (44)
gs

with [g5> = (11> + {2> + [ + |).
Therefore in the general case in which the adsorbate has Zs

equivalent nearest neighbours, pg(E) Is given by''™’

2
o (E) RN {45)
pa = 2 2 2 2 . 2
(E - € Z_p Rgs(E)) +¥Z B * ngs (E)
R _(E) 1s the Hilbert transform of wn (E) 1. e.
£, gy

0
Rgs(E) =Re<g |G |g > {46)

The state ]gs) is the group orbital associated to the adsorption site i. e,
the symmetric linear combination (normalised) of substrate atomic orbita.s
centered on the nearest nelghbours of the adsorbate.

In order to 1llustrate the preceding calculations let us consider a
hon magnetic adatom at on top position on the (100) plane of a simple cubic
lattice and assume. for simplicity, that Eata = E‘1 coincides with the center
of the substrate band.

The corresponding pa(E) are given in Fig. 8 as a function of B'/p, B
being the substrate hopping integral. One sees that

(1} when p° < B. pﬂ(E) has the shape of a virtual bound stats

centered at Ea {since Rg {E) is an odd function) with a half mean width of
s
order wf'%n_ (0).
Bg

{ii) when f° > B. pa(E) is composed of two virtual bound states which
become true bound states beyond a crittcal value of B°/B = 5.35. These two
bound states are actually the bonding and antibonding states of the molecule
formed by the adatom and fts substrate neighbour weakly perturbed by the
"indented” solid.

The case of adsarption on bridge and centered sites 13 slightly more
intricate since the corresponding densities of states assoclated with the
groupe orbital are asymmetric. The quaiitative behaviour fs the same except
that bonding and antibonding bound states appear successively and for lower
values of p'/p.

The cancept of group orbital can be easily generalised to the case of
substrates with degenerate atomic levels and when the atomic level of the
adatom 1s {tself degenerate : a group orbital must be associated to each

adatom atomic orbital. this group orbital being defined ag®?%’118)

A=t L
\ .
le_,> = A z BN [1w> n (47}
v = 1. L
i.,v -}

La and Ls being respectively the degeneracy of the atomic level of the adatom

and the substrate, B:;’ are the hopping integrals :

ﬂu)\

e = <10 [ H | an> (48)

between the adatom and its substrate neighbour 1. A is the normalisation
factor :

uA

pA* }‘” (49)

However the partial density of states on the adatom p:(E) corresponding to

A:{E

i

orbital A does not usually take a simple form similar to eq. (45).
Nevertheless 1t general shape 1s still governed not only by the values of the
hopping integrals but also by the adatom coordination number and the surface
density of states around the adatom atomic level. Consequently, for given

adsorbate-substrate system, the effective coupling may be weak or strong
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according to the surface crystallographic orientation. A typical example is
shown in Fig. 8''%' : the coupling of a Mo adatom is weak on Mo(110) (Zs = 2,
ns(EB) small) and strong on Mof{100) (Zs = 4, ns{Ea) large}.

Let us remark that within the tight-binding basis, H takes a

coupling
simple form. Indeed, for an adsorbate with only one orbital (for simplfcity) :

vak=2 <alH| > <k
JA

ck=2(k|1u>c“’ (50)
iv

+ +
Evakcack=§ CalHIp>) <palkd> k] cre,, (51)
k 1A k.iv

L J
v
315 %
+ ”
=caz < uIH!a) Ci
iv
-,
= c ¢
a g
t:.g being the annihilation operator of the group orbital | £, >
H
Thus
-1, + + )
I-Icm“:'“l_'qg = A (ca c:gs + cgs ca) {52)

3 - L. 2. Binding energy.

The binding energy EB of the adsorbate is the difference between the
total energy of the semi-infinite crystal with the adsorbed atom and that of
the same system with the adatom infinitely far from the surface.

Let us now show that this binding energy is fully determined by the
knowledge of the chemisorption function A(E). If one neglects the core-core
repulsion between the adsorbate and the substrate atoms, this energy can be

written :

18

EF+6EF EF
Ep = L. EN'(E) dE - L EN(E) dE - e: S Un, S > (53)

X'(E) is the total density of states of the seml-infintte crystal with the
adsorbed atom and A(E) the total density of states of the clean semi-infinite
crystal. Thus ¥#'(E} 1s normalised to N + 1| atoms and ¥{(E) to N atoms. The
first three terms account for the variation of the total one-electron energy
when the adatom 15 brought from infinity and the last term avoids the double
counting of the electronic interactions in the Hartree scheme (see eq, 13). In
order to ensure the conservation of the total charge, it is necessary to allow
a small (but unphysical) variation of the Fermi level. This point will be
discussed later with more detalls.

Then eq. {53} can be transformed inte :

EF
By = L. EA ME) dE + E; ¥'(Ep} 8Ep - €] - U i ><a, > (54)
with ¥'(E) - N(E) = AN(E).

The charge conservation can be written :

Ep+éEp Fr

I #(E) dE -I ME) &E = 1 (55)
ar

EF

[ enmy @ s e e, 21 (s6)

where we have assumed that the adatom valence orbital is occupled in the free

state by one electiron.

The binding energy thus becomes :

E
F
Eg = -L.(E_EF) ON(E) dE + E. - €2 - U o, > (57)

As shown in Appendix 2, the varjation of the total density of states

when the Hamiltonian Ho is changed into Ho + V is given by

In S Log Det(1 - vc) (58)

1
an(E) = ¥ & Im 5
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+ -
where C°* = (E - H_ 3 1¢) ‘and;{n:Eemnmeeknko.

¥ is the coupling between the adatom and the substrate and then :

an(E) = &¥(E) - § 5 (E - €
o
Let us calculate Det{l - VGD!]. This determinant factorizes

determinants, one for each spin, having the following form :

ot - ot
1 Ck vakz szkz """
-y ot i 0
kia “aa
ot
- sza Gaa (4] 1

Thus

ot 2 ot o000+
Det(l - VG )zn[1-2|vakl Gt 6 ]
4
k
Replacing Cﬁi and G:got by their expressions one finds :

2
5 Wy |

Det(1-¥G°%) _ 1

o k(EilE—EM)(EQIE—Ek)
1
:I—E—-i_—-‘g—_E——S(Eglf:')

and eq. (58) leads to :

An(E) =23%1.:-Em;(£-em-3(st 1€)) - 8(E - € )
[+}

thus

M(E)=§:11.Q-Log(s-em—5(zg 1£))

i m%‘-"&{q:zt(lz) )

)
3 . . In [1 - S(F : i€) ] (k)

dl-'

It

Let us define AN(F) :

(59)

into two

(60)

{61t}

162.a)

(62.b)

(63)

(61.a)

(64.b)

{64.c)

20

AN(E) - fF AK(E) dF (65)

then integrating by parts using eq. {64. b) with GUU (E)

I (E - Ep) AN(E) ¢E - - JEF AN(E) dE (66.a)

- E[Em+ }I Flm Log(E - EM-A(E)HA(E))dE] (66.b)
[+ m

in which Eéa 1s the bound state with spin o (when existing) and m is the
bottom of the substrate band.

Finally :
o _
E2-U<n_>n >  (67)

EB = z [Elo* %

with

51_._,
w
-
o
-
@

O Carceg x ¢ n
when there is an occupied bound state and

- w < arctg x ¢ O otherwige.

With this formula Newns''®' has calculated the chenisorption energy
of hydrogen on Ti, Cr, Ni and Cu 2s a function of the coupling strength and
the corresponding charge transfer. Although the sign of the charge transfer
agrees with experiments (variation of the work function during adsorption or
more recently variation of core level binding energy of the substrate surface
atoms), its order of magnitude 1is too large. This formalism had also
previously been used by Grimley‘'®’ o study the fndirect {I. e. via the
substrate) interactfon between two adatoms.

3 - 1. 3. Discussion

We have already mentioned two weak points of this formalism : one
frist assume a non physical variation of the Fermi level to ensure the total
charge neutrality and magnetic solutions are too easily obtained. Actually, a

proper treatment should obey the Friedel sum rule'?®' § o
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EF
JM(E) dE = 1 {68)

which is generally not fulfilled by AX(E} given by eq. (64). Concerning the
second point, the Hartree-Fock treatment implicitly assumes that U {s small
compared to the wean width of p:(E). it allows any charge fluctuation as In
any molecular orbital (MO) approach. The effect of Coulomb electronic
interactions s only treated to the first order and thus an obvious
improvement would be to go at ieast to second order. Such improved models have
been proposed by several aythors, they will be briefly discussed in the next
section. On the other hand, for some transitions metals, the effective Coulomb
integral of the substrate may be important.

3 - 2. Bevond the Hartree-Fock treatment.

