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11 Introduction

We shall be concerned here with the changes induced in a
chemical bond when it is brought up from infinite separation to a finite
distance from a planar solid surface. The main attention will focus on the
chemical bond parallel to the surface, though some discussion will be
inctuded of the perpendicular configuration and indeed, the bond at an
arbitrary orientation to the surface.

Cleatly, the surface might be a whole variety of materials: ionic,
covalently bonded networks such as Si or Ge, metallic such at Pt, or
semimeiallic, e.g. graphite. Furthermore, the results will depend not only on
the nature of the surface, whether insulating, semiconducting, or metallic,
but on the question as to whether the electron ctoud associated with the
chemical bond overlaps appreciably with the electron distribution of the solid
surface. This serves to give us a grosa classification into two regimes:

(a) Physisorption : where there is negligible overlap of electronic charge
distributions, and

{b) Chemisorption, where the molecular electrons overlap with the valence
or conduction electrons in the planar surface.

It is natural to begin with the physisorption regime and, to be
definite, let us consider first a metal surface.

1.2 Physisorption on a planar conducting 8

We shall consider twc cases below which, though the same
general conclusions emerge frem both, require different treatment. The first
is when the bond is built from atoms with rather well-defined cores at the

equilibrium separation. Then we shall turn to deal with the H; molecule; for



the present purposes the Heitler-London treatment proves amenable to
generalization to account for the proximity of the solid surface.
1.2.1. Bond in molecyle with well-defined cores

Let us represent the usual poteniial enmergy curve of the
homonuclear molecule we shall specifically be concerned with by a
Lennard-Jones 6-12 potential. The interaction enetgy,AE(R) say, between
the pair of like atoms at separation R is therefore represented by

AE(R)= _B._A (12.1)

R!z Rs'
in free space.

Now consider the effect of the proximity of a metallic conducting
surface on AE(R) : say when the bond is parallel to the surface. The first
term on the RHS of eqn (1.2.1) comes from core repulsion, which can be
expected to be insensitive to the proximity of the surface. Thus, attention
below will focus on the way the surface influences the magnitude of the
digpersion force, characterized by the constant A in {1.2.1).

To see how changes in A affect properties of the bend, let us
calculate the equilibrium bond length R, for which dAE/dR = 0. Then it
follows almost immediately from eqn (1.2.1) that

1
2B\
R, = [—A— (122)
which shows, for assumed fixed B, that as A changes from its free space
value, R, is pretty insensitive to modest changes. However, if we now
substitute the result (1.2.2) back into eqn (1.2.1) to calculate the well depth,
then one readily finds
AE|  =-g. 71.2.3)

Depending as it does on the square of A, the well depth is plainly quite

sensitive to changes in A brought about by the presence of the solict ~rface.

(®)

The reason why A will be modified when the bond is brought up
to the metal surface is 'readily recognized. Charge fluctuations in the
molecule will lead to response of the itinerant electrons in the metal, which
will, in turn, induce effects in the molecule.

Following pioneering work by McLachla.n(I) the calculation of A
in the presence of the conductor was carried out by Mahanty and Mazch (2)
using essentially the Lifshitz theory of dispersion forces. Introducing the

dimensionless variable.

s = 2 (lsiance & tron surfam) (1.2.4)

Distomic bond length
one can write
A 8 1.2.5
=A London F(s) ( }
where the {ree space constant AL may be written
ondon

_3
ALDndon =7 h @, (0) a,(0) (1.2.6)
with & (w) the polarizability of the jth constituent atom at frequency w.
Anticipating the result of the argument sketched in Appendix 1.1
for the bond parallel to a perfect planar conductor the function F(s} in eqn

{1.2.5) is given explicitly by Mahanty and March (2) as

F(s) =1 +U'+_13’)’ -y 49 (e
This function varies monotonically from % at 8 =01to1ass- o Inserting
the maximum reduction of A by 2/3 into the equilibrivm bond length leads
to a small increase of a few %. But clearly, the same assumed reduction
factor will make the well shallower than its free space form, according to eqn

(1.2.3), by a factor 4/3. Of course, this is the maximum reduction possible

with the above simple model.



12.2 Application of desorption of Xe on
Pt

Evidence in favour of a reduction in the well depth discussed
above comes from the work of Redondo et a.l(a). They used free space
interatomic potentials to discuss desorption energy as a function of coverage
for Xe on W. Their conclusion was that the desorption energy calculated
from these free space potentials varied more strongly as a function of
coverage than did that extracted from these potentials.

Subsequently, Joyce et a.l(4) used the Mahanty-March lateral
interaction discussed above, and Figure 1.1 shows the marked reduction in
the variation of desorption energy with coverage from the free space potential
prediction. This is clearly in the right direction to improve the agreement
with experiment. Joyce et al also calculated thermal desorption spectra, to
compare with the measurements of Opila and Gomer(s). Quite reasonable
agreement with experiment resulted.