Since the first warks based on the Hartree-Fock approximation we have
described in the preceding sections, many attempts have been made to improve
this treatment by including many body effects. Many of them aimed at a better
description of the one particle spectrum of the adsorbate’2'"28) ,. Iar as
the total energy is concerned, although the general formela derived by
Kijdllerstrom et al. ‘®"’ for t(he dilute impurity problem can be used to
compute the binding energy of a chemisorbed atom, few asuthors did calculate
this quantity'?®'¢2%

¥e have seen that in the Hartree-Fock treatment all the Interesting
physical properties of the chemisorbed system can be derived from the
knowledge of the Green function G:Z of the adsorbate (see eqs. {64.b} and
(67)). This fact remains true when many-body effects are taken into
account. In these lectures notes we will not give the exact derivation which
can be 1n found {n Kjsllerstrom et al. 27" by we will rather generalize in ap

intuitive way eq. {22) for the Green function and eq. (57) for the binding

energy.
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In the expression of (fa’:. the introduction of the adsorbate Coulomb
Interaction gives rise to a self energy Zw which, in the Hartree-Fock scheme
is nothing but U < LN > (eq. (14.b)). In the general case Zaa becomes a
complex function of the energy and eq. (22) {s now written :

113+ 27 (E + 1€) - L (69)

3 E - e: - Zo (E + 1€) - A(E) + 1A(E)

from which one derives the one particle excitation spectrum of the adsorbate
by eq. 15.a.

To generalize the expression of the binding energy let us rewrite
eq. {57}. The first term can be transformed into a contour integral (see

Appendix 3) in which the causal Creen function on the adsorbate appears

SP(E) = ! (70)
an o
E—Ea—U(na_a)—S(E)
with
[ v, I?
S(E) = ) ak
X E - Ek + in sgn(E - EF)

then

E,
J (E - E;) 8M(E) de = 5 ) L (z - E)(1 - :S—z) Czydz  (71)
o

where C iz the contour consisting of the real axis and a semi~circle at
infinity in the upper half plane.

The last term in eq. (57) can also be written as a contour Integral

HF
1 [
U<n > <n, > b }L Z, z) 4z (72)
[+
where
HF
I =U<n
ao ao

Finally. the expression of the adsorption energy In the Hartree-Fock

approximation becomes



By =5 ) Ic (z - 1 - 8 “%(z) dz
o

HF
- #E Jc %y (2) €(2) 4z - (€5 - Ep) (73)
o

One can show that this equation remains valid in the general case 1f one

replaces in eq. (73), Z:: by Em(z}. Thus the problem reduces to the
determination of Zw(z). Expressions of Zaa(z) exist only In different
limits :

1) 1f U » 0, one can use a second order perturbation theory in

ymtAarcaos o being the broadening of the adatom level, One finds -

fr “7(E2) p°(Ea) p %K,
e <20 [ [ [}, B
+ U? r

EF

11) when the coupling ¥ = O, one can write an exact expression for ccg: :

<n > 1 -~<n >
Cdx!: a—aJ + a-o (75)
aa @-€-u ©- e

(74)

-a -o -o
s JEFdE; JEFdE. Pa (E2) °(E5) p27(Ea)

z + E3 -~ Ey - Eq

which is rather intuitive since the first term has a pole at the affinity
level with a weight ¢ “n—a) and the other at the fonisation level with a

weight 1 - < Ny o >+ The above equation defines Ew(z) since G be {dentified

with the expression

G = - 1 (76)
E—EH-U(na__o)-ZM(z)

thus

(n > > 2
ao

}_‘M(z) = (77)

z - E: -U< n. >

In the general case one should find an Interpolation formula between
these two limits. Such a formula have been proposed by Martin-Rederp et
al, "' 4d Baldo et al. *Z%-28) Previously several treatments, based on the

equations of motion of the Green function, were performed by Brenig and
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Schonhammer?*’,  Schuck'®?'. Bell and Madhukar‘*?’ . Recently an extensive
calculation of the chemisorption energy of H on Ni{100}, Ni1(111) and W(1t0)}
has been done by Piccito et al.'2%!. This work uses an aproximate self-energy
and takes into account the repulsion energy between the hydrogen adatom and
the metal. The adatom-substrate coupling parameters are determined as a
function of distance through the overlap integrals between the adatom and the
metal orbitals as In the extended Hiickel method. Finally the variation of U
with the adatom distance is parametrized. Then these authors were able to
minimized the chemisorption energy as a function of the position of the
adatom. Although the treatment of the electronic structure of the meta] is
strongly simplified {semi-elliptical density of states) the results seem to be
in fair agreement with more sophisticated schemes.

In conclusion. although some improvements have been made to take into
account the effect of electronic correlations on the adsorbate, very little is
imown about the effect of the electronic correlations of the substrate in this
context.,

4 - A SIMPLE CHEMISORPTION MODEL FOR TIGHT-BINDING SYSTEMS

The Anderson-Grimley-Newns hamiltonian has been mainly used tn study
the chemisorption of hydrogen on metals, however very few systematic studies
of chemisorption on transition metals varying the nature of the adsorbete and
substrate can be found fin the lHterature. Moreover, save for the work of

Piccito et al. ‘27

the position of the adsorbate 1a assumed to be known.
Nevertheless if our goal 13 to explain al] the experimental trends discussed
in the {introduction, one needs to calculate the binding energy of the
adsorbate as a function of {ts three coordinates from which {t is possible to
derive the most stable adsorption site and its energy. the bond length, the

activation energy for surface diffusion (extrapolated at O K) and also

vibration frequencies. This calculation should be done for a very large number



of chemisorption systems which obviously is only practically possible if one
uses simplified models pointing out the essential physical parameters. Such
models have been derived in the framework of the tight~-binding formalism for
chemisorption on transitfon metals ?778) 1 g4 section we will describe
these models and show that they explain, at least semi-quantitatively a)l the
trends observed experimental ly.

4 - 1. Models

4 -1. 1. Ceneral characteristigg

The binding energy is written :

Eﬂ(x. Y. 2} = Al-lb + AErep + AEcor (78)

where A.Eb AErep and AECO arc respectively the variations of the band,

r
repulsive and Coulomb correlatlions total energles when the adatom :s brought
from infinity to the point of coordinates (x. ¥. z) relative t¢ the surface.
Let us now briefly describe these three contributions,

#7 1 L) The band contribution

The band contribution or.b is calculated in a tight-binding formalism
assuming that the adsorbate-substrate hopping integrals decrease expcnentially
with distance. The other parameters are the atomic levels of che atoms
involved in the chemisorption bond. It is clear that the adsorbate-substrate
interactions modify the potential, and then the atomic levels of these atoms.
Ideally these potentials and the charge on each atom should be calculated in a
self-consistent manner. The simplest assumption is to limit the perturbation
of the atomic levels 1o the adsorbate sfte. Let us also assime, for
simplicity, that the adatom is hot magnetic. Then two methods have been used
to determine the effective atomic level E; of the adsorbate.

~ The Anderson—Crimley-Newns model In which for an H adatom in the

Harctree-Fock scheme

G::E;+U(na) (79)
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where £ n > is the occupation number per spin orbital. As seen previously, we
are obliged In this method to Introduce an unphysical variation of the Fermi
level in order to ensure the tatal charge conservation,

- One can also state that the Fermi level should remain unchanged in
the chemisorption process and then E: is determined from the Friedel sum rule
which can be written {global neutralitcy cordition) :

AN(EL. €)= N, (80)
where Na is the number of valence electrons of the adsorbate involved in the
bond. From the knowledge of E:. the charge of any atom of the system can be
derived. However numerical calculations have shown that this often leads to a
charge transfer on the adatom nearest neighbours which {s of the same order of
magnitude as on the adatom itself. In these conditions it seems unphysical to
neglect the variatfon of the effective atomic levels of these neighbours.
Moreover in some particular cases unphysical charge 1s found on the adatom
which should be strongly reduced if one extends the perturbation of the
potential to the nearest neighbours. If this 1s done on P nearest neighbours,
one needs p + 1 equations to derive the atomic levels of the adsorbate and ts
nearest nelghbours. Since the Friedel sum rule only brings one equation, one
should find new physical conditions.

The simplest condition obeying the Friedel sum rule is to assume that
each atom involved in the chemisorption system remains neutral. This condition
seems reasonable for many systems, at least ar low coverage since work
function measurements and 4f surface core level spectrescopy {on 5d elements)
are inconsistent with charge transfers larger than 0.1 - 0.2 e¢lectrons. This
implies that the adsorbate eifective atomic level falls in the substrate band
since otherwise the charge transfer would be very large.

As Iin the Anderson—Crimley-Newns model two limits are usually

considered



- the weak coupling limit for which adsorbate-substrate Integrals are much
smaller than the substrate-substrate ones
- the atrong coupling limit in the opposite case.

In both cases some band energy 1s gained (AEb < Q). This contribution
1s attractive since it is roughly proportional to the adsorbate-substrate
hopping integrals which decrease with distance. We will see that it cannot be
written as a sum of pair interactions.

#7711 B) The repulaive contribution

The repulsive contribution comes mainly from the compression of inner
shells. It is written as a sum of phenomenological Born-Mayer pair potentials
decreasing exponentially with distance'?®?.

Note that we thus take Into account the interaction between the outer
valence orbitals of the adsorbate and the d valence electrons of the metal
neglecting the role played by the sp electrons of the metal. Indeed these
latter electrons give rise to both attractive and repulsive contributiona to
the binding energy. The repulsive contribution is phenomenclogically taken
into account 1in the Born-Mayer potential. Concerning the attractive
contribution we assume that the free sp electrons serve primarily to
renormalize the hopping perameters. In any case we believe that the sp
contributien is rather small in transition metals and thus a treatment which
includes only the d band of the metal 1s satisfactory.

The contribution of the electronic correlation AEcur is obtained from
perturbation theory up to the second order in the band !imig {intrastomic
Coulomb integral small compared to the band width). It includes not only the
contribution of the adsorbate as in the Anderson-Grimley-Newns hamiltonian but
also the contribution of the substrate. We will see in the following that, to

8 good approximation, it can be written as a sum of local terms HE 1 4

corresponds to an energy gain on the adsorbate and to an energy loss on its

neighbours.

4-1. 2. Analytical models

We will first use schematical densittes of astates and neglect the
electronic correlation term to be able to derive analytically aimple
expressions for the chemisorption energy .

1-1. 2 a) Weak coupling limit

The band contribution can be split into two terms

6, - oy, ¢ R, (s1)
where A.Eba 1s the variation of energy due to the broadening of the adsorbate
level and AEbs is the variation of energy of the substrate due to the
adsorption. In the weak coupling limit this last term can be neglected. Then

provided that the charge neutrality is ensured {. e,

N, = L JEF n_(E. e:) dE (82)
-
AEb takes the form :
» L]
8 . L E En {E. €) dE - Na€y ~ No(E] - €,) (83.a)
-1, r‘ En, (E. €1) dE - N e: (83.b)
-

where NR. L. n, E“. Ea are respectively the number of electrons and the

a' a' Ta
degeneracy in the valence shell of the adsorbate, its local density of states
and its atomic level in the adsorbed and free states. The first and second
term of eq. (83.a) represent the variation of the one electron energy between
the adsorbed state and the free state. The third term represents the variation
of the average electronic Coulomb interaction which is counted twice in the
first term. If we mssume that the local density of states on the adsorbate 1s
rigidly shifted when E: varies, it is straightforward to show that AEb remaing

»

constant. Indeed {f Ea varies by 6E2, all one electron energies In the firat



term vary by 6E:. thus the total variatfon is NabE; which is exactly cancelied
by the variation of the second term.

In the weak coupling limit the broadening of the adatom level is
small and the local density of states on the adsorbate exhibits a single peak
which can be schematised by a rectangle of width ¥ and centered ac E:. The
width Ia is chosen so that the centered second moment of the rectangle is

equal to the centered second Moment of the exact local density of states §. e.

o W /72
c J (E-€)?n (E €YaE ‘—-fa E? dE (84)
M9a o a a a h'a _wa/2
so that
v.=2 13 Ju;a (85}
)";a can be easily obtained in the tight binding approximation sihce ope cap
show that :
c 2
phzf_-—§<n\!u|1p><3ululm> (86)
a
Aju
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If we assume that the adatom has 7 equivalent nearest netghbours we
find :

[+

r AN {1
with B'? = sdo® for an adsorbate with an s orbi tal

[ R %(pc:la= + 2pdn®) for an adsorbate with p orbitals

g2 é{dda‘ + 2dde? + 24d5%) for an adsorbate with d orbitals
sda, pdo, pdv, ddo, ddv, ddb are the usual Slater-Koster'?"? hopping integrals
between the adatom orbital and the d orbitals of the transition metal
substrate. Then the variation with the Interatomic distance R can  be

approximated by an exponential |aw S0 that

.2 _—2qR
Moq = Z B &2 (88)
From eq. (82) we get. using the rectangylar density of states
wa La
Ep = -: N, -39 (89)
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Then using eq. {83) we obtain
wa
8E, - iy NN, - L) {90)
=- [ZB(N) e aR (91)
a
with
I's; |
B(Na) = ﬁ La Ha(Na - l‘a) {92)
On the other hand the variation AErep of the repulsive term is given by :
AE . Z e PT (93)
rep

where A and p are some glven constants.

Finally the binding energy of the adatom with bondlengths R 1s gliven by

Eg(R) = 2ae PR _ Zan) R (94)
EB reaches a minimum {f p > q for an equilibrium bond length equal to
. oo BA
ot R e (%)

thus Ro increases with Z. This fact can be easily understood. Let us consider
an adatom with coordinence 2, the bond length of which ia Ro. If we increase Z
keeping Ro constant, the repulsive force overcomes the attractive one since
this last force varies less rapidly with Z and thus the bond length increases.

If we report eq. (95) into eq. (94) we obtain the binding energy at

equilibrium :
—a/p-q _{p-29)/2(p-q)
BE)-(1-n8(B) ", (96)
Therefaore
Eg(R)) « 2° (97)
with

P - 2q
[+ 3 = A7
2(p - q)
For real systems P > 2q and the binding energy increases with Z, therefore the
most stable position corresponds to the site with the largest coordination

number available on the surface. The latter number being larger on open

surfaces than on closed-packed ones. we expect | EB | to increase when the
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density of surface atoms decreases. In realistic cases o < %and consequently
the anisotropy of EB Is very much reduced from the value predicted by a broken
bond mode! (a = 1) or In a tight-binding acheme with rigid bond lengths
(o = %).

Rote that in this wodel the binding energy is independent of the
filling of the aubstrate band for given A, p, ﬂ(‘) and q parameters,

On highly symmetrical surfaces (with low tndex), the diffusfon path
can be easily guessed, the bottom of the well and the saddle point
corresponding to special symmetry points. Surface diffusion activation
energies Q at 0 K are thus given by the difference of binding energy between
two sites which differ by their coordination number, the smaller one Zs
corresponding to the saddle point. Then

Q=52 - B2 = [1- (57 | By | (s8)
One sees that Q follows the same behaviour as | E’B i.

7 1.2 b) Strong coupling limit

In the weak coupling case, we have assumed a rigid local density of
states on the adsorbate shifting with EF in order to conserve the number of
electrons on the adatom. In the strong coupling ilimit, this assumption is no
longer valid since the adatom local density of states exhibits two peaks
corresponding to the bonding and antibonding states of the "surface molecyle”.
One can predict that their relative weight should be a function of the
substrate band filling 1f the adatom remailns neutral. This is pictured in
Fig. 10 in which one sees that the weight of the bording state decreases in
favour of the antibonding one when the number of d electrons of the substrate

increases. As a consequence and contrary to the weak coupling case, the

contribution of the adsorbate to AEh Is expected to depend on the position of

the Fermi level.
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In the following we show using a very simple model that this explains
the decrease of the binding energy of N, 0. F and H along a transi{tion series.
We mimic the adatom iocal density of states by two 8 functions of weighta «
and !-a at energies - X and X -

na(E} =a 8(E + X} + (1 - a) 8(E - X) (99}

The first and second moments of this distribution should be equal
respectively to the effective atomic level of the adatom E: and to the second
moment of the exact adatom local density of states (L. e. p2 =2 p'2 s E“z).

a
These relations fix a and X

1 - a ] (100)

Z a2 E:z

' 2 "y
X:'ZI} +Ea

The energy levels are then Filjed with the Na electrons of the

B[

adsorbate and one finds that the one electron contribution of the adatom to

the binding energy is :

I 5 | - Nalz g7 L (101)

N
when all the adatom electrons are in the bonding state (o > L—fi } and
a

| Eg I = (1, - K ) IZ B'? = (102)

N
when the antibonding state js partially occupled (a ¢ Ll). From these results,
a

one can deduce easfly the behaviour of | F‘B I as a function of the substrate
band filling: knowing that a fs a decreasing function of this quantity. One

finds that | Ey | reaches a maximum when the bonding state is completely

filled and the antibonding one empty which occurs for o - Eg- 1. e. at the

beginning of the series when Nﬂ/Lﬂ > %a.nd at the end when "a/La < %—and

around the middle of the series when Nﬂ/[.a = 172 (Fig. 11). This explains the
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observed decrease of the binding energy of N, 0. F and H for substrate
starting from the ¥V, Nb and Ta column to the end of the corresponding
transition series (Fig. 2).