The conclusion from this work is that the data supports the
theory of lateral interactions outside a metal surface in the physisorption
regime. ]

We note here that Mahanty and March(z) also considered the
perpendicular configuration. The function F in eqn (1.2.5) is now an
enhancement factor, with a maximum value of 8/3 and minimum value
unity. But now, unlike the parallel configuration, interaction of individual
atoms with the surface is very different and must be included. One
anticipates in this perpendicular configuration that the bond length will be
reduced, while the bond strength will be more dependent on detail for this
orientation than for the parallel case. Finally, Mahanty and March

considered a bond at arbitrary orientation; this work bas been extended

gubsequently by Mahanty et a.l(ﬁ) to whose paper the interesied reader is
referred for full details. A brief sketch of the method and results has been
included at the end of Appendix 1.1 here,

1.2.3 H; _mol : modification itler— on_theory to
include image effects

As already mentioned, the previous argument is only useful when
cores are well defined at the equilibrium separation. The interesting case of
the H; molecule therefore requires separate {reatment. This was given by
Flores et a.l('r), their argument resting on two assumptions:

(i) The Heitler-London theory affords a useful starting point, for a
semi—quantitative study
(i) The Coulombic interaction |/| r, - r,| between two charges a
and b is to be replaced, in the presence of a conducting surface, by
1 1
- =,
A SEN L AES N

1 referring to an image distance.

The approach subseguently follows closely the tiraditional

Heitler~London calcuiation. Thus the molecular energy E is written ag

E = 2B, + U_i"S’T + u%g,) . (128)
and one then must examine the behaviour of the Coulomb piece J and the
exchange term K in the presence of the metal surface, S being the overlap
integral between hydrogen 1s wave functions.

Calculation shows J to play an unimportant role and the
correction to the Heitler-London energy due to the metal surface may be
written

§E = 8K /(1 + 87). (1.2.9)

With the interaction between charges modified by the image term as in



assumption (ii) above, JK was calculated (see Appendix 1.2) by Flores et
31(7). Again, in the parallel configuration, the bond is weakened and
(slightly) lengthened.

124 Insulating and semiconducting surfaces, as well a5 metals

More briefly, we shall now comment on lateral interactions in the
physisorption regime for some insulaling and semiconducting surfaces in
addition to metals, full details being relegated to Appendix 1.3. The account
follows that given by Girard and Girardet(s) fairly closely.

There has been considerable effort aimed at identifying all the
contributions of the interaction of adatoms with both dielectric and metallic
substrates according according to the adsorbate coverage rate. Bruch has
discussed the various dominant terms in the lateral interaction and has
analyzed the dominance of the subsirate-mediated energy for rare gas
monolayers adsorbed on noble metals (cf section 1.2.2} or on the semi-metal
graphite,

As Girard and Girardet®) emphasize a fully quantitative
determination of the latter energy per adatom requires the calculation of {a)
the corrugation energy of the surface, of {b) all the substrate-mediated
energies including the long-range dispersion contribution discussed in
Appendix 1.3, the long- and short-range electrostatic terms and *he elastic
distortion of the surface, of (c) the proper energy of the adatom in the
monolayer including many-body effects and (d) the influence of finite
temperature. '

Hence, it is difficult to discuss the relative importance of the
long-range substrate-mediated contribution if the monolayer corfigaration is
not known. One can however assert that the cortugation decrreser when the

metal face becomes more dense and, in contrast, that the substrais-adiated

10

long-range energy increases with the atomic density of the face and with the
size of the adatom. This fact necessitates an accurate determination of the
subsirate-mediated term for graphite and noble or transition metals with the
more dense (0001) and (111} faces, respectively. Indeed, it appears that this
term, in {hig case, is dominant in determining the structure of the adsorbed
monolayer.

For molecules adaorbed in ionic surfaces, the substrate—mediated
dispersion energy remains weak when compared with the multipolar
induction terms. These terms fundamentally depend on the relative
orientations of the adsorbed molecules and on the orientation of the
molecules in their adsorption sites. For ioni¢ crystals, the corrugation energy
is generally greater than for metals and the study of the relative magnitude
of the contributions to the lateral energy is reguired to determine the
monclayer structure.

A rtemark should be added on other interaction mechanisms
which can be classified in the substrate-mediated energy (see, for example,
Bruch(g)). For instance, the interaction between dipole moments induced by
the proximity of the metal in the case of rare gas atoms have been
disregarded. In a similar way, the quadrupole and higher multipole moments
would modify the form and the magnitude of the multipolar induction energy

between adsorbed _molecules.



11

13 hemigorption of metalli ce8

Having discussed especially lateral interactions in the
physisorption range at some length, we must turn now to the case when the
metal-chemical bond interaction is strong, due to appreciable overlap of the
molecular electron distribution with the itinerant electrons in the metal.