4 - 1. 3. Improved models

We have just shown that the trends followed by the adsorbate binding
energies can be explained using very simple models. It remains ta verify that
these trends remain valid in a more realistic calculation and for more
realistic systems for which the coupling can be intermediate between the two
discussed limits. Actually, the calculation of the density of states using a
continued fraction technique does not make any assumption on the coupling
strength.

Let us recall that in this technique, any diagonal Creen function is

written as a continued fraction'?® 79!
1

g,,(z) N (103)
1
- al, - —_——
Y
Z - az -

in which the first cociiicients a;. h:‘ are calculated exactly. When the
Spectrum presents no gap, these coefficients canverge rapidly and cansequently
an excellent approximation is obtained by replacing the unknown coefficients
by their asywptotic values a_. b . This is equivailent to terminating the

continued fraction by a complex function F(z)

g;,(z} =

T - a; —

i
z - az - - (104}

z—a.;—bNF(z)
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F{z) obeys the following quadratic equation

F(z) = ;"‘_T:le— (105)

and has an imeginary part when the discriminant :
D={z-a)®- 4

is negative. a_, and b_ are then related to the band limits m, M by :

a, =2 N (106)
b, - om ¥ (107)

where W 15 the bandwidth.

Let us note that the continued fraction coefficients and the mOmen t
of the corresponding local density of states are related and that a continued
fraction with N exact levels has 2N exact moments. In particular a} is the
center of gravity of the local density of states (1. e. the effective atomic
level of atom 1) and b: is the centered second moment {see eq. 86). Actually
this technique, when applied to obtain the adatom local density of states,
does not meke any assumption on the coupling strength (which is measured by
Jb_;). Consequently 1t can describe bath the weak (b, << b} and the strong
(by >> b_} coupling cases but also all intermediate cases.

Ve have then developed an improved model in which the local densities
of states are obtained from a continued fraction expansion of the Green
function exact to the third moment (1. e. with exact a;, b,, 22). This has the
advantage of giving the correct band limits and asymmetry. On the other hand
we now take {into account the wmodification of the substrate electronic
structure due to the adsorption. Finally, the caiculation is done for a real
surface crystalline structure and we are no more restricted to equivalent
bonds .

In practice, the perturbation due to the adsorbate extends only over

a few sites. Consequentiy



N S {108)
rep
i .
where I!1 is the distance between the adatom and the neighbour 1.
oy = a4 ) oy (109)
i
where

AEM=LEEEna(E...E'J'...)ds—riae: {110)

E;:lOJzFEﬁnl(E....E:...)dE-NS s (111)

are respectively the adsorbate and substrate atom { contributions to the band
part of the binding energy. In eqs. (108) and (109) the sum over i is limlted
to the perturbed atoms. Al] the effective atomic levels e: are determined by
requiring that all atoms {adatom and substrate neighbours) remain neutra]
Finally 6ni and 66: are respectively the variation of the local density of
states and effective atomic level on atom { due to the adsorption.

Let us now discuss the electronic correlation term. If we neglect the
electronic correlations in the substrate, we could start with eq. 73 using for
the self-energy the expression (74}, but since we have assumed that the
effective atomic levels can be fixed by a local charge neutrality condition
and not by eq. {79) such a treatment would be inconsistent. Moreover, since we
vant to take into account the Coulomb interaction in the metal, eq. (73) can
no more be used. To describe the Coulomb correlations in the metal, let us add
to the Anderson-Grimley-Newns hamiltonian & Hubbard term :

Us
HHub =2 Z [l - Guu' 600'] Mo Mve (112)
w.lis'a'
where L. Is the occupation number operator of orbital v centred at site i
with spin ¢. Since we are interested In the chemisorption energy which up to
now has been written as a sum of contributions from each perturbed atom (eqs.

(110} and (111}, 1t {s easier to compute directly the variation of local
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correlation energies instead of computing the self-energies. Using a local
approximation and a second order perturbation theory 1in the band
Limit" 22420 ohe can show that the contribution of electronic correlations
on atom 1 to the total energy is given by

1 l,t(Liwl)

E. = —-_u’r dE,
cor 2 i EF EF

where Li’ Ui' ni{E) are respectively the number of spin-orbitais, the

B (Ei)n, (Ez)n Es)n_ (E.)
d.EzI dEs|  dey i TTIEIN R, (113)

~ ed En*Ez-En—Eq

effective Coulomg integrai {U on the adatom. Us In the substrate)} and the
local density of states at site 1. Note that this correlation term accounts
for the vartation of Coulomb energy due to instantanecus fluctuations of the
total number of electrons on each site. This clearly cancels in a free atom.
An order ot magnitude of this quantity is given by ‘**?

o _o Ly - ﬁ [N1]2[ Hi]a

E — P - «—
cor 2 'i l..l Ll

where N1 and 'i are respectively the number of electrons and an effective band

(114)

width at site 1.
Similarly to the band contribution {eq. (109)}}, one has, with obvious
notattons :

& o R +z.m-:i (115)

where E::or is negative (eq. {113)) and AE:.or is positive since the presence of
the adsorbate increases the effective band width and therefore decreases Etl:or
{eq. (114)}. As a consequence the sign of the correlation contribution may
depend on the adsorbate or on the substrate.

Thiz model can be used to study chemisorption on flat or Stepped
surfaces and also the adsorption of simple molecules. In the next section we

will review the results obtained in all these cases.
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4 - 2. Adsorption of simple eilements on  bhcc transition metal

surfaces.

¥e will now present the results obtained with the improved model for
the adsorption of simple elements on bee surfaces.

4- 2. 1. Low-index faces'??'(24713%)

Let us consider a semi-infinite bee crystal limited by = {110} or
(100) surface. We assume this surface to be the perfect termination of the
bulk metal {1. e. there is  neither perpendicular relaxation nor
reconstruction). The number of d electrons of the substrate will be varied
between 3 and 7 electrons Per atom since the bec transition metals correspond
to these band fillings. The adsorption sites are expected to be on high
Symmetry positions (see Fig. 12). Caleulations have been performed for various

adsorbates : transition atoms ‘??* N, o. F

U and H 95" yhich interact
with the metal d orbjtals through their d (transition atoms), p (N, 0, F) and
s {(H} vaience orbitals.

The semi-infinite crystal hopping integrals {(dex. A = o, ., &) and
their variation with distance are obtained from interpolation schemes ‘437
Although they vary slightly between Ns =3 and 7 d electrons per atom, we can
with a good approximation neglect this variation. These hopping parameters are
also used for adsorbace-substrate interactions {n the case of transition
adatoms. Adsorbate-substrate hopping integrats depend on two parameters pdo,
pd¥ with pdw ~ - pdo/2 for N, O, F and only one, sdo, for H adsorption. They
can be determined either directly from their definitjon '*7! {similar to
eq. (48)) or from an Interpolation scheme on the band structure of the
corresponding covalent compaund when it exists. The tight-binding parameters
being fixed, the parameters of the Born-Mayer potential are fitted to
reproduce known experimental quantities. In the case of transition adatoms

they are determined from the values of cohesive energy and bulk modulus and

they must satisfy the buik equilibrium equation. In the case of 0 and H, they
have been chosen to give reasonable values of the binding energy, bond length
and stretch vibration frequency of O and H on ¥(110). ¥We assume that these
parameters do not vary rapidly from an element to its neighbour {n the
periodic table, thus we take the same values for N and F as for oxygen.

The last parameters of the model are the Coulomb integrals. In atoms,
the Coulomb repulsion U ig given by the difference between the lonization 1
and affinity energy A {seec eq. (2)). Usually A 1s wuch smaller than I and U is
therefore of the order of several e¥. In transition metals the value of U is
strongly reduced from the free atom value by screening. It has been shown that
U~ 1 -3 ev (00048 o a chemisarbed atom, the Coulomb integral is
also lowered by screening which far from the surface of the metal 1s due to
the i{mage potential {see eq. (8)). Therefore a precise determination of the
Coulomb 1integral is extremely difficult for this parameter depends on the
distance from the adsorbate to the surface. Since our goal 1in this work iz to
determine trends we have made the simplifying assumption of taking U as a
constant around the equllibrium position. For N, O and F we have taken
l.la = 2”5' this relation {- roughly true in the atomic state and therefore we
have assumed that the Coulomb interactions are screened to the same extend in
the metal and the adsorbate. For H we have chosen U = 2e¥ '*®'  ‘These values
of the Coulomb Integrals may seem somewhat small but it 1s known that the

second order perturbation theory tends to cxaggerate correlation effects' '’

4 -2 1. a} Adsorption of transitisn adatoms.