Then the question immediately arises: how does a ’perturbation’
embedded in an electron gas affect the metal eleciron distribution. We shall
see below that the answer to this question has an important bearing on the
nature of the lateral interactions between atomic or molecular species outside
a conducting surface in the chemisorption regime.
1.3.1 Flementary metal models

Let us start from electrons in a one—dimensional box of length ¢,
with origin z = 0 at one edge of this box. Evidently the electron density ofz)
for N singly filled levels is given by the sum of the squares of the normalized

wave functions:
N

W
p(z) =-2£ 2‘ gin? ? (1.3.1)
n=1
This can be summed exactly to yield, with y = 75

O e b - SRR
We shall be interested in the ‘perturbation’ induced by the edge
of the box at z = 0 deep in the Fermi gas : this we can obtain by taking the
limit when the length of the box £ tends to infinity. One can either take this
limit, such that N/Z+ pg, the constant ‘bulk’ density, in eqn (1.3.2), or quite

equivalently one can return to eqn (1.3.1) and replace the summation by an

integration. Either way, one readily obtains the desired resuit

#z) = po [1 —s-ig-l-c-f—k-i—z] (1.3.3)

12

where we have introduced, via the usual phase space argument, the Fermi
wave number ki, related to py for singly filled levels by kf = #py.

Two points are to be noted from the elementary model result
(1.3.3):

(i) The electron density p rises from zero at z = 0, the position of
the infinite barrier, to its aspymptotic bulk value pq, oscillating about its
asymptote with wavelength «/ky : ie the long-range oscillations are
determined by the de Broglie wavelength of an electron at the Fermi surface.

{ii) The density p first reaches its bulk value gy after a distance given
by 2kt z = «, and e0 one can say that the ‘thickness’ of the surface ‘spill-out’
of the electron density distribution in a simple metal is also ~x/ks which is
~1A.

In a semi-infinite three-dimensional electron gas with an infinite

barrier, eqn (1.3.3) is replaced by the result

#z) = po [1—:—&;&%‘;’1‘—”)} ; (134)

which was first obtained by Bardeen(w). His model is considered in more
detail; following the work of Moore and March(u), in Appendix 1.2.
1.3.2 Relation of long-range oscillations in perturbed electron density
to lateral interactions bet chemi ies
Of course, we want to relate what has been learnt about
long-range oscillations induced by perturbations in a Fermi gas of itinerant
metal electrons to the {indirect) lateral interactions between chemisorbed
species outside a planar metal surface. The detailed argument is given in
Appendix 1.2, but we note here that for & weak perturbing potential V(r) the

charge p(r)-py displaced by the perturbation follows from linear response
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theory as

8p = p(t)po = J Fer) V(r)dr  (1.3.5)
The kernel F must be calculated for the appropriate situation. For a
perturbation in a bulk electron gas, F was obtained by March and
Murray(lz) as

F(t) = 11(2ket) 11.3.6)
(2kt)
witht= |r-r].

It V(r') = A&’ ), it follows immediately from eqn (1.3.5) that
A ~ ji(2kysr) : j = gin z -
o(r) .h([ i) : ji(z) &= mos 2
(1.3.7)

or at sufficiently large r,

Ap(r)~ constant cos(2kr) (1.3.8)
r

This form is to be compared with the forms (1.3.4) or (1.3.3.) : all exhibit
long-range oscillations, but one must be careful about the inverse powers of
distance : this is the essential point we shall stress below. Actuaily, for a test
charge perturbation, eqn (1.3.5) can be combined with Poisson’s equation
and leads to a selfconsistent field problem. When solved, precisely the form
(1.3.8) is regained, with the same oscillatory decay with distance for the
screened potential round the test charge. The so-called electrostatic model
then leads to the interaction energy between test charges at separation R as

AE(R)~ A cos 2kR {+.39
A cof AR )

As Corless and Ma.rch(13) demonstrated, eqn (1.3.9) is valid ‘or charges
interacting in a bulk metal. Near a surface, one can uge she Bardeen model
developed in Appendix 1.2 to re—calculate the function ¥ in eqn (1 3.5).

Then, for a pair of charges parallel to the surface, the argumen: ~f Appendix

14

1.2 reveals a shorter—range oscillatory interaction, still valid asymptotically,

having the form
linear response

AE(R ~ Acos 2keR 1.3.10
(®) chemisorption "—RT"L ( )
Following pioneering work by Grimley, and by Eistein and Schrieffer, the

linear response form (1.3.10) was derived independently by Flores et a1(7)and
by Lau and Kobn(!4),

Just as Friedel and co~workers showed for the bulk metal result
(1.3.9), when the ‘pertubation’ scatters the itinerant electrons strongly there
i8 a phase shift ¢ introduced into the asymptotic form (1.3.10) to yield for

the indirect lateral interaction

AE(R) chemtsorption " A cosé 2keR + ¢)  (1.3.11)

Below, we shall mention two applications of the indirect
long-range oscillatory interaction between chemisorbed species: the first for
H on Pt and the second for CO molecules interacting also outside a Pt

surface.