The bond iengths and binding energies of a transicion adatom on a
substrate of the same chemical species are shown in Figs. 13 and 14 for the
different adsorption sites shown in Fig. 12. One sees that the bond length
increases with the coordinacion number. 1t has a winimum near the middle of

the series for a given site, similarly to the variation of the atomic volume
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along the transttion series. In addition, taking into account the electronic
correlation contribution without changing band and repulsion parameters
increases the bond length since in this case the main term in AEcor is E:or
which 1s negative and incremses in absolute value with distance at least
around the equilibrium position. On the other hand, binding energles increase
with the coordination number and the most stable site corresponds to the most
coordinated site available on the surface : centered site on (100) and almost
perfect ternary site on (110). They reach a maximum for an almost half-filled
band similarly to the cohesive energy. Note that we have neglected the
variation of exchange energy which should be introduced since the free atom is
magnetic and usually the adsorbed atom is not. It would produce a cusp in the
middle of the series which corresponds to the special stability of the half
filled d atomic shells. due to a maximim of their exchange Interaction. As in
the case of colesive energy '*'' this cusp should be especially marked in the
3d metals where these effects are important. The anisotropy between the (100)
and (110) faces is small and is even reduced when correlation effects are
taken into account (with U = 1.2 e¥ '“”"”). Notice that the correlation
contribution stabilizes the adatom since | E::or | prevails.

¥e have also performed binding energy calculations of 5d adatoms on W
surfaces since experimental values of binding energies and surface diffusion
activation energies on this substrate are available from FIM experiments
‘774 Resulta are given In Figs. 15 and 16. Experimental values of IEBI are
rather dispersed and thus not conclusive about the anisotropy. However the
order of megnitude of IEBI 1s in agreement with our calculations. The easiest
diffusion paths on (110} and (100) surfaces. and the corresponding diffusion
activation energles Q (extrapolated at 0 K) are gtven in Fig. 16 and compare
well with experimental data. In particular one sees that 'EBI and Q have the

same behaviour when the adatom scans a transition series.
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Let us first neglect the correlation energy term. The variation of
the bond lengths of N, O, F and H on different sites of bec (110) and ({100)
faces 1s given in Fig. 17 as a function of the substrate band filling. They
increase with the coordination number and with the number of d electrons of
the substrate at least when Ns 2 5. The corresponding binding energies are
given in Fig. 18. The most stable site 1s the most coordinated site available
on the surface save for H where one obtains, for example on the (100} face, an
inversion of stability between the bridge and centered sites for Ns = 5. Thia
inversion of stability seems to occur between Ta{100) and W{100) according to
surface core level shift data **’. On the other hand, since the
adatom-substrate coupling 1s rather strong and as expected from 4. |. 2. b},
we find that the binding energy of N, 0. F and H decreases with the filling of
the substrate d band at least for Ns 2 4 and, for a given subatrate, when
going from N toa 0 and F due to the filling of the antibonding state of the
"surface molecule”.

If we now take 1nto account the contribution to the binding energy
due to electronic cortrelations, we find that {t changes sign along the
transition series for N, 0 and F and decreases | EB | for H (see Fig. 19).
This can be understood easlly since E:or is proportional to the number of
pairs of spin orbitals in the adatom valence shell which is reduced to ! in
the case of H so that the variation of the correlation energy of nearest
neighbours prevatls.

Surface diffusion activation energies are shown in Fig. 20a for N, 0,
F. They decrease with the substrate band filling and are much larger on the
(100) than on the (110) clese-packed face. Similar results are obtained for H
{Fig. 20b}. Therefore. the metals at the end of the d series are those for

which chemlcal species, at least N. 0. F and H, diffuse easily. Finally our
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results are in good agreement with the experimental data for O and H on ¥(110)
(0.58 ¥ for 0 '*"’ and 0.2]1 eV for H ey

Our model is simple enough to be applied to the adsorption on stepped
surfaces. Since, in this case the Symmetry 1s rather low, we cannot limit
ourselves to symmetrical sites. Therefore the adatom binding energy F.B(x. Y.
z) 13 minimized with respect to the coordinate z (0z perpendicular to the
terraces) for given values of x and Y. The minimization is repeated after a
small translation of the adatom unti] a unit cell of the surface is scanned.
From these results. we draw a contour map of the binding energy from which we
can deduce all the Interesting physical quantities : most stable adsorption

sites and their energy, diffusion energies along any direction.

Practical calculations have been made on a stepped [m(llO) x (Ol_l]
bee transition metal surface shown schematically in Fig. 21 for the adsorption
of transicion atoms, O and H. A typical binding Energy contour map is shown in
Fig. 22 for a W adatom on ¥. The labelling of remarkable sites is given in
Flg. 23a (the U and L indices respectively correspond to upper and lower
terrace sites). The wost stabie adsorption site is DS for transition adatoms
and oxygen and Tl‘J for H although, in this last case, the difference with DS is
smail. Possible diffusion paths are shown in Fig. 23 a. In all cases, the
diffusion parallel to the ledge 1s fairly insensitive to the presence of the
step even for an adatom diffusing in the ledge. The diffusion across the step,
as evidenced by the profiles of the potential energy of the adatom along this
direction is strongly perturbed in the case of transition adatoms (Fig. 23 b).
This perturbation Eets smaller and smaller when going to O and H. Let us point
out that a transition adatom moving on the upper terrace is reflected by the
outer edge of the step due to the occurrence of an extra barrter height which

does not exist for 0 and H. This effect has been seen in FIN experiments *'9°

as stated in the Introduction. Moreover the site Tl'l close to the jedge is
slightly more stable than other ternary sites. This type of behaviour has been
observed using FIM for a W adatom on the (211) pole of a W tip ‘'°r,

In the case of transition adatoms, calculations have also been
performed for the same terrmce orientation but for different orientations of
the ledge (Figs. 24 a and b). The corresponding potential energy profiles for
diffusion across the ledge are drawn 1in Figs. 24 ¢ and d. Although this
calculation confirms the trends discussed above, one sees that the potential

energy profile varies significantly with the roughness of the ledge.

5 - BRIEF Y OF OTHER .
5 - 1. Effective medium thegry'®2-%47 .

Due to 1ts underlying assumption (the starting peint being the
jellium model), this method {s particularly suitable to the study of
adsorption on simple and noble metals. However. it has also been used for
transitfon substrates, the effect of d electrona. treated as g perturbation,
being superimposed to the effective medium treatment.

The basic idea of the effective medium theory is to replace the metal
by a simple effective medium. The simplest medium is obviously a jellium with
a density 50 = pof?a). po(?a) being the substrate electron density at the
point where the adatom is located. As a first approximation the adsorption
energy can be taken as the difference in energy between the combined
adatom-jellium system and a separated atom and jellium :

Ep(,) = &E"" (5 ) (116)
In this scheme, the host is characterised by Bo only and the quantity
AEhom(;_)o) can then be calculated once for all for each atom or molecule f%%',
The first order correction to this term, due to the inhomogeneity of the
electron gas in the vicinity of the surface, can be written :

AT ) - Jcao(?) sp (F) 477 ' (117)

a
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the integration is performed inside a region a, centred on the adatom, outside
which the perturbatfon due to the adatom can be considered as negligible.
00(:) ts the electrostatic potential of the host and Apa(?) 1s the adatom
induced perturbation of the charge density in the homogeneous electron gas to
which a suitable constant is added so that the volume a is rigorously neutral.

Finally a third term should be added which can be written :

B

AEcov =5 an(E) E dE (118)
this term is the difference in the sum of the one-electron energies of the
adatom induced states (density of states An(E}} between the effective medium
and the real host.

In the case of transition metals é.!im:mr contatns the effect of the
host d electrons which is treated to second order in perturbation. This Is to
our opinion, the weak point of this theory since, for all transition metal
except perhaps at the end of the series. d electrons give the main
contribution to the chemisorption.

For more details about this method the reader is referred to

B. Lundqvist fn this college.

5 - 2. Quantum chemistry method* 587 (67

The quantum chemistry methods most usually replace the semi Infinite
substrate by a limited number of atoms, the cluster having the same symmetries
as the adsorption site. The chemisorption system g studied either by ab
inftio (Xa, Hartroa-Fock...) or semi-empirical methoda (Hiuckel, Extended
Hickel...}. The obvious question that arises is whether the smal] aggregates
mimic correctly the metal. This ia questicnable when the number of atoms is
small since a discrete Energy spectrum may be a poor approximation of the true
density of states of the metal. Moreover, it ig not obvious that the smal]

cluster should have the same electronic configuration as the bulk metal.
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Here we will restrict ourselves to a short discussion of the methods
that are closest to thase developed in the previous section {. e. the Hickel
and extended Hiickel methods which both rely on an expansion of the electron
wave functions as linear combination of atomic orbitals. In the Hickel method
the overlap between neighbouring atomic orblitals tis neglected so that this
method is completely sfmilar to the tight-binding approximation of physicists.
In extended Hickel theory this overlap is not neglected and the energy levels
are the solutions of the equation :

DetlH”-—ES”|=O (119}
uuhH”=<1 |H|j)andSU=<l | 4>
(For simplicity we have assumed that there is only one orbital | { > per
site). The overlap integral are calculated from their definition using atomic
orbitals, for instance of the Slater-type. The intrastomic matrix elements H“
of H is the energy of orbital } 1 > (referred to the vacuum level), they can
vary with the charge of atom 1 and ita nelghbours (Madelung energy). Finally
one finds in the literature many expressions for the interatomic matrix
elements HU as a function of Sij and H“. the most popular one being the
Wolfsberg-Helmholz formula ‘%'

Hl.f =KS”(H“ + “}/2 (120)

This method has been widely used by R. Hoffmann'®®’.

6 ~ ADSORPTION OF HOMONUCLEAR DIATOMIC MOLBECULES ON METALS
6 — 1. Qutline of the problem

As we have seen previously a considerable emount of work has been
done In the case of single atom chemisorption from which some general trends
have been put forward. for instance concerning the variation of binding
energies with the nature of adsorbates and substrates,

On the contrary che present knowledge of the chemisorption of

molecules has not reached up to now a similar level. [In particular it is of
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primary importance to know whether a molecule approaching a surface will
disscciate or not.

Quantitatively, when a diatomic molecule X: approaches a metal
surface, It smay encounter three types of potential wells correspording to a
physisorbed state (far from the surface), then when its orbitals begin to mix
with the metal ones a molecular chenls.orbed state may exist, the last well
corresponding to dissociative chemisorption. If we disregard the physisorbed
state, which is out of the scope of this study. the potentia] energy diagram
may be of the Lennard-Jones type ‘%! {see Fig. 25) with the existence or not
of an ectivation barrier AE" for dissoctiation. From this diagram an obvious
necessary condition for dissociative chemisorption is the occurrence of an

energy gain when going from the molecular chemisorbed state to the dissoclated

one

2 | Easl®) | > Eigg(X2) + | E astXz} | (121)
where Eads(x) is the atomic adsorption energy {( 0} of atom X, Edl“()(:) and
Eads()(z) are respectively the dissociation energy (> 0} of the free molecule
and its molecular chemisorption energy { < 0). For X = N, O. F, H, | Ea.ds(x) |
being a decreasing function when going across a transition series, this
{nequality may not be satisfied above some critical band filling. Thia
qualitatively explains that the dissoclative chemisorption of N2 and NO. for
instance, occurs for metals on the left of transition series whereas on the
right one observes a tendency to molecular adsorption "'?' (Table I1).

However the question of whether or not a molecule dissociates at the
surface 1s a very complicated problem. The answer will depend on the dynamical
motion of the molecule impinging on the surface and on the molecule-subscrate
energy transfers. Any attempt to treat this problem should start from the

calculation of potential energy surfaces. The potential energy is the total
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ground state energy of the chemisorption system minus that of the constituants
calculated as a function of cthe coordinates of the involved atoms. The
determination of these potential energy surfaces can be investigated by
different techniques derived either from quantum chemistry or from solid state
physics theories. In the former approach, one treata the adsorbed atoms and a
small number of neighbouring solid atoms as a surface molecule while the
latter starts from a seml-infinite crystal on which the effect of the adatoms
1s superimposed. Among the quantum chemlstry methods one of the most popular
for this type of problems 1s the LEPS (LondonuEyring-Polanyi-Snto) approach
which is basically a valence bond treatment derived from the determination of
the potential energy of a system of four one electron atoms ‘°°’, The LEPS
potential has the advantage of being easy to evaluate numerically for any
arrangement of atoms and can therefore be used as input fn dynamical

‘®1' However in this approximation the electrons are assumed to

calculations
be strongly localised which ig questionable for chemisorption oh metal
surfaces. On the other hand the delocalisation of the valence electrons in the
metal has been taken into account for strongly delocalised electrons only
(i. e. for simple and noble metals), the most appropriate methad being the
Local Density Functional (LDF) within the effective medium theory ‘®**'. When
the electrons of the metal are more localised (valence d electrons of
transition metals) the tight-binding theory has been well effective to explain
the general trends seen in atomic adsorption. This method can be applied to
compute potential energy surfaces for diatomic homonuclear molecules
Interacting with a transition metal surface ‘', It takes into account the
delocalised character of the electrons, and 1s of rather simple use to
calculate potential energy surfaces for molecules in many geometrical
configurations. This approach Includes correctly the existence of a continuous

spectrum of energy levels 1n the solid but it certainly gives a rather poor
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description of the free molecule. For most realistic systems an adequate
description of the molecule-surface interaction should be Intermediate between

the localised plcture (LEPS) and the delocalised one.

6 - 2. Adiabatic potential energy surfaces for diatomic molecules on

transition metal surfaces ‘*%'.
iransition metal surfaces

Let us consider a frozen substrate. In this case, the adiabatic
potential energy surfaces for a diatomic molecule are hypersurfaces in the
6-dimensional space spanned by the three coordinates of both adsorbates but,
il we reduce the number of degrees of freedom of the molecule by assigning a
given geometry of approach. the dimension of these hypersurfaces is lowered.

In the following. we apply the models previously developed for the
atomic adsorption to the case of the chemisorption of diatomic homonuclear
molecules on simple bec transition metal surfaces neglecting the electronic
correlation term. We consider a Xz molecule impinging normaliy on the surface
with its axis paralle! to it Moreover it igs assigned to stay in a given
plane, and the projection of its center of gravity on the surface is a high
symmetry point so that the two X atoms are equivalent. Within these
restrictions the potential enerr/ contour meps are only function of two
coordinates {the distance to the surface and the molecule interatomic
distance).

In a first approach, all local densities of states are assumed to
have a rectangular shape with a width fitted to the exact second moment. In
addition the perturbation of the substrate is taken into account and similarly
to the atomic case, charge mneutrality of each involved atom s agsumed.
Practical calculationa have been made for a molecule with an half filled r
valence shell interacting with a (100) surface of a bec transition metal with
a half filled d band. We have taken Pyy

/qxx = px"/qxn = 3, qm dﬂ = qul =1
where d_ 1s the bond length of the free molecule and Ry the bond length of a

48

single X adsorbed atom, the indices XX and XM refer respectively to the X-X
and X-metal bond.

The remaining parameters AX)(' AXH' B)O( ﬂXN {. & respectively the
prefactors of the Born-Mayer potentfals and the hopping integrals between two
X atoms and between a X atom and a metal atom M are deduced from the values of
Ri. d. Eads(x) and Edlss(xz)' The considered geometries are given in the
insets of Fig 26 and the corresponding potential ShRergy contour maps are drawn
in Figs. 26 (a. b, d, e). We have also plotted (Figs. 26 ¢ and f} the mintmum
value l-%m()(z) with respect to the molecular interatomic distance as a
function of the distance to the surface for four values of Ediss(xz)' the
other parameters being fixed. In Figs. 26 a and b the potential energy contour
maps  exhibit first =a single well corresponding to a dissoclative
chemisorption, then a second well appears farther from the surface
correspordling to the molecular chemisorption which, for large values of
Ediss{xz)' becomes the most stable adsorption site. On Fig. 26 ¢, one sees
that the energy of the saddle peint is larger than the energy of the free
molecule for Ediss(xz) = 9 and 12 eV. In this case the molecule needs an
activation energy aE™ to dissociate. In Figs. 26 d and e the potential energy
contour lines present two wells nat similar distances from the surface
corresponding to atomic and molecular chemisorption (the molecular well being
deeper when Ediss()(z) is large). This case occurs when the two  atoms
separating to reach atomlc adsorption sites pass by a saddle point for smtomic
adsorption. The plots E;m(x;) as a function of the distance to the surface
are showm in Fig. 26 f. This computation shows clearly the influence of
Ediss(xz)/lEads(x”‘ In particular, in a given range of values of this ratio
(1.3 - 2), the existence of both atomic and molecular adsorption wells ig

expected.
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From the above results we observe that wvhen a molecular well exisis
the interatomic distance of the molecule varies only slightly from the
equilibrium value of the free state. This suggests to set up a more simplified
model in which we compare the adsorption energy of a rigid molecule Xz with
the one of two isolated X adatoms. Furthermore if we neglect the sudstrate
contribution to the binding energy and assume that all X-substrate bonds are
equivalent the relevant energies can be expressed analytically as a function
of EdlssIIEadsI and geometrical parameters. From these expressions we can
derive many of the trends put forward in the preceding calculations and thus
clarify the respective rojes played by energetic and geometrical factors. In
this model the binding energy of the molecule corresponding to interatomic
distance d is approxiwated by

. g & - 1] an § 1]

EB(Xz) = A.xx e - ZBﬂxX e (122)

in which B is a function of l‘tx only, Nx between the number of valence
electrons of an X atom. The dissociation energy, taking the equilibrium

condition into mccount (JAxx = 2B""X)()' ts given by
) 4
Eiiss = = [Ea(’")]dﬂ_ =3 By = 2y (123}

In the same way the binding energy of an X isolated adatom with
coordination number Z and bond length R is
R
3")0([ [ 1] C “‘xu[ Ri 1]
F_B(X) = ZA'XH L] - B Zﬂm e (:24)
where B 1s the same function of NX as above and R; 1s the equilibrium bond

length. Taking the equilibrium condition into account (3ZAXH =B E [!xn). the

adsorption energy is ;

Fads = [EB(X)]R:Rl --3s E"xy =T Ay (125)

Finally the energy of a flat rigid molecule (d - d,) interacting with the

substrate 1s ;

-
i 1) J
Fg(X2)=2Z'A, e *A 2B NZ'D ke By (126)

where Z' and R' are respectively the number of substrate neighbours of each

atom X and the corresponding bond length. At the equilibrium position (R =

Ri) we have
-aq(R
ezq[k' ]-Blg—[%’_f] (- 1+8) (127)

E L]
withS = | 1 + 64 2 [ ads
Z |E
diss

from which we deduce

Eam(x’) = [Eafxz) ]R‘:Ri

E E 3 i (128)
a 2 F 4
- s {1 v (B8 [E—-—‘““ ] (-1+8) - 3qus }
Sﬁ ads ﬁ
Ri

In Fig. 27, we have plotted Ey (Xg)/‘Eads as a function of IEdIss/Eadsl P owe

Ri
see that IEB (X2}] increases with Z' for given values of Z, Edlss and Eads' On

Ri

the other hand, the energy gain when adsorbing the molecule, IEB (X2) +
Edusl' decreases continuously towards zers when Ediss increases. The
Ri
mclecular adsorption is energetically favorable when EB {Xz2) ¢ 2 Eads 1. e,
when IEM“/EMSI 2 1.7 for 2'/Z = 1/2 and |Ed1“/l-:adsl 21.9 for 2'/Z = /5,
thus the rtransition between atomic and molecular adsorptions is rather
independent of the geometry .

Let us now consider the Eeometries of approach for which the distance
to the surface of the malecular adsorption well 1s much larger than the atomic
one. In these cases, we have seen that the saddle point between the two wells
may be above the energy of the free molecule giving rise to an activation
energy for dissociation. This eccurs for the particular geometry of Fig. 26 b

when Edlss is larger than a critical value. In the framework of this
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simplified model we have to find the crossing point between the atomic and
molecular potential curves and examine if the corresponding energy is larger

or smaller than - Ediss' The critical value is thus given by

2 [EB(X)]z=zc =~ Eises {129 a)

[EB()(:)L:zc * " Eiiss (129 b)

In the physically Interesting situation the crossing point is rather
far from the z position of the bottom of the atomic well, {. e. 1n the
attractive part, and the repulsive contribution can be neglected. Under this

condition eqs. (124}, (125) and (129 a) give :

(z.}
‘qxu[n R ‘1] E

diss
= -3 (130)
ads
similarly eqs. (123), (126) and {129 b) give
E
YA diss
7Y~ 3F Y -9.0 (131)

m Eads
(z.)
"’xmrl Rf ‘1]

Eliminating z, between eqs. (130) and (131) we get an implicitc

withY = e
m

equation 1in ,Ediss/Ea.dsl' Its solution gives the critical value of

IEdlss/Eadsl above which an activation barrier exists. This can be done quite

easily on a computer in order to obtain the critical value n, of IE /E

diss a.dsl
as a function of d, for various values of Z and Z'. The only physically
interesting solution corresponding to dissociative activated adsorption
(11': € 2} occurs in the case of geometry of Flg. 26 b. One finds ‘%' thaq an
increase of d, (1. e. a decrease of the lateral distance between the atomic
and molecular wells) leads to slightly larger value of N, “hereas changing the
Eeometry of approach (1. e. Z°/Z} is quite crucial,

As in the atomic adsorption case, we can perferm more realistic

calculations using local densities of states obtained from a cont inued
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fraction expansion of the local Green function on the atom i with three exact
coefficients a!. b.l. ai. ¥We have done such computations for an Oz molecule
arrfving on the {(110) and (100} faces of a transition metal with a half fi]led
d band. The parameter describing the interaction between an oxygen atom and a
substrate atom are the same as in section 4. The potential energy curve of the
free 0z molecule is assumed to be Morse-l{ike {pxx/qxx = 2). and we assume
Ippol/lppw] = 2 ; the remaining parameters for the 0-0 fnteractfon : PPT. qyy
and Axx are determined to fit Ediss(oz)‘ d, and the stretch vibratien
frequency.

Results are shown in Figs. 28 and 29 with the corresponding geometry
of approach. One sees in Fig. 28 that on the (100) face the molecule
dissociates. However its final energy is not twice the atomic adsorption
energy since there is a repulsive indirect (via the two substrate atoms
labelled 1 in Fig. 28) interaction energy between the two atoms.

The case exhibited in Fig. 29 i{s not so clearcut since the distance
between the two atoms in the adsorbed state is such that there st{l)] exists a
sizeable direct iInteraction between them. Energy calculations are not
sufficlient to decide whether the molecule is dissoclated or not. A more
appropriate quantity would be the electron density between atom pairs which is
connected to the bond order. This last qQuantity is quite familiar to quantum
chemists. It can also be easily calculated using the Green function technique

sfnce it is connected to the interatomic Green function. For example, between

two atoms i and § with only ane atomic orbital, it can be written :

1 F + +
Pij =~ 5 Ji Im[G”(E+ 10') +Gji(E+ 10 )]dE (132)
Qualftatively one expects that making bonds between the molecule and

the substrate usually weakens the intramolecular band, this 1s indeed found

using simple models "7’



7 - CONCLUSIONS

In summary we have shown that, In spite of its incompleteness, the
theoretical description of chemisorption of simple elements on metals can
provide an understanding of the main trends observed experimentally. In
particular for substrates at the end of the transition series one expects
moderate binding energies, small activation energies for surface diffusion and
possible existence of both molecular and dissociative chemisorption. These
three factors are clearly favourable for surface chemical reactions and this
should be ohe of the reasons why the best catalysits are found at the end of
the transition series.

. However there is still a long way before we under s tand fully the
dynamics of adsorption and surface reactions since this involves the complete
treatment of the energy transfers via phonons or electron hole pairs from the
adatom to the substrate or vice-versa. The comparison between molecular
dynemics simalations and molecular beam experiments should provide useful

information on this problem.
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APPENDIX 1

Let us consider a semi-infinite linear chain with one orbital per
slte. - B (B > 0) being the hopping integral between nearest neighbours.
PR

T T T
1 2 3

Let us calculate the loca!l density of states on the first atom using the Green

function technique : in the basis of atomic orbitals.

G=(z-H"* -

In which energies are referred to the atomic level

Dn—l Dn-l 1
GII. = D = 2 = D
n an_l -p Dn-2 z- P n-2
n-1

Dn—p being the determinant obtained by suppressing the first p lines and

cO_umns.
Dn'-2
Since the chain is semi-infinite i) = Giy
n-1
Thes
Gis = !
z - ﬂz Gyy
and
z+m|2* - 4p? Z-F+ 1€
Gll =
2ﬂ2 n=+4+1

Giy has an imaginary part when - 2p < E < 2p. Consequently the bandwidth
¥ = 4p and



2
zZ+ ' z? - EH

Giy =
w2rg

The value of n ocutside the band should be such that Gi1 behaves like 1/z when

E tends to infintty. Thus :
N=+1 when E ¢ - 2p
M=-1 when E > 28

Inside the band

. Im Gy; should be negative to get a positive density of states

l 2 ,2
W g__Ez

g

APPENDIX 2

Let us consider an unperturbed hamiltonian H and a perturbed one H - H + v

and calculate the variation an(E}) of the density of

states due

perturbation.
One has
E-Ha+ i€ ! 1 - veXE
( ) E-h %1€ - o(E)
- = (E - Hu + 1€)7" is the unperturbed Green function. We thus get
E-E, + i€
Det(1 - VGIH(E)) < v — 4~
j E- Ej i€

J

E. and E? being respectively the eig

J
4 Log Det(1 - vct SEY) =)
J

envalues of H and H
1

Let us take the imaginary part of this expression :

In- Log Det(1 - VeI(E)) - 7 { Y B(E - E)- )

an(E) = 3 L Imgfl.og Det(l

1

E-E, + i€ E-E%+ 16
5t J 17t
- O
3(E - E

*
- veX(E))

J

)}

to

the
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APPENDIX 3
Let us show that in the Hartree-Fock approximation :
GS
r’ (E-Eg) &H(E) & = 5h 2[(: )L - 5 %) a2
where C 1s the contour consisting of the real axis and a semi-ci-cle ar
infinity in the upper half plane and poa:(z) is the causal Green function. The KL (111} Ni (100)
Z=3 2 -4
integral on the semi-circle vanishes and therefore the second member of the
95 Ny 1.88 & 1.98 %
preceding equation can be written -
E 45 Ny 2,021k 219 4
11:.;'—15{_[ (E-Epy(1 - BLELE), 2% (E - 1€) ak
£-0 o = 950 Ny 2.31 K 235 4
OS(E+iE +
+ J:I:(E—EF)(I - Brif)y 7 (E + 1€) aE }
23 TABLE 1
lim %;E {J (E-EQ)(1 - asag 1£), 2% (E - 1) d&
E-0 o - Experimental variations of the bond lenphs of 0 S and Se on Ni as a function
of the coordination number {from refs and ‘®'),

Er
—J (E-Ep)(1 - B oo gy 1) g
. Jw (B-Ep)(n - BURHE)) o0t b | ey e }

The third integral can be transformed Into a contour integra. on C
vhich vanishes since the poles are below the real axis. Then using eq. 64 ¢ of
the main text valid in the Hartree-Fock approximation, we find immediatedy the

equaiion to be proved.
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Borderline between dissociativ
side) chemisorption at room temperature : thick line, I"l2

from ref.

112)

double line,

Sc Ti ¥ Cr Mn Fe Co Ni Cu

Y Ir Nb Mo Tec Ru Rh Pd Ag

La HF Ta w Re Os Ir Pt Au
TABLE 11

e (left hand side} and molecular (right hand

NO

(1}

(2}

(3)
(4)

{5)
(6)
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FIGURE CAPTIONS

Experimental binding energles of 5d adatoms on W(111), W(112) end

Ir(111} (from Menand and Gallot '7'}).

: Variation of the binding energies of N, 0. F and H along the

transition series (from Toyoshima and Somorjai ‘®' and Bolbach 8y,

: Experimental activation energies for surface diffusfon of 5d ada tams

on ¥(110) and (112) (from Bassett **').

Influence of the image potential on the fonization and affinity

levels of an adatom.

: Electric image of an adatom.

Solution of the Anderson—Grimley-Newns hamiltonfan In the weak {a,
a’) and strong (b, b’} coupling limits. (2. b) : intersections of E -
Eaa with A which define the localized states, {a' b') : corresponding

local densities of states on the adsorbate.

: The three adsorption sites for an adatom on the (100} surface of a

simple cubic lattice.

{a) on top {(b) bridge {c) centered.

: Local densities of states of an on top adatom on the (100} surface of

a simple cubic lattice faor various values of the adatom-substrate
coupling.

Local density of atates of a Mo adatom on Mo compared with the
surface density of states. The adatom 1s assumed to occupy a lattice
site.

{a) (110) surface.

(b) (100) surface.

Fig. 10 :
Fig. 11

Filg. 12 :
Fig. 13

Fig. !4 :
Fig. 5 :
Filg. »6 :
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Deformation of the local density of states on the adatom when the
substrate band filling (i. e. EF) varies in the strong coupling limic
(E: and Ed are respectively the effective adatom atomie ievel and the

center of the substrate d band).

: Schematic variation of the binding energy of an adsorbate with I‘la/’La

electrons per orbital as a function of the substrate band ftlling
(i. e. EF).

Labelling of adsorption sites on the (110) and (100} faces of a bece
metal .

Adatom-substrate bond lengths Ro for several sites on (110) and
(100} bee surfaces for an adatom on a substrate of the same chemical
species as a function of the number of d electrons {full curves
U= 0. broken curves : U - 1.2 ev), Rb is the bulk interatomic
distance.

Adatom-substrate binding energy for several sites on {110) and (100}
bece surfaces for an adatom and a substrate of the same chemical
specles as a function of the number of d electrons (full curves
U=0: broken curves U = 1.2 e¥). The curves labelled TD refer Lo
the most stable site between Bz and T.

Calculated binding energies of 5d adatoms on ¥(110) and (100).
Easiest dtffusion paths and their activation energies (extrapolated
at O K} of 5d adatoms on ¥ (100} and (110) compared with

experiments ‘%’



Fig. 17
Fig. 18 :
Fig. 19 :

Adsorbate-substrate bond lengths for different sites on {110) and
(100) bee surfaces as a function of the number of d electrons of the
substrate. For the centered site {€) on (100) two bond-lengths are
given : 1 corresponds to the bond perpendicular to the surface, A to
the bonds with the four metal atoms in the surface plane :

(a) N. O, F adatoms.
{b} K adatoms.

Binding energies of N, 0. F and H for different sites on {110) and
(i00) bec surfaces as a function of the number of d electrons of the
substrate.

Influence of electronic correlations on the binding energies of N,
Q. F (a, b) and H (c, d) at thelr most stable position on {110) and
(100} bece surfaces {full curves Ua = Us = 0, broken curves Un = 2UlI =
2.4 eV for N, O, F and Ha =2eV, U 2 1.2 eV for H} as a function of

s
the number of d electrons of the substrate.

Fig. 20 {a) : Surface diffusion activation energies at 0 K of R. 0. F on {110)

Fig. 21

Fig. 22

and (100) bee surfaces as a function of the number of d electrons of

the substrate.

(b) : Surface diffusion activation energies at 0 K of H on {110) and

(100) bee surfaces as a function of the number of d electrons of the

substrate.

: Schematic geometry of the stepped bee surface [m(110) x {o11}].

Adatom binding energy contour maps (1. e. contour lines of the
surface E;ln(x. ¥) where E;'ln is the mintmum of EB( X, ¥. z)} with

respect to the coordinate z for a glven value of x and ¥) for ¥ on

¥In{110) x {011)].

Fig. 23 :

Fig. 24 :

Fig. 25 :

Fig. 26 :

a) Labelling of sites and diffusfon channels of the
[(m(110) x (011)]bec stepped surface. The atoms of the upper (lower)
terrace are drawn as full (broken) circles.

b) Profile of the potential energy of an adatom diffusing across the
step.

(a') ¥ adatom on W.

(b’) O on a metal with 54 electrons per atom.

{c’) Hon a metal with 5d electron per atom.

{a. b) Labelling of sites and diffusion channels of the
{m(110) x (110)] (a) and [m{110) x (001}] (b) becec stepped surfaces.
The atoms of the upper (lower) terraces are drawn as full {broken)
circles.

(a’. b') Profile of the potential energy of a W adatom diffusing
across a W [m(110) x (110)] (a') or [m(110) x {001)] (b'} step.

Lennard-Jones potential energy diagram for the chemisorption of a X2
molecule when molecular and dissoc{ative wells exist. AE" is the
activation barrier for dissociation.

Potential energy curves of a homonuclear diatomic molecule Xa (with
dg = 1.2 k) for several values of Edisu(xz) and for the geometries of
approach towards & {100) bee surface shown in the insets. The lattice
parameter is a = 3.16 X which corresponds to ¥. The valence shell of
X and the substrate d band are both half filled. a(d), b{e) are
respectively the equipotential energy curves for Bdl"(xa) =5eV¥ and
9 eV, c and f give E;'i" (Xa) as a function of the distance Z to the
surface 1. e. the minimum of EB(Xz] relative to the intramolecular
distance d for a given z. The corresponding values of d (in A) are
also given along these curves. AE" ig the activation barrier for

dissociation. The reference energy is the energy of two free X atoms.
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Fig. 27 : VYariation of the equilibrium energy of the molecule interacting with /

Irit}
the substrate as a function of its dissociation energy {in units of

1Egl {£V}

Wi
* Wi
Eads) and geometry.

Fig. 28 : Equipotential energy curves (b} for an Oz molecule approaching a HS

(100} surface of a transition metal with a half filled d band Ta W Re 0s W
{lattice parameter a = 3.16 &) according to the geometry of aporoach
{(a). The area limited by dotted lines shows the scanned region. The
reference energy 1s the energy of two free O atoms.

Fig. 23 : Equipotential energy curves {b) for an Oz molecule approacting a
(110) surface of a transition metal with a half filled d band 'L
(lattice parameter a, = 3.16 k) according to the geometry of approach

(a). The area iimited by dotted !ines shows the scanned regior.. The

1Egl (e¥)
-

reference energy is the energy of two free () atoms.
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